Одноцепная и двухцепная линия в чем отличие
Форум режимщиков
В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ
В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ
ребят кто поможет в вопросе, в котором я запутался в хлам.
1. Если две ПС допустим соединены двумя ВЛ 220 кВ
— каждая линия причем имеет свои опоры на протяжении всего пути.
— и имеют наименование допустим Сильная-1(2)
т.о. это я так понимаю две одноцепные параллельные линии?
2. То же самое только на протяжении всего пути имеют общую т.е. двухцепную опору?
т.о. это двухцепная линия?
3. А если опоры будут смешанными и вообще а опоры сдесь причем? Может если обе линии уходят с одной и той же ПС и приходят на одну и ту же ПС это автоматически означает что она двухцепная?)))
Одним словом, по каким признакам это можно определить глядя на схему ПС, энергоситемы, опорные схемы линий?
Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ
На мой взгляд разница появляется при составлении детальных моделей для различных расчетов.
Например, при расчете надежности. Двухцепная ЛЭП при остальных равных условиях менее надежна чем две одноцепки. Если будет поврежедена опора (скажем трактором), то две ЛЭП отключатся.
Также при расчетах токов КЗ и УР. Если детализировать расчеты, то будут разные реактивные сопротивления, которые зависят от взаимного расположения фаз. Часто при расчетах токов КЗ необходимо учитывать взаимоиндукцию между ЛЕП, а она зависит от расстояния между проводами.
Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ
Да расчеты то ладно.)))
У нас просто сетевая компания все линии которые имеют начало и конец на одной и той же ПС решила приравнять к двуцепным линиям и под это дело поменять их диспетчерское наименование, добавив слово «цепь» в конце прежнего наименования.
В итоге в диспетчерских переговорах получим наименование «ВЛ 220 кВ Сильная-1 цепь»
Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ
Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ
marz писал(а) Sat, 25 September 2010 22:27 |
У нас просто сетевая компания все линии которые имеют начало и конец на одной и той же ПС решила приравнять к двуцепным линиям и под это дело поменять их диспетчерское наименование, добавив слово «цепь» в конце прежнего наименования. |
В итоге в диспетчерских переговорах получим наименование «ВЛ 220 кВ Сильная-1 цепь»
Если рассматриваемые ВЛ не являются объектами диспетчеризации, то называть их сетевая может, как ей заблагорассудится.
В противном случае, наименования присваивает системный оператор, а у него есть определённые требования, предписанные к исполнению самим НГШ.
Re: В чем отличие двухцепной ВЛ от одноцепных параллельных ВЛ
marz писал(а) Sat, 25 September 2010 22:27 |
Да расчеты то ладно.))) |
У нас просто сетевая компания все линии которые имеют начало и конец на одной и той же ПС решила приравнять к двуцепным линиям и под это дело поменять их диспетчерское наименование, добавив слово «цепь» в конце прежнего наименования.
В итоге в диспетчерских переговорах получим наименование «ВЛ 220 кВ Сильная-1 цепь»
Если у каждой из цепей, подвешенных на одних опорах, свои коммутационные аппараты, защиты и т.п. то эт самостоятельные сетевые элементы. Хотя и менее надёжные с учётом лихих трактористов.
Какая разница, как называется линия? Номер цепи в наименовании может указывать на существование параллельных связей, а не не совмещение на опорах (и по мне в этом есть рациональное зерно).. Очень часто совмещение имеет место на заходах на ПС. Ну и что?
Словарь терминов
– система энергетического оборудования, предназначенного для передачи электрической энергии.
Воздушная линия (ВЛ)
– устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам.
Опора ЛЭП
– опора воздушной линии электропередачи – сооружение для удержания проводов и при наличии грозозащитных тросов воздушной линии электропередачи и оптоволоконных линий связи на заданном расстоянии от поверхности земли и друг от друга.
Каталог опор ЛЭП ГК ЭЛСИ
Опора одноцепная
– опора воздушной линии электропередачи, несущая одну трёхфазную линию (три электропровода).
Опора двухцепная
– опора воздушной линии электропередачи, несущая две трёхфазные линии (шесть электропроводов).
Анкерная опора
– опора воздушной линии электропередачи, воспринимающая усилия от разности тяжения проводов, направленных вдоль ВЛ.
Анкерный пролет
– это расстояние между двумя анкерными опорами ВЛ, на которых жестко закреплены провода.
Угловая опора
– опора воздушной линии электропередачи, рассчитанная на тяжение проводов с усилиями, действующими по биссектрисе внутреннего угла, образуемого проводами в смежных пролётах.
Угловая опора в каталоге опор ЛЭП ГК ЭЛСИ: ВЛ 10 кВ, ВЛ 35 кВ, ВЛ 110 кВ
Концевая опора
– опора воздушной линии электропередачи, которая воспринимает направленные вдоль линии усилия, создаваемые нормальным односторонним тяжением проводов; концевые опоры устанавливают в начале и конце ВЛ.
Концевая опора в каталоге опор ЛЭП ГК ЭЛСИ: ВЛ 10 кВ, ВЛ 35 кВ
Промежуточная опора
– опора воздушной линии электропередачи, служащая для поддержания проводов на определенной высоте от земли и не рассчитанная на усилия со стороны проводов в продольном направлении или под углом.
Ответвительная опора и перекрёстная опора
– опоры воздушных линий эпектропередачи, на которых выполняются ответвления от ВЛ и пересечения ВЛ двух направлений.
Провод
– элемент ВЛ, предназначенный для передачи электрического тока.
Грозозащитный трос
– элемент ВЛ, предназначенный для защиты проводов ВЛ от прямых ударов молнии. Трос заземляется или изолируется от тела опоры (земли) и, как правило, располагается над проводами фаз.
Тяжение провода (троса)
– усилие, направленное по оси провода (троса), с которым он натягивается и закрепляется на анкерных опорах ВЛ.
Габарит воздушной линии
– расстояние от низшей точки провисания провода до поверхности земли.
Стрела провеса провода (f)
– расстояние по вертикали между прямой линией, соединяющей точки подвеса провода, и низшей точкой его провисания.
Габаритная стрела провеса провода (fгаб)
– наибольшая стрела провеса провода в габаритном пролете.
Пролет ВЛ
– расстояние между соседними опорами воздушных линий электропередачи.
Габаритный пролет (lгаб)
– пролет, длина которого определяется нормированным вертикальным расстоянием от проводов до земли при установке опор на идеально ровной поверхности.
Весовой пролет (lвес)
– длина участка ВЛ, вес проводов (тросов) которого воспринимается опорой.
Ветровой пролет (lветр)
– длина участка ВЛ, с которого давление ветра на провода и грозозащитные тросы воспринимается опорой.
Вибрация проводов (тросов)
– периодические колебания провода (троса) в пролете с частотой от 3 до 150 Гц, происходящие в вертикальной плоскости при ветре и образующие стоячие волны с размахом (двойной амплитудой), которая может превышать диаметр провода (троса).
Пляска проводов (тросов)
– устойчивые периодические низкочастотные (0,2 – 2 Гц) колебания провода (троса) в пролете с односторонним или асимметричным отложением гололеда (мокрого снега, изморози, смеси), вызываемые ветром скоростью 3 – 25 м/с и образующие стоячие волны (иногда в сочетании с бегущими) с числом полуволн от одной до двадцати и амплитудой 0,3.
Гирлянда изоляторов
– устройство, состоящее из нескольких подвесных изоляторов и линейной арматуры, подвижно соединенных между собой.
Линейная арматура для ВЛ
– это, в частности, элементы крепления изоляторов, средства защиты, зажимы, спиральные вязки.
Нормальный режим ВЛ
– состояние ВЛ при неповрежденных проводах или тросах.
Аварийный режим ВЛ
– состояние ВЛ при оборванных проводах или тросах.
Монтажный режим ВЛ
– состояние ВЛ при монтаже опор, проводов или тросов.
Населенная местность
– земли городов в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов.
Ненаселенная местность
– земли единого государственного фонда, за исключением населенной и труднодоступной местности; незастроенная местность, хотя бы и часто посещаемая людьми, доступная для транспорта и сельскохозяйственных машин, огороды, сады, местность с отдельными редко стоящими строениями и временными сооружениями.
Труднодоступная местность
– местность, не доступная для транспорта и сельскохозяйственных машин.
Подвесной изолятор
– изолятор, предназначенный для подвижного крепления токоведущих элементов к опорам воздушных линий электропередачи, несущим конструкциям и различным элементам инженерных сооружений.
Усиленное крепление провода с защитной оболочкой
– крепление провода на штыревом изоляторе или к гирлянде изоляторов, которое не допускает проскальзывания проводов при возникновении разности тяжений в смежных пролетах в нормальном и аварийном режимах ВЛЗ.
Штыревой изолятор
– изолятор, состоящий из изоляционный детали, закрепляемой на штыре или крюке опоры воздушной линии электропередачи.
Траверса
– конструкция, расположенная на опоре воздушной линии электропередачи, к которой крепят изоляторы для проводов и др. арматуру. Служит для создания требуемого изолирующего воздушного промежутка и поддержки проводов.
Трасса ВЛ
– положение оси ВЛ на земной поверхности.
Тросовое крепление
– устройство для прикрепления грозозащитных тросов к опоре ВЛ, если в состав тросового крепления входит один или несколько изоляторов, то оно называется изолированным.
Электрическая сеть
– совокупность воздушных и кабельных линий электропередач и подстанций, работающих на определенной территории.
Воздушные и кабельные линии электропередачи
1. Воздушная линия электропередачи
Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам с защитной изолирующей оболочкой (ВЛЗ) или неизолированным проводам (ВЛ), находящимся на открытом воздухе и прикрепленным с помощью траверс (кронштейнов), изоляторов и линейной арматуры к опорам или другим инженерным сооружениям (мостам, путепроводам). Главными элементами ВЛ являются:
За начало и за конец воздушной линии принимают линейные порталы распределительных устройств. По конструктивному устройству ВЛ делятся на одноцепные и многоцепные, как правило 2-цепные.
Обычно ВЛ состоит из трех фаз, поэтому опоры одноцепных ВЛ напряжением выше 1 кВ рассчитаны на подвеску трёх фазных проводов (одной цепи) (рис. 1), на опорах двухцепных ВЛ подвешивают шесть проводов (две параллельно идущие цепи). При необходимости над фазными проводами подвешивается один или два грозозащитных троса. На опорах ВЛ распределительной сети напряжением до 1 кВ подвешивается от 5 до 12 проводов для электроснабжения различных потребителей по одной ВЛ (наружное и внутреннее освещение, электросиловое хозяйство, бытовые нагрузки). ВЛ напряжением до 1 кВ с глухозаземлённой нейтралью помимо фазных снабжена нулевым проводом.
Рис. 1. Фрагменты ВЛ 220 кВ: а – одноцепной; б – двухцепной
Провода воздушных линий электропередачи в основном изготавливаются из алюминия и его сплавов, в некоторых случаях из меди и ее сплавов, выполняются из холоднотянутой проволоки, обладающей достаточной механической прочностью. Однако наибольшее распространение получили многопроволочные провода из двух металлов с хорошими механическими характеристиками и относительно невысокой стоимостью. К проводам такого типа относятся сталеалюминиевые провода с отношением площадей поперечного сечения алюминиевой и стальной части от 4,0 до 8,0. Примеры расположения фазных проводов и грозозащитных тросов показаны на рис. 2, а конструктивные параметры ВЛ стандартного ряда напряжений приведены в табл. 1.
Рис. 2. Примеры расположения фазных проводов и грозозащитных тросов на опорах: а – треугольное; б – горизонтальное; в – шестиугольное «бочкой»; г – обратной «елкой»
Таблица 1. Конструктивные параметры воздушных линий
напряжение ВЛ, кВ
фазными проводами, м
линии, м
Для всех приведенных вариантов расположения фазных проводов на опорах характерно несимметричное расположение проводов по отношению друг к другу. Соответственно это ведет к неодинаковому реактивному сопротивлению и проводимости разных фаз, обусловленных взаимной индуктивностью между проводами линии и как следствие к несимметрии фазных напряжений и падению напряжения.
Для того чтобы сделать емкость и индуктивность всех трех фаз цепи одинаковыми, на линии электропередачи применяют транспозицию проводов, т.е. взаимно меняют их расположение друг относительно друга, при этом каждый провод фазы проходит одну треть пути (рис. 3). Одно такое тройное перемещение называется циклом транспозиции.
Рис. 3. Схема полного цикла транспозиции участков воздушной линии электропередачи: 1, 2, 3 – фазные провода
Транспозицию фазных проводов воздушной линии электропередачи с неизолированными проводами применяют на напряжение 110 кВ и выше и при протяженности линии 100 км и больше. Один из вариантов монтажа проводов на транспозиционной опоре показан на рис. 4. Следует отметить, что транспозицию токопроводящих жил иногда применяют и в КЛ, кроме того современные технологии проектирования и сооружения ВЛ позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и компактные воздушные линии сверхвысокого напряжения).
Рис. 4. Транспозиционная опора
Провода и защитные тросы ВЛ в определенных местах должны быть жестко закреплены на натяжных изоляторах анкерных опор (концевые опоры 1 и 7, устанавливаемые в начале и конце ВЛ, как это показано на рис. 5 и натянуты до заданного тяжения. Между анкерными опорами устанавливают промежуточные опоры, необходимые для поддержания проводов и тросов, при помощи поддерживающих гирлянд изоляторов с поддерживающими зажимами, на заданной высоте (опоры 2, 3, 6), устанавливаемые на прямом участке ВЛ; угловые (опоры 4 и 5), устанавливаемые на поворотах трассы ВЛ; переходные (опоры 2 и 3), устанавливаемые в пролете пересечения воздушной линией какого-либо естественного препятствия или инженерного сооружения, например, железной дороги или шоссе.
Рис. 5. Эскиз воздушной линии электропередачи
Расстояние между анкерными опорами называют анкерным пролетом воздушной линии электропередачи (рис. 6). Горизонтальное расстояние между точками крепления провода на соседних опорах называется длиной пролета L. Эскиз пролета ВЛ показан на рис. 7. Длину пролета выбирают в основном по экономическим соображениям, кроме переходных пролетов, учитывая, как высоту опор, так и провисание проводов и тросов, а также количество опор и изоляторов по всей длине ВЛ.
Рис. 6. Эскиз анкерного пролета ВЛ: 1 – поддерживающая гирлянда изоляторов; 2 – натяжная гирлянда; 3 – промежуточная опора; 4 – анкерная опора
Наименьшее расстояние по вертикали от земли до провода при его наибольшем провисании называют габаритом линии до земли – h. Габарит линии должен выдерживаться для всех номинальных напряжений с учетом опасности перекрытия воздушного промежутка между фазными проводами и наиболее высокой точкой местности. Также необходимо учитывать экологические аспекты воздействия высоких напряженностей электромагнитного поля на живые организмы и растения.
Наибольшее отклонение фазного провода fп или грозозащитного троса fт от горизонтали под действием равномерно распределенной нагрузки от собственной массы, массы гололеда и давления ветра называют стрелой провеса. Для предотвращения схлёстывания проводов стрела провеса троса выполняется меньше стрелы провеса провода на 0,5 – 1,5 м.
Конструктивные элементы ВЛ, такие как фазные провода, тросы, гирлянды изоляторов обладают значительной массой поэтому силы действующие на одну опору достигает сотен тысяч ньютон (Н). Силы тяжения на провод от веса провода, веса натяжных гирлянд изоляторов и гололедных образований направлены по нормали вниз, а силы, обусловленные ветровым напором, по нормали в сторону от вектора ветрового потока, как это показано на рис. 7.
Рис. 7. Эскиз пролета воздушной линии электропередачи
С целью уменьшения индуктивного сопротивления и увеличения пропускной способности ВЛ дальних передач используют различные варианты компактных ЛЭП, характерной особенностью которых является уменьшенное расстояние между фазными проводами. Компактные ЛЭП имеют более узкий пространственный коридор, меньший уровень напряженности электрического поля на уровне земли и позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и линии с нетрадиционной конфигурацией расщепленных фаз).
2. Кабельная линия электропередачи
Кабельная линия электропередачи (КЛ) состоит из одного или нескольких кабелей и кабельной арматуры для соединения кабелей и для присоединения кабелей к электрическим аппаратам или шинам распределительных устройств.
В отличие от ВЛ кабели прокладываются не только на открытом воздухе, но и внутри помещений (рис. 8), в земле и воде. Поэтому КЛ подвержены воздействию влаги, химической агрессивности воды и почвы, механическим повреждениям при проведении земляных работ и смещении грунта во время ливневых дождей и паводков. Конструкция кабеля и сооружений для прокладки кабеля должна предусматривать защиту от указанных воздействий.
Рис. 8. Прокладка силовых кабелей в помещении и на улице
По значению номинального напряжения кабели делятся на три группы: кабели низкого напряжения (до 1 кВ), кабели среднего напряжения (6…35 кВ), кабели высокого напряжения (110 кВ и выше). По роду тока различают кабели переменного и постоянного тока.
Силовые кабели выполняются одножильными, двухжильными, трехжильными, четырехжильными и пятижильными. Одножильными выполняются кабели высокого напряжения; двухжильными – кабели постоянного тока; трехжильными – кабели среднего напряжения.
Кабели низкого напряжения выполняются с количеством жил до пяти. Такие кабели могут иметь одну, две или три фазных жилы, а также нулевую рабочую жилу N и нулевую защитную жилу РЕ или совмещенную нулевую рабочую и защитную жилу PEN.
По материалу токопроводящих жил различают кабели с алюминиевыми и медными жилами. В силу дефицитности меди наибольшее распространение получили кабели с алюминиевыми жилами. В качестве изоляционного материала используется кабельная бумага, пропитанная маслоканифольным составом, пластмасса и резина. Различают кабели с нормальной пропиткой, обедненной пропиткой и пропиткой нестекающим составом. Кабели с обедненной или нестекающей пропиткой прокладывают по трассе с большим перепадом высот или по вертикальным участкам трассы.
Кабели высокого напряжения выполняются маслонаполненными или газонаполненными. В этих кабелях бумажная изоляция заполняется маслом или газом под давлением.
Защита изоляции от высыхания и попадания воздуха и влаги обеспечивается наложением на изоляцию герметичной оболочки. Защита кабеля от возможных механических повреждений обеспечивается броней. Для защиты от агрессивности внешней среды служит наружный защитный покров.
При изучении кабельных линий целесообразно отметить сверхпроводящие кабели для линий электропередачи в основу конструкции которых положено явление сверхпроводимости. В упрощенном виде явление сверхпроводимости в металлах можно представить следующим образом. Между электронами как между одноименно заряженными частицами действуют кулоновские силы отталкивания. Однако при сверхнизких температурах для сверхпроводящих материалов (а это 27 чистых металлов и большое количество специальных сплавов и соединений) характер взаимодействия электронов между собой и с атомной решеткой существенно видоизменяется. В результате становится возможным притягивание электронов и образование так называемых электронных (куперовских) пар. Возникновение этих пар, их увеличение, образование «конденсата» электронных пар и объясняет появление сверхпроводимости. С повышением температуры часть электронов термически возбуждается и переходит в одиночное состояние. При некоторой так называемой критической температуре все электроны становятся нормальными и состояние сверхпроводимости исчезает. То же происходит и при повышении напряженности магнитного поля. Критические температуры сверхпроводящих сплавов и соединений, используемых в технике, составляют 10 — 18 К, т.е. от –263 до –255°С.
Первые проекты, экспериментальные модели и опытные образцы таких кабелей в гибких гофрированных криостатирующих оболочках были реализованы лишь в 70—80-е годы XX века. В качестве сверхпроводника использовались ленты на основе интерметаллического соединения ниобия с оловом, охлаждаемые жидким гелием.
Провод – одна неизолированная или одна и более изолированных жил, поверх которых в зависимости от условий прокладки и эксплуатации может иметься неметаллическая оболочка, обмотка и (или) оплетка волокнистыми материалами или проволокой.
Двухцепная линия электропередачи 110-220 кВ (дистанционная и токовые защиты)
Для передачи и распределении электрической энергии на участках с большой протяженностью применяются Воздушные линии электропередачи (ВЛ), расположенные на открытом воздухе. По напряжению широко используются ВЛ-0,4кВ и Вл-10кВ, данные линии можно увидеть в сельской местности, проходящие через лесную и полевую местность. Что однозначно дает им преимущество перед альтернативными электроустановками передающими электроэнергию – это возможность передачи на дальнее расстояние. И в этом недостаток, влияние на ВЛ атмосферных осадков особенно в зимний период, обледенение проводов а также зоны с повышенными ветровыми характеристиками. И все таки ВЛ используют в распределительных сетях, в полных объемах.
Классификация ЛЭП
базируется на ряде признаков, первым из которых является род тока. Различают: линии постоянного тока (применяются ограниченно, т. к. электропередача постоянного тока связана гл. обр. с технич. трудностями создания эффективных недорогих устройств для преобразования переменного тока в постоянный – в начале линии, и постоянного тока в переменный – в конце линии), трёхфазного переменного (по протяжённости ВЛ получили наибольшее распространение в мире), ЛЭП многофазного переменного тока (шести- и двенадцатифазные) – не получили широкого распространения. Одной из осн. характеристик ЛЭП является её пропускная способность, т. е. та наибольшая мощность, которую можно передать по ЛЭП с учётом ограничивающих факторов. Мощность, передаваемая по ЛЭП переменного трёхфазного тока, связана с её протяжённостью, напряжением и токовой нагрузкой. По номинальному напряжению ЛЭП подразделяются на низковольтные (до 1 кВ) и высоковольтные (св. 1 кВ), среди которых выделяют линии среднего (3–35кВ), высокого (110–220 кВ), сверхвысокого (330–750 кВ) и ультравысокого (св. 1000 кВ) напряжений. Освоение высших уровней напряжения обусловлено необходимостью передачи растущих потоков электроэнергии на увеличивающиеся расстояния и стремлением снизить потери от нагрева проводов ВЛ, которые пропорциональны квадрату тока (напр., ток увеличится в 2 раза, потери возрастут в 4 раза). По количеству параллельных цепей, прокладываемых по общей трассе, ВЛ бывают одноцепные (ВЛ переменного тока, имеющая один комплект, т. е. три фазных провода), двухцепные (ВЛ с двумя комплектами фазных проводов) и многоцепные (ВЛ, имеющие более двух комплектов фазных проводов). По топологическим характеристикам различают радиальные (мощность поступает от единственного источника), магистральные (отходит неск. ответвлений) и ответвления (линии, присоединённые одним концом к др. ЛЭП в её промежуточной точке). По функциональному назначению ЛЭП бывают распределительные (линии местных электрич. сетей), питающие (линии сетей районного значения, которые осуществляют электроснабжение центров питания распределит. сетей), а также системообразующие и межсистемные, которые непосредственно соединяют разные энергосистемы и предназначены для взаимного обмена мощностью как в нормальном, так и в аварийном режиме.
Конструкция ЛЭП
Металлическая опора линии электропередачи.
включает провода, изоляторы, опоры (рис.). Провода воздушных ЛЭП должны обладать хорошей электрич. проводимостью, механич. прочностью, стойкостью против атмосферных и химич. воздействий. Осн. проводником электрич. энергии ЛЭП в России служат алюминиевые провода; за рубежом широкое применение получили алюминиевые сплавы, обладающие повышенной механич. прочностью (алдрей, альмелек, акрон), а также высокотемпературные сплавы c цирконием (рабочая темп-ра до 150–210 °C). Провода (неизолированные) изготавливаются скруткой из нескольких слоёв (повивов) круглых или фасонных проволок; применяются преим. упрочнённые (т. н. сталеалюминиевые) с сердечниками, свитыми из проволок канатной стали. На ЛЭП номинального напряжения до 220 кВ используются только одиночные провода в каждой из трёх фаз. В ЛЭП напряжением 330 кВ и выше для устранения появления протяжённого коронного разряда на проводах (вызывает дополнит. потери электрич. энергии) применяют расщеплённые фазы (вместо одного фазного провода большого сечения подвешивается неск. скреплённых между собой проводов меньшего сечения). Миним. число проводов в расщеплённой фазе увеличивается соответственно росту номинального напряжения ЛЭП: 330 кВ – 2; 500 кВ – 3; 750 кВ – 4; 1150 кВ – 8. Увеличение количества проводов в фазе свыше минимальной позволяет пропорционально увеличить пропускную способность ЛЭП (т. е. наибольшую возможную активную мощность). За рубежом и в России на вновь сооружаемых ЛЭП до 35–110 кВ широко применяются самонесущие изолиров. провода, что позволяет уменьшить междуфазные расстояния на опорах, сократить ширину вырубаемых просек в лесных массивах.
Электрич. изоляция обеспечивается либо гирляндами подвесных тарельчатых изоляторов из закалённого стекла, соединяемых механически в цепочки, либо стержневыми полимерными изоляторами, основу которых составляет стеклопластиковый стержень, герметично защищённый ребристой оболочкой, изготовленной из кремнийорганич. резины. Преимуществами полимерной изоляции являются: малый вес; удобства хранения, транспортировки и монтажа; повышенная стойкость к разрушениям и др. Крепление проводов к изоляции и изоляции к опорам осуществляется применением узлов и изделий арматуры возд. линий (зажимы проводов, серьги, скобы и др.).
Для поддержания проводов на безопасном расстоянии от земной (водной) поверхности используются изоляционные подвески и опоры (дерев., жел.-бетон. и металлические), а также иные несущие конструкции и естеств. образования (скалы, кронштейны и стойки на др. инж. сооружениях). Дерев. опоры (для ЛЭП до 220 кВ включительно) в России изготовляются из брёвен (сосна, лиственница), стандартные длины которых ограничены наибольшим размером 16 м. За рубежом (США, Канада) разработаны конструкции опор, состоящие из длинных клеёных дерев. элементов, что делает возможным применение дерев. опор при номинальных напряжениях до 500 кВ включительно. В конструкциях жел.-бетон. опор (до 500 кВ включительно) стойками являются длинномерные (до 26 м) конич. и цилиндрич. трубы с внутр. предварительно напряжённой арматурой и центрифугированным уплотнением бетона. Поперечные элементы таких опор (траверсы) изготовляются из горячекатаных стальных уголков. Для произ-ва металлич. опор (для всех напряжений) используются углеродистые и низколегированные стали, конструкционные алюминиевые сплавы преим. типа авиалей (системы Al – Mg – Si). Наибольшее распространение алюминиевые опоры получили в США и Канаде. Конструктивные схемы металлич. опор очень разнообразны: одностоечные и портальные, как свободностоящие, так и удерживаемые в нормальном пространственном положении с помощью растяжек, прикреплённых к погружённым в грунт анкерным плитам. Стойки и траверсы металлич. опор могут иметь конструкцию в виде 4- или 3-гранного обелиска, стороны которого представляют собой соединённые плоские решётчатые фермы. В России получают всё большее применение конич. многогранные стальные опоры, изготавливаемые способом изгиба листовой заготовки на спец. мощном прессе с компьютерным управлением. Все металлич. опоры устанавливаются на фундаменты в отличие от дерев. и жел.-бетон. опор. Широко используются жел.-бетон. грибовидные подложники нескольких модификаций, имеющие опорную плиту и стойку с выпущенными анкерными болтами для закрепления «башмака» опоры. Недостатками таких фундаментов являются большой вес и необходимость выкапывания глубокого котлована для установки, его обратной засыпки и последующего уплотнения грунта. Этих недостатков лишены свайные фундаменты, для которых могут применяться жел.-бетон. призматич. сваи, заглубляемые в грунт способом вибровдавливания, и стальные винтовые сваи. Фундаменты стальных многогранных опор за рубежом (США) изготавливаются способом бетонирования в котловане на месте установки опоры с применением опалубки и арматуры. В России находят применение жел.-бетон. трубчатые фундаменты большого диаметра и грибовидные подложники, устанавливаемые по кругу.
Линейная арматура
К арматуре ВЛЭП относятся траверсы, изоляторы, зажимы и подвесы, планки и распорки, крепежные приспособления (скобы, хомуты, метизы).
Основная функция траверс — крепление проводов таким образом, чтобы обеспечить необходимое расстояние между разноименными фазами. Изделия представляют собой специальные металлоконструкции, выполненные из уголков, полосы, штырей и т. д. с окрашенной или оцинкованной поверхностью. Существует около двух десятков типоразмеров и видов траверс, весом от 10 до 50 кг (обозначаются как ТМ-1…ТМ22).
Изоляторы применяют для надежного и безопасного крепления проводов. Их подразделяют по группам, в зависимости от материала изготовления (фарфор, закаленное стекло, полимеры), функционального назначения (опорные, проходные, вводные) и способов крепления к траверсам (штыревые, стержневые и подвесные). Изоляторы изготавливают под определенное напряжение, которое обязательно указывают в буквенно-цифровой маркировке. Главные требования, предъявляемые к этому типу арматуры при устройстве воздушных линий электропередач, — механическая и электрическая прочность, теплостойкость.
Для уменьшения вибрации линии и предотвращения изломов проволок проводов применяют специальные гасящие устройства или демпфирующие петли.
Технические характеристики и защита ЛЭП
Основные конструктивные параметры воздушных ЛЭП
Для уменьшения количества аварийных отключений, обусловленных атмосферным электричеством при грозах, ЛЭП оснащаются молниезащитными тросами, закрепляемыми на опорах выше проводов и предназначенными для устранения прямых попаданий молнии в провода; представляют собой стальные оцинкованные многопроволочные канаты или спец. усиленные сталеалюминиевые провода небольших сечений с целью обеспечения работы высокочастотных каналов диспетчерской связи. Разработаны и применяются новейшие конструкции молниезащитных тросов с вмонтированными в их трубчатый сердечник оптико-волоконными пучками, обеспечивающими многоканальную связь. В районах с часто повторяющимися и сильными гололёдными отложениями возможны аварии из-за пробоев возд. промежутков при сближении провисших тросов и проводов, если отсутствует своевременное плавление осадка; в таких случаях применяют молниезащиту ЛЭП.
Проектирование ЛЭП выполняется с учётом требований ограничения радиопомех для приёмников радио- и телепередач и требований снижения влияния электромагнитного поля на людей и животных, находящихся под проводами действующих линий. Подземная ЛЭП состоит из одного или нескольких кабелей, стопорных, соединительных и концевых муфт (заделок) и крепёжных деталей, а ЛЭП, содержащая маслонаполненный или газонаполненный кабель, снабжается также подпитывающей системой и сигнализацией давления масла (газа). Протяжённость кабельных линий значительно меньше, т. к. их стоимость на порядок выше ВЛ, хотя ширина отчуждаемой под их трассу территории существенно меньше (последнее является решающим в тех случаях, когда трасса линии проходит по гор. территориям, где стоимость земли, как правило, высока и сооружение ВЛ нецелесообразно по экологическим и архитектурно-планировочным требованиям).
Опоры воздушных линий электропередачи
Опоры — конструкции, выполненные из дерева, железобетона, металла или композитных материалов для обеспечения необходимого расстояние проводов и грозозащитных тросов от земной поверхности. Самый бюджетный вариант — деревянные стойки, используемые очень широко в прошлом веке при строительстве высоковольтных линий, — постепенно выводятся из эксплуатации, а новые почти не устанавливаются. К основным элементам опор воздушных линий электропередачи относятся:
Конструкции разделяют на анкерные и промежуточные. Первые устанавливают в начале и конце линии, при изменении направления трассы. Особый класс анкерных опор — переходные, используемые на пересечениях ВЛЭП с водными артериями, путепроводами и подобными объектами. Это самые массивные и высоконагруженные конструкции. В сложных случаях их высота может достигать 300 метров!
Прочность и габариты конструкции промежуточных опор, используемых только для прямых участков трасс, не столь внушительны. В зависимости от назначения, их разделяют на транспозиционные (служащие для смены месторасположения фазных проводов), перекрестные, ответвительные, пониженные и повышенные. С 1976 года все опоры были строго унифицированы, но в наши дни наблюдается процесс отхода от массового применения типовых изделий. Каждую трассу стараются максимально адаптировать к условиям рельефа, ландшафта и климата.
Историческая справка
Одна из первых опытных ЛЭП постоянного тока протяжённостью 57 км при напряжении 1,5–2 кВ сооружена между городами Мисбах и Мюнхен в 1882 франц. учёным М. Депре. В 1891 впервые в мире осуществлена электропередача трёхфазным переменным током при напряжении 8,5 кВ на 170 км от ГЭС «Lauffen» до г. Франкфурт-на-Майне, спроектированная и построенная М. О. Доливо-Добровольским. Первые кабельные линии (подземные, радиус действия 1 км, напряжение 2 кВ) в России появились в кон. 1870-x гг.; электроэнергия, поступавшая в кабельную сеть, использовалась гл. обр. для освещения частных домов. В 1897 пущены в эксплуатацию на Ленских золотых приисках электростанция трёхфазного тока и ЛЭП напряжением 10 кВ, длиной 13 км; в 1914 Р. Э. Классон построил ЛЭП «Электропередача» Богородск – Москва напряжением 70 кВ; в 1922 пущена в эксплуатацию ЛЭП напряжением 110 кВ Каширская ГРЭС – Москва. В 1927–29 сооружена двухцепная кольцевая сеть напряжением 110 кВ вокруг Москвы; в 1933 построена первая в СССР ЛЭП напряжением 220 кВ Нижнесвирская ГЭС – Ленинград; в 1950 пущена в эксплуатацию опытно-пром. ЛЭП постоянного тока Кашира – Москва напряжением 200 кВ, длиной 120 км. В 1952 в Швеции вступила в действие первая в мире ЛЭП напряжением 380кВ, протяжённостью 960 км; в 1956 введена в эксплуатацию Юж. цепь двухцепной ЛЭП Куйбышев (Самара) – Москва напряжением 400 кВ, протяжённостью 812 км; в 1959 введены в эксплуатацию первые в мире ЛЭП напряжением 500 кВ Куйбышев – Урал и Волгоград – Москва; в 1964 закончились работы по полному переводу ЛЭП Куйбышев – Москва на напряжение 500 кВ и началось формирование системообразующей сети 500 кВ в Европ. части страны. В 1967 началась эксплуатация первой в СССР и второй в мире (после Канады) опытно-пром. ЛЭП напряжением 750 кВ Конаково – Москва; в 1972–77 строительство и поэтапный ввод в эксплуатацию трансукраинской магистрали напряжением 750 кВ Донбасс – Днепр – Винница – Западная Украина; в 1975 включение в работу ЛЭП Ленинградская АЭС – Конаково напряжением 750 кВ, протяжённостью 525 км; в 1985–88 осуществлён поэтапный ввод в эксплуатацию участков первой в мире ЛЭП Экибастуз – Кокчетав – Кустанай напряжением 1150 кВ, протяжённостью 900 км, Кустанай – Челябинск (500 кВ, 321 км) и Экибастуз – Барнаул (500 кВ, 697 км).
В России общая протяжённость эксплуатируемых ЛЭП напряжением 35–1150 кВ составила ок. 3 млн. км (2010).