какая валентность у углерода в органических соединениях

Валентность углерода

Валентность углерода.

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединенияхкакая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

Валентность углерода:

Валентность (от лат. valēns – «имеющий силу») – способность атомов химических элементов образовывать определённое число химических связей.

Валентность – это мера (численная характеристика) способности химических элементов образовывать определённое число химических связей.

Значения валентности записывают римскими цифрами I, II, III, IV, V, VI, VII, VIII.

Валентность определяют по числу химических связей, которые один атом образует с другими.

Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента. Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H2O, NH3, CH4 валентность по водороду хлора равна единице, кислорода – двум, азота – трём, углерода – четырём.

Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединять один атом данного элемента. Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях K2O, CO, N2O3, SiO2, SO3 валентность по кислороду калия равна единице, углерода – двум, азота – трём, кремния – четырём, серы – шести.

С точки зрения электронной теории валентность определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии.

Известны элементы, которые проявляют постоянную валентность. У большинства химических элементов валентность переменная.

Валентность углерода равна II, IV. Углерод проявляет переменную валентность.

Источник

Таблица валентности.

В таблице валентности приведены значения валентности элементов периодической таблицы Менделеева. Что такое валентность?

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

Точками здесь обозначаются неподеленные пары электронов, однако в структурных формулах их отмечают не каждый раз.

В химии принято, что валентность химических элементов можно узнать по группе (колонке) в таблице Менделеева. В действительности не всегда валентность элемента соответствует номеру группы, но в большинстве случаев определенная валентность по такому методу даст правильный результат часто элементы, в зависимости от разных факторов, имеют не одну валентность. Чтобы проще было понимать и не путаться, ниже приведена таблица валентностей всех элементов периодической таблицы.

Цифра положительной валентности элемента соответствует количеству отданных атомом электронов, а отрицательной валентности – количеству электронов, которые атом должен забрать себе для завершения внешнего энергетического уровня.

Значение, приведенное в скобках таблицы валентности, перечисляет менее распространенные валентности. Если у элемента указана только одна цифра, значит он может иметь только одну валентность.

Таблица валентности химических элементов.

Порядковый номер химического элемента, он же: атомный номер, он же: зарядовое число атомного ядра, он же: атомное число

Русское / Английское наименование

Источник

Валентность углерода

Общие сведения о валентности углерода

Известны также аллотропные модификации углерода, имеющие следующие названия: графен, фуллерен, нанотрубки, нановолокна, астрален, стеклоуглерож, колоссальные нанотрубки; аморфный углерод, углеродные нанопочки и углеродная нанопена.

В природе углерод находится в виде двух стабильных изотопов 12 С (98,892%) и 13 С (1,108%).

Валентность углерода в соединениях

Углерод — шестой по счету элемент Периодической таблицы Д.И. Менделеева. Он находится во втором периоде во IVA группе. В ядре атома углерода содержится 6 протонов и 6 нейтронов (массовое число равно 12). В атоме углерода есть два энергетических уровня, на которых находятся 6 электронов (рис. 1).

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

Рис. 1. Строения атома углерода.

Электронная формула атома углерода в основном состоянии имеет следующий вид:

А энергетическая диаграмма (строится только для электронов внешнего энергетического уровня, которые по-другому называют валентными):

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

Наличие двух неспаренных электронов свидетельствует о том, что углерод проявляет валентность II в своих соединения (C II O).

В атоме углерода есть 1 вакантная орбиталь 2p-подуровня. За счет её наличия электроны 2s-подуровня могут распариваться и один из них совершает переход и занимает свободную 2p-орбиталь, т.е. для углерода характерно возбужденное состояние.

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

Наличие четырех неспаренных электронов свидетельствует о том, что углерод в своих соединениях (C IV O2, C IV H4, H2C IV O3 и др.) проявляет валентность равную IV.

Примеры решения задач

ЗаданиеСтепень окисления +2, а валентность IV атом углерода имеет в соединении: 1) CO; 2) CO2; 3) HCOOH; 4) CH2Cl2.
РешениеОпределение валентности углерода следует начинать, указывая валентности для тех элементов, для которых они известны и имеют постоянное значение. Не стоит забывать и про индексы, показывающие количество атомов определенного элемента в составе данного соединения.

Что касается определения степени окисления, нужно руководствоваться теми же правилами, но и помнить, что степень окисления указывается со знаком «+» или «-», а молекула вещества электронейтральна.

Источник

Какая валентность у углерода в органических соединениях

Теоретические представления в органической химии

Углерод, его особенности

Тогда как атомы элементов-органогенов имеют обычно степени окисления [кислород (-2), азот (-3), фосфор (+5)], углерод может проявлять в соединениях любые степени окисления от (+4) до (-4). В ходе реакций он может присоединять или отдавать электроны, выступая в роли окислителя или восстановителя. Направление перехода электронов зависит от свойств другого реагента.

Степень окисления есть условный заряд атома, который рассчитывается с учетом того, что общая электронная пара связи между атомами полностью относится к более электроотрицательному атому (электроотрицательность характеризует способность атома удерживать электроны, особенно внешние). Общие пары электронов между атомами одного элемента при определении степени окисления не учитываются.

Степени окисления атомов углерода в соединениях

В молекуле органического соединения степени окисления атомов углерода могут быть различными:

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

Таким образом, степень окисления любого атома углерода в органических соединениях равна алгебраической сумме числа всех его связей с атомами более электроотрицательных элементов (кислород, азот, сера,…), учитываемых со знаком (+), и числа связей с атомами водорода, учитываемых со знаком (-), а все его связи с соседними атомами углерода не учитываются.

Степень окисления является условной величиной, но ее изменение указывает на окислительно-восстановительный характер реакции. Атомы углерода обладают окислительно-восстановительной двойственностью, в органической химии распространены реакции окислительно-восстановительной дисмутации за счет атомов углерода, которые могут протекать как межмолекулярно, так и в рамках одной молекулы.

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

какая валентность у углерода в органических соединениях. Смотреть фото какая валентность у углерода в органических соединениях. Смотреть картинку какая валентность у углерода в органических соединениях. Картинка про какая валентность у углерода в органических соединениях. Фото какая валентность у углерода в органических соединениях

Гибридные состояния атома углерода.

3. sp-Гибридизация (дигональная), при которой взаимодействуют 1 s и 1 p орбитали. Возникают 2 одинаковых электронных орбитали, расположенные линейно под углом 180°, они имеют форму объемной восьмерки, одна из лопастей которой значительно больше другой. Оставшаяся негибридизованные орбитали взаимно перпендикулярны и перпендикулярны плоскости, в которой лежат sp-гибридные орбитали.

Источник

Химия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Что такое органическая химия?

Современное определение органической химии:

– это раздел химической науки, который изучает способы получения углеводородов и их производных, а также свойства, полученных веществ.

Не стоит думать, что предмет органической химии очень узкий, раз объект его исследований можно описать только 2 словами, поскольку количество углеводородов и их производных достаточно превышает все неорганические вещества вместе взятые.

История изучения органической химии

Развитие органической химии, как отдельной науки, началось недавно, но с предметом ее исследования люди были знакомы очень давно.

Первые вещества органической химии получались из живых организмов – растений и животных. Например, духи изготавливались из растительных масел, спирт синтезировали благодаря брожению винограда, а красные красители и вовсе из специальных червей. Поскольку получить искусственно такие вещества из неорганических материалов люди не могли, то предположили, что для их создания нужна «живая сила».

В 1827 году понятие органической химии было введено шведским ученым Й.Я. Берцелиусом.

В 1845 году немецким ученым Г. Кольбе было доказано, что органическое вещество можно добыть из неорганических соединений, и в качестве примера он показал получение уксусной кислоты из углерода, воды, серы и хлора.

В мире стал развиваться новый предмет, получивший название «химия органического синтеза».

С помощью химического анализа было показано, что при сжигании любого органического вещества, продуктами будут вода и углекислый газ, а в отдельных случаях чистая сажа или копоть, основу которых составляет уголь.

Современная задача органической химии – изучить вещества, молекулы которых образованы связями атомов углерода.

Характеристика основного элемента органической химии

Чтобы определить свойства и потенциальные возможности вступления в химические превращения какого-либо элемента, необходимо знать особенности его строения. Какие будут образовываться химические связи и каким образом их можно разорвать зависит от элемента.

Общее строение атома углерода

Зная эти основные цифры, можно подробно разобрать схему строения углеродного атома. У него 2 составляющие: ядро,заряженное положительно и электроны, которые заряжены отрицательно и находятся в пространстве вокруг него.

Порядковый номер элемента численно равен заряду ядра и числу в нем электронов. Число нейтронов вычисляется по формуле:

где А – массовое число, Nп – число протонов, Nн – число нейтронов.

Получаем, что количество нейтронов равно: Nн = А – Nп = 12-6 = 6

На рисунке 1 видно наглядно, какое строение у атома углерода.

Рисунок 1. – Строение атома углерода

Подробное электронное строение атома углерода

Ядро элемента не несет интереса в описаниях химических реакций, так как связи образуются при объединении электронных оболочек. При их связывании и перераспределении электронной плотности образуются новые молекулы.

Электронная структура

По расположению в ПСХЭ наглядно видно, что углерод имеет:

На первом энергетическом уровне в s-орбитали у всех элементов находятся 2 электрона. (см.рис.1). Второй уровень, он же и внешний для углерода, состоит из одной s и трех p орбиталей, и расположение электронов в них зависит от того, в каком состоянии находится атом.

Основное и возбужденное состояние

В основном состоянии на s и p орбиталях расположено по 2 электрона.

Если электрону, находящемуся на s-орбитали, добавить некоторое количество энергии из вне, то он может «перескочить» в пустую p-орбиталь с большей энергией.

Возбужденное состояние атома углерода представляет собой такую конфигурацию, при которой на внешнем уроне каждая его орбиталь имеет по 1 электрону.

Переход из основного состояния в возбужденное называется активацией.

На рисунке 2 схематически изображен процесс активации.

Рисунок 2. – Переход электрона с 2s-орбитали на 2p-орбиталь под действием дополнительной энергии

Атом углерода образует связи с другими элементами и между собой благодаря объединению неспаренных электронов. Если сравним конфигурацию атома углерода в возбужденном состоянии с конфигурацией в основном, можно сделать вывод о том, что в возбужденном состоянии он способен образовать больше ковалентных связей. В этом состоянии ему нужно быстро находить в окружении себя другие элементы и химически с ними связываться, так как при отсутствии дополнительной энергетической подпитки электрон снова перейдет с p-орбитали на s.

Знание о возбужденном состоянии атома углерода позволило в дальнейшем описывать механизмы реакций, рисовать структурные формулы веществ и описывать расположение молекул в пространстве.Полученные знания в 1861 году обобщил А.М. Бутлеров.

Степень окисления

В любых соединениях степень окисления определяет, какой условный заряд имеет тот или иной элемент в молекуле, если бы все связи были ионные.

Таблица 1. – Постоянные степени окисления элементов

Молекула спирта имеет формулу СH3-CН2-ОН, найдите значения степеней окисления атомов углерода в ней.

Разбиваем молекулу по связям С-С на участки. Получаем частицы СН3— и –СН2OH.

Для тренировки постарайтесь найти степень окисления углерода в соединениях, формулы которых: СH3CH2CH3, CH2CHCOH; CH3C(NH2)CH2CH2OH.

Валентность атома углерода

Под валентностью понимают, что это то количество связей, которые образовывает химический элемент. Один из основополагающих законов органической химии гласит, что в органических соединениях у атома углерода валентность постоянна и равняется 4 (т. к. в возбужденном состоянии у него 4 неспаренных электрона)

Углеродные связи в органических веществах

В ходе протекания химической реакции органические вещества претерпевают изменения, поскольку происходит разрушение старых и образование новых связей. Глядя на молекулу, опытный химик-органик скажет, какая именно связь разрушится, под действием каких факторов и предскажет, какие продукты и какого строения получатся в конце превращения.

Одинарные химические связи углерода

При объединении 2 неспаренных электронов 2 разных элементов, образуется одинарная связь.

Рассмотрим на конкретном примере, каким образом можно изобразить на бумаге структурные формулы веществ,имеющих состав С4H9Cl.

Помня о том, сколько связей может образовывать атом углерода, рисуем углеродный скелет органической молекулы (см. рис.3 а). Связи между атомами углерода ковалентные неполярные, т.к. образованы элементами с одинаковой электроотрицательностью.

Затем добавим к этому углеродному скелету атомы водорода и хлора (см. рис 3 б). Образовавшиеся связи хлор-углерод и углерод-водород – ковалентные полярные, т.к. образованы элементами с разной электроотрицательностью.Кроме изображенной на рисунке структурной формулы, для вещества состава С4H9Cl можно записать и некоторые другие (см. рис. 3 в). Ковалентные связи, образуемые атомом углерода, позволяют создать огромное количество соединений, у которых физические и химические свойства будут уникальны.

Рисунок 3. – Этапы построения органической молекулы

Формулу органического соединения, представленного на рисунке 3 б, можно записать проще, не изображая столько разветвлений.

Кратные связи углерода

В некоторых молекулах атомы углерода могут образовывать двойные и даже тройные связи. Это такой тип связей, на которые стоит обращать внимание, изучая строение веществ, потому что их наличие в молекуле придает соединению определенные свойства. Например, соединения с чередующимися кратными и одинарными связями могут проводить электрический ток.

Помимо кратных связей между собой, атом углерода образует двойные связи и с другими элементами (N, P, O, S). На схеме ниже представлен пример органической молекулы, которая содержит связи разных типов.

Разнообразие органических молекул

Молекулы органических соединений являются «кирпичиками» в построении живой материи и различных веществ. На свойства таких веществ влияет количество атомов в молекуле и их расположение друг относительно друга в пространстве. По строению органических молекул определяют их реакционные способности, цвет и токсичность.

Знание строения материалов позволило выбирать самые качественные для использования в постройке домов, автомобилей, ракет и многих других конструкций.

Одна из задач химиков-органиков получить материалы с определенным порядком расположения молекул.

Форма, объем, а также расположение молекулы в пространстве, зависят от того, в каких направлениях в ней связаны атомы. Это может быть объемная структура, расположение в одной плоскости или линяя.

Если бы мы рассмотрели расположение орбиталей в возбужденном состоянии атома углерода, и присоединили другие элементы к его s и p орбиталям, то все получившиеся молекулы имели бы строго объемное строение, однако на практике это не так. Чтобы объяснить расположение атомов в молекуле и пространстве, было предложено понятие гибридизации.

Гибридизация

Гибридизация – объединение орбиталей атома, которые имеют разные формы (s и p). Объединенные орбитали получаются с одинаковой формой, размером и энергией (рисунок 4).

Объединяться могут не только s и p орбитали, но и d и f, однако в атоме углерода таких нет, поэтому на уроках органической химии их объединения рассматриваться не будут.

Рисунок 4. – Образование гибридных орбиталей из s и p

Основные типы гибридизации атома углерода в молекулах

Наглядно разберемся, как можно представить объединение орбиталей.
Предположим, что у нас есть синяя краска и белая краска, и мы в палитре их объединяем, т.е. смешиваем. При «смешении» мы получили краску нового голубого цвета. Тоже самое происходит и с орбиталями в атоме, только смешиваются не цвета, а формы и энергии.

Объединение орбиталей в углероде может проходить по 3 путям:

Зная, как гибридизация влияет на взаимное расположение атомов друг относительно друга, можно изобразить схематически строение молекулы любого органического вещества.

Рассмотрим молекулу, в которой есть участки с одинарными, двойными и тройными связями, и изобразим ее в пространстве (см.рис. 5).

Рисунок 5. – Пространственное расположение молекулы, в которой есть одинарные и кратные связи.

Стоит отметить, что представленные типы гибридизаций атомов в молекулах, характерны не только органическим соединением, но многим неорганическим веществам.

Важнейшие представители органических соединений

Соединения, у которых небольшое количество атомов в молекуле, простые структурные формулы и из которых путем последовательных химических реакций можно получить все остальные химические вещества, называют фундаментальными.

Самые простые органические соединения

Вещества, состоящие только из 2 видов атомов, называются простейшими. В органической химии соединения, образованные только атомами углерода и водорода, называют простыми. На их основе можно создавать другие классы органических веществ, путем замены водорода на другие группы, называемые функциональными.

Общая классификация органических молекул

Классификация органических соединений начинается с анализа углеродного скелета молекулы. Он может быть замкнутый в «кольцо» или в виде цепочки (по-научному: циклический и ациклический).

Циклические соединения делятся на те, в которых цикл состоит только из атомов углерода (тогда такие называются карбоциклические) и на те, у которых помимо него есть еще другой элемент (тогда такие соединения называют гетероциклические).

Карбоциклические подразделяются по наличию кратных связей в цикле на ароматические (когда цикл содержит кратные связи) и алициклические (в которых кратных связей не содержится).

Ациклические делятся на соединения, которые состоят только из одинарных связей (такие соединения называются предельными) и те, которые содержат в структуре углеродного скелета кратные связи (такие соединения называют непредельными).

Классификация углеводородов
Углеводороды можно разделить на разные группы по аналогичным признакам классификации органических соединений.По видам связей углеводороды делятся на те, в которых:

Каждый класс соединений вступает в химические реакции по определенным механизмам и будет рассмотрен более подробно на последующих уроках.

Агрегатные состояния простых органических веществ

Органические вещества выпускаются в мире в промышленных масштабах. Поступающие на завод вещества, называются сырьем, а выпускаемые из него – целевым продуктом.

В зависимости от того, какое сырье использует предприятие, его доставка может осуществляться разными способами: трубопроводами или с помощью транспортировочных машин.

Основная сырьевая база для производства сложных веществ и материалов – углеводороды, которые впоследствии претерпевают химические изменения и превращаются в другие вещества, которые используют для создания более сложных продуктов, например лекарств, пластмасс, клеев, пленок и др.

Самыми востребованными веществами из углеводородов являются этен и этин (вещества, в которых содержится только 2 атома углерода, которые соединены двойной и тройной связью).

Газообразные углеводороды

Этен и этин представляют собой газообразные органические вещества и для их транспортировки используют специальные газовые трубопроводы и баллоны, где они хранятся в сжиженном виде.

Изготавливают из них полимеры, например, полиэтиленовые пакеты или реактивы для более узкого органического синтеза.

Обычно, вещества в газообразном состоянии имеют в составе молекул от 1 до 4 углеродных атомов.

Жидкие органические вещества класса углеводородов

Состав таких веществ обычно подразумевает наличие атомов в своем составе больше, чем в молекулах газообразных веществ. Из-за утяжеления молекул их подвижность падает и в них могут образовываться межмолекулярные связи.

Для их транспортировки используют бочки, трубопроводы и цистерны. В составе молекул в жидком состоянии содержится от 5 до 18 атомов углерода.

Твердые углеводороды

Если увеличивать количество углеродных атомов в структуре органической молекулы, то углеводороды будут представлять из себя твердые, но пластичные материалы. Примером такого органического вещества является воск или парафин, в состав которых входят тяжелые углеводороды.

Для их транспортировки используют грузовые машины, а складывают их в коробки или ящики.

Кратко примеры агрегатных состояний органических веществ представлены в таблице 2.

Таблица 2. – Агрегатные состояния органических веществ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *