какая ближайшая к земле звезда после солнца
Самая близкая звезда к Земле
Как это ни банально, но самая близкая звезда к Земле – Солнце. Поэтому такая постановка вопроса не очень корректна. Наш жёлтый карлик ничем не хуже других звёзд, и вообще, это один из самых распространённых типов звёзд в Галактике. Но речь не о нашем собственном светиле, поэтому рассмотрим, какая самая близкая звезда к Солнцу.
Многие знают, что самая близкая к нам звезда – Альфа Центавра. Про это написано немало фантастики и эта звезда часто упоминается как наш сосед. Да, так и есть, это самая ближайшая к нам звезда, кроме Солнца. Но всё не так просто, как кажется.
Ближайшая к Земле звезда
Альфу Центавра некоторые дотошные люди еще называют Альфой Кентавра. Да, это созвездие называется на латыни как Centaurus, что и означает Кентавр. Но это если подходить совсем формально. А вообще эту звезду везде называют именно Альфой Центавра. Так уж сложилось, и так она называется в русскоязычной литературе, в справочниках, в фильмах, да и вообще везде. Педанты любят поспорить насчёт Центавра-Кентавра, но этот спор не имеет смысла.
Самая близкая к Земле звезда – Альфа Центавра. Расстояние до неё 4.37 световых года. Именно столько времени требуется свету, чтобы преодолеть разделяющее нас расстояние со скоростью 300000 км/с. Так что близость эта относительная, расстояние огромно, люди еще не скоро смогут летать так далеко, если смогут вообще.
Альфа Центавра – не простая звезда. Это система из двух звёзд, которые обозначаются буквами A и B. Они вращаются около общего центра масс за 80 лет, и поочерёдно то одна звезда ближе к нам, то другая. Обе звезды похожи на Солнце, но компонент A несколько ярче его, а компонент B – чуть слабее.
Но всё еще сложнее, и компоненты A и B – Альфы Центавра – не самые близкие к нам звёзды в данный момент. В этой системе есть еще одна, третья звезда, которая называется Проксимой Центавра.
Сравнительные характеристики звёзд Альфы Центавра и Солнца.
Проксима Центавра – самая близкая звезда к Земле
Проксима Центавра – красный карлик, который тоже входит в систему тройной звезды Альфа Центавра. Но он расположен очень далеко от двух основных и более крупных компонентов системы – 15000 астрономических единиц, или 0.21 светового года. Кстати, это расстояние всего лишь в 20 раз меньше, чем до Земли.
Из-за большой удалённости от центра системы Проксима Центавра делает оборот по своей орбите за 500 тысяч лет. В данный момент она находится на участке орбиты перед Альфой Центавра, поэтому Проксима Центавра – самая близкая звезда к Земле на ближайшие тысячелетия. Потом она перейдёт на отдалённый участок орбиты и ближайшей звездой станет Альфа Центавра, то есть её компоненты A и B.
Самая близкая звезда к Земле — Проксима Центавра, красный карлик, один из компонентов тройной системы Альфы Центавра.
На небе Проксима Центавра находится в 2.2 градусах от Альфы — как 4 лунных диска, но невооружённым глазом не видна, её яркость 11 m. Поэтому найти эту ближайшую к нам звезду можно только в телескоп, даже небольшой.
Хотя эта звезда и наш ближайший сосед, но она очень тусклая. По размеру она в 7 раз меньше и легче Солнца. Даже если её наблюдать непосредственно с одной из планет Альфы Центавра (если они там есть), то и тогда Проксима выглядела бы на небе тусклой звездой 5-й величины.
Если бы мы находились вблизи главных звёзд Альфы Центавра, то Проксима выглядела бы тусклой звездой (красноватая звезда указана стрелкой).
Проксима Центавра, кстати, имеет планету в обитаемой зоне, её существование подтвердила Европейская южная обсерватория в 2016 году. Эта планета небольшого размера, и подобна Земле, находится на расстоянии 0.5 а.е. от звезды.
Ближайшая звезда к Земле — Проксима Центавра. Так она могла бы выглядеть на небе одной из своих планет. Скриншот из симулятора Вселенной Space Engine.
Но может ли там существовать жизнь – вопрос очень спорный. Ведь Проксима Центавра – нестабильный красный карлик, который периодически вспыхивает и уровень его излучения в эти периоды сильно возрастает, в том числе и в рентгеновском диапазоне. Хотя в океанах, если они там есть, жизнь была бы достаточно защищена, да и в ходе эволюция жизнь там могла бы приспособиться к местным условиям. Возраст звезды – почти 5 миллиардов лет, так что там всё возможно.
Мало того, в 2019 году было сообщение, что у Проксимы Центавра обнаружена еще одна планета, на удалении 1.5 а.е. от звезды. Она минимум в 6 раз тяжелее Земли и имеет температуру всего в 39 К. Но существование этой планеты еще требует подтверждения.
Также у Проксимы Центавра, предположительно, есть пояс астероидов. На это указывают некоторые данные, но это тоже еще требует детального изучения.
Ближайшие к Солнцу звёзды — наши соседи.
Самые близкие звёзды к Земле в прошлом и будущем
Движение звёзд, как и самой Солнечной системы, приводит к изменению взаимного положения, и соседи меняются. Проксима Центавра, и даже вся система Альфы Центавра – лишь временные соседи. Постепенно они удалятся и ближайшими станут другие звёзды.
Проксима была ближайшей к нам звездой последние 32 тысячи лет, а через еще 33 тысячи лет ближе всех станет звезда Росс 248, которая находится в созвездии Андромеды. Сейчас до неё довольно далеко – 10.3 световых года, вдвое дальше, чем до Проксимы Центавра сейчас.
Ближайшие к нам звезды
То, что скрывают ближайшие к нам звезды, будет манить земных ученых, астрономов-любителей и писателей-фантастов еще многие десятилетия, если не века.
Список ближайщих к Солнцу звезд
Звёздная система | Звезда или коричневый карлик | Спек. класс | Вид. зв. вел. | Расстояние, св. год | ||
---|---|---|---|---|---|---|
0 | Солнечная система | Солнце | 0 | G2V | −26,72 ± 0,04 | 8,32 ± 0,16 св. мин |
1 | α Центавра | Проксима Центавра | 1 | M5,5Ve | 11,09 | 4,2421 ± 0,0016 |
α Центавра A | 2 | G2V | 0,01 | 4,3650 ± 0,0068 | ||
α Центавра B | 2 | K1V | 1,34 | |||
2 | Звезда Барнарда | 4 | M4Ve | 9,53 | 5,9630 ± 0,0109 | |
3 | Луман 16 | A | 5 | L8 | 23,25 | 6,588 ± 0,062 |
B | 5 | L9/T1 | 24,07 | |||
4 | WISE 0855–0714 | 7 | Y | 13,44 | 7,18 +0,78 −0,65 | |
5 | Вольф 359 | 8 | M6V | 13,44 | 7,7825 ± 0,0390 | |
6 | Лаланд 21185 | 9 | M2V | 7,47 | 8,2905 ± 0,0148 | |
7 | Сириус | Сириус A | 10 | A1V | −1,43 | 8,5828 ± 0,0289 |
Сириус B | 10 | DA2 | 8,44 | |||
8 | Лейтен 726-8 | Лейтен 726-8 A | 12 | M5,5Ve | 12,54 | 8,7280 ± 0,0631 |
Лейтен 726-8 B | 12 | M6Ve | 12,99 | |||
9 | Росс 154 | 14 | M3,5Ve | 10,43 | 9,6813 ± 0,0512 | |
10 | Росс 248 | 15 | M5,5Ve | 12,29 | 10,322 ± 0,036 | |
11 | WISE 1506+7027 | 16 | T6 | 14.32 | 10,521 | |
12 | ε Эридана | 17 | K2V | 3,73 | 10,522 ± 0,027 | |
13 | Лакайль 9352 | 18 | M1,5Ve | 7,34 | 10,742 ± 0,031 | |
14 | Росс 128 | 19 | M4Vn | 11,13 | 10,919 ± 0,049 | |
15 | WISE 0350-5658 | 20 | Y1 | 22.8 | 11,208 | |
16 | EZ Водолея | EZ Водолея A | 21 | M5Ve | 13,33 | 11,266 ± 0,171 |
EZ Водолея B | 21 | M? | 13,27 | |||
EZ Водолея C | 21 | M? | 14,03 | |||
17 | Процион | Процион A | 24 | F5V-IV | 0,38 | 11,402 ± 0,032 |
Процион B | 24 | DA | 10,70 | |||
18 | 61 Лебедя | 61 Лебедя A | 26 | K5V | 5,21 | 11,403 ± 0,022 |
61 Лебедя B | 26 | K7V | 6,03 | |||
19 | Струве 2398 | Струве 2398 A | 28 | M3V | 8,90 | 11,525 ± 0,069 |
Струве 2398 B | 28 | M3,5V | 9,69 | |||
20 | Грумбридж 34 | Грумбридж 34 A | 30 | M1,5V | 8,08 | 11,624 ± 0,039 |
Грумбридж 34 B | 30 | M3,5V | 11,06 | |||
21 | ε Индейца | ε Индейца A | 32 | K5Ve | 4,69 | 11,824 ± 0,030 |
ε Индейца B | 32 | T1V | >23 | |||
ε Индейца C | 32 | T6V | >23 | |||
22 | DX Рака | 35 | M6,5Ve | 14,78 | 11,826 ± 0,129 | |
23 | τ Кита | 36 | G8Vp | 3,49 | 11,887 ± 0,033 | |
24 | GJ 1061 | 37 | M5,5V | 13,09 | 11,991 ± 0,057 | |
25 | YZ Кита | 38 | M4,5V | 12,02 | 12,132 ± 0,133 | |
26 | Звезда Лейтена | 39 | M3,5Vn | 9,86 | 12,366 ± 0,059 | |
27 | Звезда Тигардена | 40 | M6,5V | 15,14 | 12,514 ± 0,129 | |
28 | SCR 1845-6357 | SCR 1845-6357 A | 41 | M8,5V | 17,39 | 12,571 ± 0,054 |
SCR 1845-6357 B | 42 | T6 | ||||
29 | Звезда Каптейна | 43 | M1,5V | 8,84 | 12,777 ± 0,043 | |
30 | Лакайль 8760 | 44 | M0V | 6,67 | 12,870 ± 0,057 | |
31 | WISE J053516.80-750024.9 | 45 | Y1 | 21,1 | 13,046 | |
32 | Крюгер 60 | Крюгер 60 A | 46 | M3V | 9,79 | 13,149 ± 0,074 |
Крюгер 60 B | 46 | M4V | 11,41 | |||
33 | DEN 1048-3956 | 48 | M8,5V | 17,39 | 13,167 ± 0,082 | |
34 | UGPS J072227.51-054031.2 | 49 | T9 | 24.32 | 13,259 | |
35 | Росс 614 | Росс 614 A | 50 | M4,5V | 11,15 | 13,349 ± 0,110 |
Росс 614 B | 50 | M5,5V | 14,23 | |||
37 | Вольф 1061 | 53 | M3V | 10,07 | 13,820 ± 0,098 | |
38 | Звезда ван Маанена | 54 | DZ7 | 12,38 | 14,066 ± 0,109 | |
№ | Обозначение | Обозначение | № | Спек. класс | Вид. зв. вел. | Расстояние, св. год |
Звёздная система | Звезда или коричневый карлик |
Солнце – основа нашей системы – ближайшая к Земле звезда, которую, в отличие от всех остальных объектов, мы отчетливо видим ясным днем. В ночное же время становятся доступны для наблюдения остальные светила бескрайнего космоса. Количество звезд, наполняющих Вселенную, подсчитать невозможно. Но ближайшие небесные тела, находящиеся в радиусе 16 световых лет, ученые обозначили и составили список. В него вошли 57 звездных систем. Некоторые из них – это не одинокие светила, а двойные и тройные звезды, поэтому общее количество небесных тел достигает 64. В перечень внесли и 13 коричневых карликов, ощутимо уступающих остальным объектам по массе.
Только 7 звезд из списка мы можем рассмотреть без помощи оптического усиления – Сириус, Альфа Центавра, Эпсилон Эридана, Процион, Эпсилон Индейца, Тау Кита, 61 Лебедя. Все они имеют видимую величину в границах от 1,43 до 6,03. Большинство светил относятся к спектральному классу M (красный), их температура составляет 2600-3800 K. Горячие звезды – Сириус A, спектрального класса A (белый), 9940 K и Процион A, класс F (желто-белый), 6650 K. Коричневые карлики, вошедшие в список, относятся к дополнительным спектральным классам L, T, Y. В перечень попали и 4 белых карлика класса D, представляющие довольно редкие объекты в видимом секторе Галактики.
Характеристики Альфа Центавра – ближайшей к Земле звездной системы
Наименьшее расстояние – 4,22 световых года – отделяет нашу планету от Проксима Центавра, одного из трех элементов звездной системы Alpha Centauri. По своим характеристикам самая близкая к Земле звезда (исключая Солнце) существенно отличается от соседок. Это светило принадлежит к спектральному классу M (красный карлик), а его масса и радиус не превышают 0,1 солнечного. Из-за невысокой температуры – 3042 K – она излучает мало энергии и не обнаруживается невооруженным глазом. Была открыта в 1915 году. Периодические и активные вспышки усиливают светимость звезды. Проксима Центавра и остальную часть родной для нее системы разделяет значительное расстояние, равное 0,21 светового года, поэтому находится ли она на ее орбите, достоверно не выяснено. Если докажут, что Проксима кружится вокруг двойной звезды, тогда ее полный период превышает 500 тыс. лет. Поиски возможных экзопланет около светила были безуспешны, ученые исключают присутствие крупных планет на его орбите.
Два остальные составляющие системы – Альфа Центавра A и Альфа Центавра B – тесно взаимодействуют друг с другом. С Земли они наблюдаются как одна звезда. Расстояние до системы составляет 4,36 световых лет. Объекты причисляются к спектральным классам G и K – это желтый и оранжевый карлики. По своим характеристикам и температуре они схожи с Солнцем, но старше его по возрасту, который достигает 6 млрд. лет. Компонент Центавра A крупнее соседнего, его масса – 1,1, а диаметр – 1,2 солнечных. Показатели Центавра B – 0,9 и 0,86 соответственно. Вращение светил происходит по эллиптической орбите, угол ее наклона составляет 79,2 градуса, их период 79,9 года.
Экзопланеты Альфа Центавра
Поиск планет, входящих в системы ближайших к нам звезд, ведется регулярно. Особое внимание уделяется желтым и красным карликам. Чтобы обнаружить компаньонов около далеких объектов, ученым приходится измерять лучевую скорость звезд при помощи спектрографов, установленных на мощнейших телескопах. Основные исследования проводились двумя независимыми группами: Калифорнийской и Женевской, которые сконцентрировали свое внимание на ограниченном количестве объектов. В их число вошла и Альфа Центавра. Европейские астрономы смогли добиться положительных результатов. В 2012 году, анализируя рекордное количество данных, они сообщили об открытии планеты, названной Альфа Центавра B b. Четкий сигнал, появляющийся с периодичностью в 3,2 дня, обозначил тело массой в 1,13 земной. Экзопланета представлена шаром, разогретым до 1200 градусов. Такая температура держится из-за близкого размещения орбиты к поверхности светила. Ее год составляет чуть больше трех земных суток. Она не попадает в условную зону, где могла бы зародиться жизнь, ее размер в этом случае составляет 0,5-0,9 а. е. от светила.
Дальнейшие исследования и компьютерное моделирование дают надежду на наличие возле Альфа Центавра B второй, более крупной и удаленной планеты, имеющей период вращения в 20,4 дня. По гипотетическим расчетам влияние Центавра A будет сказываться раз в 70 лет. При наличии океанов, ее пустынная поверхность станет гораздо уязвимей.
Звезда Барнарда
Звезда, открытая Э. Барнардом в 1916 году и названная в его честь, причисляется к спектральному классу M. Это – красный карлик. Место его расположения – экваториальное созвездие Змееносца, на расстоянии в 5,96 световых годах от Земли. Маленькое светило существенно уступает нашему Солнцу, достигая по массе и диаметру 0,17 от его значения. Звезду не обнаружить невооруженным глазом, однако, она четвертая от нас по удаленности. «Летящая Барнарда» знаменита проворством собственного движения, которое направлено в сторону нашего Солнца. Однажды она станет к нам ближе, чем Проксима Центавра. Ее скорость является рекордной, за год она проходит 10,36 угловых секунд.
Наличие планет
Калифорнийская группа ученых на протяжении десятилетий прилагает усилия к обнаружению планет в окружении звезды Барнарда, но пока об их существовании нет никаких данных.
Луман 16
Созвездие Паруса, расположенное в Южном полушарии, стало прибежищем двойной системы коричневых карликов, являющихся следующими по удаленности соседями Солнца. Расстояние до Луман 16 составило 6,59 световых лет. Два элемента системы почти одинаковы, их масса составляет 0,4-0,5 солнечной. Период вращения равен двум десятилетиям. Другие тела поблизости от этой двойной звездной системы не обнаружены.
Интересные факты
Земному космическому кораблю, отправившемуся в путешествие к нашей ближайшей соседке Проксима Центавра, понадобится 70 тыс. лет, чтобы до нее добраться.
Расстояние между составляющими двойной звезды Альфа Центавра равняется 22 угловым секундам. Они сливаются при взгляде невооруженным глазом, но разделяются при наблюдении даже в простейший телескоп. Угловое расстояние между Центавра A и B не постоянно. В 2010 году оно составляло 6,74 угловых секунд, а к 2016 сократится до 4. Максимальное значение будет наблюдаться в 2056 году.
Среди близких к нам звезд всего лишь 3 относятся к светилам первой величины: Сириус, Альфа Центавра и Процион, а ближайшая звезда к Земле и вовсе красный карлик.
Сколько займет путешествие до ближайшей звезды?
Объекты глубокого космоса > Звезды > Сколько займет путешествие до ближайшей звезды?
Современное человечество тратит усилия на освоения родной Солнечной системы. Но сможем ли мы отправиться на разведку к соседней звезде? И сколько времени займет путешествие до ближайшей звезды? На это можно ответить очень просто или же углубиться в область научной фантастики.
Если говорить с позиции сегодняшних технологий, то реальные цифры отпугнут энтузиастов и мечтателей. Давайте не будем забывать, что космические дистанции невероятно огромные, а наши ресурсы все еще ограничены.
Ближайшая звезда к планете Земля – Солнце. Это средний представитель главной последовательности. Но вокруг нас сосредоточено множество соседей, так что уже сейчас можно создать целую карту маршрутов. Вот только, как долго туда добираться?
Какая звезда является ближайшей
Ближе всего к Земле расположена звезда Проксима Центавра, так что пока следует строить свои расчеты на основе ее характеристик. Входит в состав тройной системы Альфа Центавра и отдалена от нас на расстояние 4.24 световых лет. Это изолированный красный карлик, расположенный в 0.13 световых лет от двойной звезды.
Вид на Проксиму Центавра с поверхности потенциальной экзопланеты. Иллюстрация глазами художника
Как только всплывает тема межзвездных путешествий, все тут же вспоминают о скорости деформации и прыжках в червоточины. Но все они либо пока недостижимы, либо абсолютно невозможны. К сожалению, на любую дальнюю миссию уйдет не одно поколение. Начнем разбор с самых медленных способов.
Сколько займет путешествие до ближайшей звезды сегодня
Легко делать расчет на основе уже имеющейся техники и пределах нашей системы. Например, миссия «Новые Горизонты» использовала 16 двигателей, функционирующих на гидразиновом монотопливе. Чтобы добраться до Луны, потребовалось 8 часов 35 минут. А вот миссия SMART-1 основывалась на ионных двигателях и добиралась к земному спутнику 13 месяцев и две недели.
Значит, у нас есть несколько вариантов транспортного средства. К тому же можно использовать Юпитер или Сатурн в качестве гигантской гравитационной рогатки. Но если мы планируем отправиться так далеко, нужно проверить все возможные варианты.
Сейчас мы говорим не только о существующих технологиях, но и о тех, которые в теории можно создать. Некоторые из них уже проверены на миссиях, а другие пока только оформлены в виде чертежей.
Это наиболее медленный способ, зато экономичный. Еще несколько десятков лет назад ионный двигатель считался фантастическим. Но сейчас его используют во многих аппаратах. Например, миссия SMART-1 с его помощью добралась к Луне. В этом случае использовался вариант с солнечными батареями. Таким образом, он потратил всего 82 кг ксенонового топлива. Здесь мы выигрываем по эффективности, но точно не в скоростях.
Художественное представление миссии Dawn к Церере. Корабль повернут, чтобы продемонстрировать голубое свечение ионного двигателя
Впервые ионным двигателем воспользовались для Deep Space 1, летевшего к комете 19P/Борелли (1998 год). Аппарат использовал тот же тип двигателя, что и SMART-1, потратив всего 81.5 кг пропеллента. За 20 месяцев путешествия ему удалось разогнаться до 56000 км/ч.
Ионный тип считается намного экономичным, чем ракетные технологии, потому что тяга на единицу массы взрывчатого вещества намного выше. Но на ускорение уходит много времени. Если бы их планировали использовать для поездки от Земли к Проксима Центавра, то понадобилось бы очень много ракетного топлива. Хотя можно взять за основу предыдущие показатели. Итак, если аппарат будет двигаться на скорости в 56000 км/ч, то дистанцию в 4.24 световых года он преодолеет за 2700 человеческих поколений. Так что вряд ли его используют для пилотируемой полетной миссии.
Ионный двигатель: проигрывает по скорости, но выигрывает с точки зрения экономии
Конечно, если заправить его огромным количеством топлива, то можно увеличить скорость. Но время прибытия все равно займет стандартную человеческую жизнь.
Это популярный метод, так как позволяет использовать орбиту и планетарную гравитацию, чтобы изменить маршрут и скорость. Им часто пользуются для путешествий к газовым гигантам, чтобы увеличить скорость. Впервые это попробовал Маринер-10. Он полагался на гравитацию Венеры, чтобы достичь Меркурия (февраль 1974 год). В 80-е Вояджер-1 использовал спутники Сатурна и Юпитера, чтобы разогнаться до 60000 км/ч и перейти в межзвездное пространство.
Но рекордсменом по скорости, добытой при помощи силы тяжести, стала миссия Гелиос-2, отправившаяся на изучение межпланетной среды в 1976 году.
Зонд Гелиос готовится к запуску
Из-за большого эксцентриситета 190-дневной орбиты, аппарат смог разогнаться до 240000 км/ч. Для этого использовалась исключительно солнечная гравитация.
Что ж, если мы отправим Вояджер-1 на скорости в 60000 км/ч, то придется ждать 76000 лет. У Гелиос-2 на это ушло бы 19000 лет. Это быстрее, но недостаточно.
Есть еще один способ – радиочастотный резонансный двигатель (EmDrive), предложенный Роджером Шавиром в 2001 году. Он базируется на том, что электромагнитные микроволновые резонаторы могут позволить преобразить электрическую энергию в тягу.
Если обычные электромагнитные двигатели предназначены для движений конкретного типа массы, то этот не использует реакционную массу и не вырабатывает направленного излучения. Этот вид был встречен с огромной долей скептицизма, потому что нарушает закон сохранения импульса: система импульса внутри системы остается постоянной и изменяется только под действием силы.
Прототип EmDrive, созданный НАСА
Но недавние эксперименты потихоньку переманивают к себе сторонников. В апреле 2015 года исследователи заявили, что успешно протестировали диск в вакууме (значит, может функционировать в космосе). В июле они уже построили свою версию двигателя и выявили заметную тягу.
В 2010 году за серию статей принялась Хуан Ян. Она закончила финальной работой в 2012 году, где сообщила о более высокой входной мощности (2.5 кВт) и испытанных условиях тяги (720 мН). В 2014 году она также добавила некие подробности об использовании внутренних температурных изменений, подтвердивших работоспособность системы.
Межзвездный корабль, оснащенный EмDrive
Если верить расчетам, аппарат с таким двигателем, может долететь к Плутону за 18 месяцев. Это важные результаты, ведь отображают 1/6 времени, которое потратил Новые Горизонты. Звучит неплохо, но даже в этом случае для путешествия к Проксима Центавра придется потратить 13000 лет. Тем более, что у нас все еще нет 100% уверенности в ее эффективности, поэтому нет смысла садиться за разработку.
Вот уже несколько десятков лет НАСА исследует ядерные двигатели. В реакторах используют уран или дейтерий, чтобы нагреть жидкий водород, трансформируя его в ионизированный водородный газ (плазма). Затем его отправляют через сопло ракеты для формирования тяги.
Экипажное транспортное средство, функционирующее на ядерном двигателе возле орбиты Марса
Если сравнивать с химическими двигателями, то получаем ряд преимуществ. Начнем с неограниченной плотности энергии. Кроме того, гарантируется более высокая тяга. Это снизило бы уровень потребления топлива, а значит, уменьшило бы массу запуска и стоимость миссий.
Пока не было еще ни одного запущенного ядерно-теплового двигателя. Но существует множество концепций. Они начинаются с традиционных твердых конструкций до основанных на жидком или газовом ядре. Несмотря на все эти преимущества, наиболее сложная концепция достигает максимального удельного импульса в 5000 секунд. Если использовать подобный двигатель для поездки на Марс, когда планета находится в 55000000 км (позиция «противостояния»), то на это уйдет 90 дней.
Но, если мы направим его к Проксима Центавра, то понадобятся столетия для разгона, чтобы перешел на скорость света. После этого ушло бы несколько десятков лет на поездку и еще столетия на замедление. В целом, срок сокращается до тысячи лет. Прекрасно для межпланетных поездок, но все еще не годится для межзвездных.
Наверное, вы уже поняли, что современные технологии довольно медленные для преодоления таких длинных дистанций. Если мы хотим выполнить подобное за одно поколение, то нужно придумать нечто прорывное. И если червоточины все еще пылятся на страничках фантастических книг, то мы располагаем несколькими реальными идеями.
Ядерное импульсное движение
Этой идеей занимался Станислав Улам еще в 1946 году. Проект стартовал в 1958 году и продолжался до 1963 года под названием Орион.
Проект Орион для атомного космического корабля
В Орионе планировали использовать мощь импульсивных ядерных взрывов для создания сильного толчка с высоким удельным импульсом. То есть, мы имеет крупный космический корабль с огромнейшим запасом термоядерных боеголовок. Во время сбрасывания, мы используем детонационную волну на задней площадке («толкатель»). После каждого взрыва подушка толкателя поглощает силу и переводит тягу в импульс.
Естественно, в современном мире метод лишен изящества, но зато гарантирует необходимый импульс. По предварительным оценкам, в таком случае можно достичь 5% от скорости света (5.4 х 10 7 км/ч). Но конструкция страдает от недостатков. Начнем с того, что такой корабль обойдется очень дорого, да и весил бы он 400000-4000000 тонн. Причем ¾ веса представлено ядерными бомбами (каждая из них достигает 1 метрической тонны).
Художественная интерпретация корабля Орион, покидающего Землю
Общая стоимость запуска выросла бы на те времена до 367 миллиардов долларов (на сегодняшние – 2.5 триллионов долларов). Есть также и проблема с создаваемым излучением и ядерными отходами. Полагают, что именно из-за этого проект остановили в 1963 году.
Здесь используют термоядерные реакции, за счет которых создается тяга. Энергия производится, когда гранулы дейтерия/гелия-3 зажигаются в реакционном отсеке через инерционное удержание с использованием электронных лучей. Такой реактор будет детонировать 250 гранул в секунду, создавая высокоэнергетическую плазму.
В такой разработке экономится топливо и создается особый импульс. Достижимая скорость – 10600 км (значительно быстрее стандартных ракет). В последнее время этой технологией интересуется все больше людей.
Концепция корабля Дедал – двухступенчатая ракета, способная достичь 12% скорости света
В 1973-1978 гг. Британское межпланетное общество создало технико-экономическое исследование – проект Дедал. Он основывался на современных знаниях технологии слияния и наличия двухступенчатого беспилотного зонда, который смог бы добраться к звезде Барнарда (5.9 световых лет) за одну жизнь.
Первый этап проработает 2.05 лет и разгонит корабль до 7.1% скорости света. Потом его сбросят и запустится двигатель, увеличив скорость до 12% за 1.8 лет. После этого двигатель второй ступени остановится и судно будет добираться 46 лет.
В целом, к звезде корабль доберется за 50 лет. Если направить его к Проксима Центавра, то время сократится до 36 лет. Но и эта технология столкнулась с препятствиями. Начнем с того, что гелий-3 придется добывать на Луне. А реакция, которая активирует движение космического корабля, требует, чтобы выделяемая энергия превышала энергию, которую используют для запуска. И хотя тестирование прошло хорошо, у нас все еще нет необходимого вида энергии, который смог бы подпитать межзвездный космический корабль.
Корабль Дедал рядом с ракетой Сатурн-V
Ну и не будем забывать о деньгах. Один запуск ракеты весом в 30 мегатонн обходится НАСА в 5 миллиардов долларов. Так вот проект Дедал весил бы 60000 мегатонн. Кроме того, понадобится новый вид термоядерного реактора, которые также не вписывается в бюджет.
Эту идею предложил Роберт Буссард в 1960 году. Можно считать это улучшенной формой ядерного слияния. В нем используют магнитные поля для сжатия водородного топлива до момента активации слияния. Но здесь создается огромная электромагнитная воронка, которая «вырывает» водород из межзвездной среды и сбрасывает в реактор как топливо.
Концепция механизма, работающем на водороде из межзвездной среды
Корабль будет набирать скорость, и заставит сжатое магнитное поле достигнуть процесса термоядерного синтеза. После оно перенаправит энергию в виде выхлопных газов через форсунку двигателя и ускорит движение. Без использования другого топлива можно достичь 4% от скорости света и отправляться в любую точку галактики.
Но у этой схемы огромная куча недостатков. Сразу же возникает проблема сопротивления. Кораблю необходимо увеличивать скорость, чтобы накопить топливо. Но он сталкивается с огромным количеством водорода, поэтому может замедлиться, особенно попав в плотные регионы. К тому же в космосе очень сложно найти дейтерий и тритий. Зато эту концепцию часто используют в фантастике. Наиболее популярный пример – «Звездный Путь».
В целях экономии уже очень давно применяют солнечные паруса для передвижений аппаратов по Солнечной системе. Они легкие и дешевые, к тому же не требуют топлива. Парус использует радиационное давление от звезд.
Аппарат IKAROS с солнечным парусом
Но, чтобы использовать подобную конструкцию для межзвездной поездки, необходимо управлять им сфокусированными энергетическими лучами (лазеры и микроволны). Только так его можно разогнать к отметке близкой к скорости света. Эту концепцию разработал Роберт Форд в 1984 году.
Суть в том, что все преимущества солнечного паруса сохраняются. И хотя лазеру потребуется время на ускорение, но ограничение состоит лишь в скорости света. Исследование 2000-го года показало, что лазерный парус может разгоняться до половины скорости света и тратит на это меньше 10 лет. Если размер паруса будет 320 км, то он доберется до точки назначения за 12 лет. А если увеличить его до 954 км, то за 9 лет.
Но для его производства необходимо использовать передовые композиты, чтобы избежать плавления. Не забывайте, что он должен достигать огромных размеров, поэтому цена будет большой. К тому же придется потратиться на создание мощного лазера, который смог бы обеспечить управление на таких больших скоростях. Лазер потребляет постоянный ток в 17000 теравватт. Чтобы вы понимали, это то количество энергии, которое за один день потребляет вся планета.
Это материал, представленный античастицами, которые достигают той же массы, что и обычные, но обладают противоположным зарядом. Такой механизм будет использовать взаимодействие между материей и антиматерией, чтобы сгенерировать энергию и создать тягу.
Космический корабль с антиматерией для марсианской миссии
В общем, в таком двигателе задействованы частицы водорода и антиводорода. Причем в подобной реакции освобождается столько же энергии, как и в термоядерной бомбе, а также волна субатомных частиц, перемещающихся на 1/3 скорости света.
Плюс этой технологии в том, что большая часть массы преобразуется в энергию, что позволит создать более высокую плотность энергии и удельный импульс. В итоге, мы получим наиболее быстрый и экономичный космический корабль. Если у обычной ракеты уходит тонны химического топлива, то двигатель с антивеществом расходует на те же действия всего несколько миллиграммов. Такая технологии станет прекрасным вариантом для поездки на Марс, но ее нельзя применить к другой звезде, потому что количество топлива растет в геометрической прогрессии (вместе с затратами).
Так будут выглядеть материя и антиматерия в процессе взаимного уничтожения
Для двухступенчатой ракеты с антивеществом потребуется 900000 тонн топлива для 40-летнего полета. Сложность в том, что для добычи 1 грамма антивещества понадобится 25 миллионов миллиардов киловатт-часов энергии и более триллиона долларов. Сейчас мы располагаем лишь 20 нанограммами. Зато такое судно способно разгоняться до половины скорости света и долететь до звезды Проксима Центавра в созвездии Центавра за 8 лет. Но весит оно 400 Мт и тратит 170 тонн антиматерии.
В качестве решения проблемы предложили разработку «Вакуум антиматериальной ракетной межзвездной исследовательской системы». Здесь можно было бы использовать крупные лазеры, создающие частицы антивещества при выстреле в пустом пространстве.
Концепция «Вакуум антиматериальной ракетной межзвездной исследовательской системы»
Идея также основана на использовании топлива из пространства. Но снова возникает момент дороговизны. К тому же, человечество просто не может создать такое количество антиматерии. Есть также риск радиации, ведь аннигиляция вещества-антивещества может создать взрывы высокоэнергетических гамма-лучей. Потребуется не только защитить экипаж специальными экранами, но и оборудовать двигатели. Поэтому средство уступает по практичности.
В 1994 году ее предложил мексиканский физик Мигель Алькубьерре. Он хотел создать средство, которое не нарушало бы специальную теорию относительности. Он предлагает растягивание ткани пространства-времени в волне. Теоретически это приведет к тому, что дистанция впереди объекта сократится, а сзади расширится.
Корабль, попавший внутрь волны, сможет передвигаться за пределами релятивистких скоростей. Сам корабль в «пузыре деформации» двигаться не будет, поэтому правила пространства-времени не применимы.
Теоретический межзвездный корабль
Если говорить о скорости, то это «быстрее света», но в том смысле, что корабль достигнет назначения быстрее, чем луч света, вышедший за пределы пузыря. Расчеты показывают, что он прибудет к месту назначения за 4 года. Если размышлять в теории, то это наиболее быстрый метод.
Но эта схема не учитывает квантовую механику и технически аннулируется Теорией всего. Расчеты количества необходимой энергии также показывали, что потребуется чрезвычайно огромная мощность. И это мы еще не коснулись тем безопасности.
Однако, в 2012 году были разговоры о том, что этот метод тестируется. Ученые утверждали, что построили интерферометр, который сможет найти искажения в пространстве. В 2013 году в Лаборатории реактивного движения проводили эксперимент в условиях вакуума. В выводе результаты показались неубедительными. Если углубиться, то можно понять, что эта схема нарушает один или несколько фундаментальных законов природы.
Что же из этого следует? Если вы надеялись совершить вояж на звезду туда и обратно, то шансы невероятно низкие. Но, если бы человечество решилось построить космический ковчег и отправить людей в вековое путешествие, то все возможно. Конечно, пока это лишь разговоры. Но ученые занимались бы подобными технологиями активнее, если бы нашей планете или системе угрожала реальная опасность. Тогда поездка на другую звезду была бы вопросом выживания.
Пока мы можем лишь бороздить и осваивать просторы родной системы, надеясь, что в будущем появится новый способ, позволивший реализовать межзвездные транзиты.