ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π°, Π³Ρ€Π°Ρ„ΠΈΠΊ, Π²Π΅Ρ€ΡˆΠΈΠ½Π°, Π½ΡƒΠ»ΠΈ.

тСория ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ 📈 Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ѐункция Π²ΠΈΠ΄Π° y=ax 2 +bx+c, Π³Π΄Π΅ Π°, b, с – Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числа, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ, Π° β‰  0 число, Ρ… – пСрСмСнная, называСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΈ Π΄Π²Π΅ Π²Π΅Ρ‚Π²ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π»ΠΈΠ±ΠΎ Π²Π²Π΅Ρ€Ρ…, Π»ΠΈΠ±ΠΎ Π²Π½ΠΈΠ· (рис.1). ΠšΡ€Π°ΡΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π° Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ выходят Π²Π΅Ρ‚Π²ΠΈ. Π•Ρ‘ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ – (3; –4). НаправлСниС Π²Π΅Ρ‚Π²Π΅ΠΉ зависит ΠΎΡ‚ значСния коэффициСнта Β«Π°Β», Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, Ссли Β«Π°Β» – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…; Ссли число Β«Π°Β» – ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…. На Π΄Π°Π½Π½ΠΎΠΌ рисункС Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π·Π½Π°Ρ‡ΠΈΡ‚ коэффициСнт Β«Π°Β» Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, которая Π·Π°Π΄Π°Π΅Ρ‚ эту Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ «с» ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ (Ρƒ) Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρƒ. Π’Π°ΠΊ, Π½Π° рисункС β„–1 ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось Ρƒ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (5;0), Π·Π½Π°Ρ‡ΠΈΡ‚ коэффициСнт с=5.

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ (Ρ…0; Ρƒ0), Π½Π°Π΄ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

для нахоТдСния Ρƒ0 ΠΌΠΎΠΆΠ½ΠΎ просто ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ…0 Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y0=ax 2 +bx+c вмСсто Ρ….

Рассмотрим это Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1

Найти Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ Ρƒ=2Ρ… 2 – 8Ρ… + 5.

НайдСм, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ коэффициСнты: Π°=2; b= – 8

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΈΡ… Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈ вычислим Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ…0:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π² Π·Π°Π΄Π°Π½Π½ΡƒΡŽ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ вмСсто Ρ… подставим Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρƒ0=2 βˆ™ 2 2 – 8 βˆ™ 2 + 5=8 – 16 + 5= –3

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ нашли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: (2; –3).

ЗначСния Ρ…, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ значСния, Ρ€Π°Π²Π½Ρ‹Π΅ Π½ΡƒΠ»ΡŽ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ нулями Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ЗначСния абсцисс (Ρ…) Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρ…, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ нулями Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. На рисункС β„–1 Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρ… ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅: (1;0) ΠΈ (5;0). Π—Π½Π°Ρ‡ΠΈΡ‚, Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – это значСния Ρ…, Ρ€Π°Π²Π½Ρ‹Π΅ 1 ΠΈ 5.

Рассмотрим, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ ΠΏΠΎ рисунку, Π° ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2

Найти Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ=Ρ… 2 +4Ρ… – 5

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ это абсциссы Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρ…, Ρ‚ΠΎ ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ (Ρ…;0), Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρƒ=0. Π—Π½Π°Ρ‡ΠΈΡ‚, вмСсто Ρƒ подставляСм Π½ΡƒΠ»ΡŒ Π² Π½Π°ΡˆΡƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ 0=Ρ… 2 +4Ρ… – 5 ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Ρ€Π΅ΡˆΠΈΠ² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅, ΠΌΡ‹ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ значСния Π½ΡƒΠ»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

D=b 2 – 4ac=4 2 β€” 4 βˆ™ 1 βˆ™ ( βˆ’ 5 ) = 36

Π—Π½Π°Ρ‡ΠΈΡ‚, Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π½Ρ‹ –5 ΠΈ 1

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ ΠΊ заданию ΠΏΠΎ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ Π½ΡƒΠ»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±Π΅Π· Π³Ρ€Π°Ρ„ΠΈΠΊΠ°

Если дискриминант уравнСния ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚, Π½ΡƒΠ»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π½Π΅ пСрСсСкаСт ось Ρ… (Π²Π΅Ρ€ΡˆΠΈΠ½Π° находится Π²Ρ‹ΡˆΠ΅ Π½Π΅Ρ‘, Ссли Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ… ΠΈ Π½ΠΈΠΆΠ΅, Ссли Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·).

Рассмотрим Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ соотвСтствия рисунков ΠΏΠ°Ρ€Π°Π±ΠΎΠ», располоТСнных Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ значСниям Π° ΠΈ с.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–3

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Для выполнСния Π΄Π°Π½Π½ΠΎΠ³ΠΎ задания Π½Π° соотвСтствиС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ сначала ΠΏΠΎΡ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ с Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ, подписав Π½Π° Π½ΠΈΡ…, ΠΊΠ°ΠΊΠΈΠΌΠΈ – ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ коэффициСнты Π° ΠΈ с.

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ соотвСтствиС:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–4

Рассмотрим Π΅Ρ‰Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° соотвСтствиС

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π’ Π΄Π°Π½Π½ΠΎΠΌ Π·Π°Π΄Π°Π½ΠΈΠΈ рассмотрим коэффициСнты Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… ΠΈ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½Π΅ΠΌ ΠΈΡ…: Ρ‚Π°ΠΊ, Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΏΠΎΠ΄ Π±ΡƒΠΊΠ²ΠΎΠΉ А коэффициСнт Π°=-2, Ρ‚.Π΅. ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π·Π½Π°Ρ‡ΠΈΡ‚, Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·, Π° это Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎΠ΄ Π½ΠΎΠΌΠ΅Ρ€ΠΎΠΌ 2. Π’ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… ΠΏΠΎΠ΄ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ Π‘ ΠΈ Π’ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈ коэффициСнты ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅, Π·Π½Π°Ρ‡ΠΈΡ‚, ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ ΠΏΠΎ рисунку ΠΈΡ… Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π±ΡƒΠ΄Π΅ΠΌ ΡΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ ΠΏΠΎ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ (справа ΠΈΠ»ΠΈ слСва ΠΎΡ‚ оси Ρƒ), Π° ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ…0. ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π˜Ρ‚Π°ΠΊ, Π½Π°ΠΉΠ΄Π΅ΠΌ Ρ…0 для Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Β«Π‘Β»:

Π’ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ…0 ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, Π·Π½Π°Ρ‡ΠΈΡ‚, Π²Π΅Ρ€ΡˆΠΈΠ½Π° располоТСна слСва ΠΎΡ‚ оси Ρƒ, Π° это рисунок 3. Ну ΠΈ ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ привСсти Π² соотвСтствиС Π’ ΠΈ 1.

А) a>0, с >0 Π‘) Π° 0 Π’) Π°>0, с

На рисунках Π² Π·Π°Π΄Π°Π½ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Вспомним, Ρ‡Ρ‚ΠΎ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ коэффициСнты Π° ΠΈ с: Π° – Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ (a 0 – Π²Π΅Ρ‚Π²ΠΈ Π²Π²Π΅Ρ€Ρ…); коэффициСнт с ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью Ρ… (с >0 – пСрСсСчСниС Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ; с 0, с >0 β€” это Π³Ρ€Π°Ρ„ΠΈΠΊ β„–1

Π‘) Π° 0 β€” это Π³Ρ€Π°Ρ„ΠΈΠΊ β„–3

pазбирался: Π”Π°Π½ΠΈΠΈΠ» Π ΠΎΠΌΠ°Π½ΠΎΠ²ΠΈΡ‡ | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ функциями ΠΈ ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ.

ЀУНКЦИИ

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π‘Ρ€Π°Π·Ρƒ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π’. Π­Ρ‚Π° функция СдинствСнная, ΠΈΠΌΠ΅ΡŽΡ‰Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ коэффициСнт ΠΏΡ€ΠΈ Ρ… 2 (здСсь Π°=1, Ρ‚.Π΅. Π°>0). ΠŸΡ€ΠΈ Π°>0 Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π²Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π²Π²Π΅Ρ€Ρ…. Π’Π°ΠΊΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ имССтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ – ΠΏΠΎΠ΄ β„–3. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° коэфициСнт с. Она Ρ€Π°Π²Π΅Π½ 3, Ρ‚.Π΅. с>0. Π­Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΠ΅Ρ€Π΅ΡΠ΅Ρ‡ΡŒ ось ΠžΡƒ Π²Ρ‹ΡˆΠ΅ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π§Ρ‚ΠΎ ΠΈ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΎ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Π’. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ соотвСтствиС: В–3.

Оба Π΄Ρ€ΡƒΠ³ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠ° – 1-ΠΉ ΠΈ 2-ΠΉ – ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ ось ΠžΡƒ Π½ΠΈΠΆΠ΅ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‡Ρ‚ΠΎ соотвСтствуСт Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ с=–3

pазбирался: Π”Π°Π½ΠΈΠΈΠ» Π ΠΎΠΌΠ°Π½ΠΎΠ²ΠΈΡ‡ | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

На рисунках ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²ΠΈΠ΄Π°

УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π·Π½Π°ΠΊΠ°ΠΌΠΈ коэффициСнтов a ΠΈ c ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

ΠœΡ‹ вспоминаСм, Π·Π° Ρ‡Ρ‚ΠΎ ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ коэффициСнты a ΠΈ b ΠΏΡ€ΠΈ построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π°

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ a опрСдСляСт Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: Ссли a > 0, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π° Ссли a 0.

Π”Π°Π»Π΅Π΅ ΠΌΡ‹ смотрим, Π½Π° Ρ‡Ρ‚ΠΎ влияСт коэффициСнт c.

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ c ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси x, ΠΈΠ»ΠΈ ΠΆΠ΅ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° сдвиг ΠΏΠΎ оси y, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ:

Ссли c > 0, Ρ‚ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ располоТСна Π²Ρ‹ΡˆΠ΅ оси Ρ…

Из всСго Π²Ρ‹ΡˆΠ΅ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΡ‚Π²Π΅Ρ‚:

pазбирался: Π”Π°Π½ΠΈΠΈΠ» Π ΠΎΠΌΠ°Π½ΠΎΠ²ΠΈΡ‡ | ΠΎΠ±ΡΡƒΠ΄ΠΈΡ‚ΡŒ Ρ€Π°Π·Π±ΠΎΡ€ | ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: Ρ‚Ρ€ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° присутствуСт Π² ΠΌΠΈΡ€Π΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Ρ„ΠΈΠ·ΠΈΠΊΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π½Π°ΡƒΠΊ. По Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠ³Π°ΡŽΡ‚ΡΡ искусствСнныС спутники, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ стрСмятся ΠΏΠΎΠΊΠΈΠ½ΡƒΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π‘ΠΎΠ»Π½Π΅Ρ‡Π½ΠΎΠΉ систСмы, мяч ΠΏΡ€ΠΈ ΠΈΠ³Ρ€Π΅ Π² Π²ΠΎΠ»Π΅ΠΉΠ±ΠΎΠ» Ρ‚ΠΎΠΆΠ΅ описываСт Π΅Ρ‘ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ. НуТно ΡƒΠΌΠ΅Ρ‚ΡŒ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ. А Ρ‡Ρ‚ΠΎΠ±Ρ‹ это Π½Π΅ составляло Ρ‚Ρ€ΡƒΠ΄Π°, Π½Π°Π΄ΠΎ Π·Π½Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

НахоТдСниС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: способы, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, совСты

Π£ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π΅ΡΡ‚ΡŒ симмСтричная Π΅ΠΉ, ΠΊΡ€ΠΎΠΌΠ΅ ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΈ эта Ρ‚ΠΎΡ‡ΠΊΠ° называСтся Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ. Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ, которая являСтся Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ, Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅. Π’ΠΎΡ‡ΠΊΠ° Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ – это опрСдСлённая ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси абсцисс ΠΈ ΠΏΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Она обозначаСтся ΠΊΠ°ΠΊ (x; y). Π”Π°Π²Π°ΠΉΡ‚Π΅ Ρ€Π°Π·Π±ΠΈΡ€Π°Ρ‚ΡŒΡΡ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π·Π°Π²Π΅Ρ‚Π½Ρ‹Π΅ числа.

ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ способ

НапримСр, y =x 2 –8 x +15;

Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ, Π²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнты ΠΈ свободный Ρ‡Π»Π΅Π½;

подставляСм значСния a ΠΈ b Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ;

вычисляСм значСния y;

Π—Π½Π°Ρ‡ΠΈΡ‚, Π²Π΅Ρ€ΡˆΠΈΠ½Π° находится Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (4;-1).

Рассмотрим Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ y =x 2 –6x+5

1) ΠŸΡ€ΠΈΡ€Π°Π²Π½ΠΈΠ²Π°Π΅ΠΌ ΠΊ Π½ΡƒΠ»ΡŽ:

2) Находим дискриминант, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ: D = b 2 –4 ac:

3) Находим ΠΊΠΎΡ€Π½ΠΈ уравнСния ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (-b±√ D)/2a:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π’Ρ‚ΠΎΡ€ΠΎΠΉ способ

Π”ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° – ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ΠΉ способ ΡƒΠ·Π½Π°Ρ‚ΡŒ, Π³Π΄Π΅ располагаСтся Π²Π΅Ρ€ΡˆΠΈΠ½Π°. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ этот способ, Π²Ρ‹ смоТСтС Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ x ΠΈ y ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ, Π±Π΅Π· Π½ΡƒΠΆΠ΄Ρ‹ ΠΏΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ x Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€. Рассмотрим этот ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: y=x 2 +8 x +10.

2. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π² Π»Π΅Π²ΠΎΠΉ части Π½ΡƒΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚. Для этого посчитайтС (b/2) 2 ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΡŒΡ‚Π΅ ΠΎΠ±Π΅ части уравнСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚. Π’ этом случаС Π½ΡƒΠΆΠ½ΠΎ подставит 8 вмСсто b.

Π£ нас получаСтся 16. Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΈΠ±Π°Π²ΡŒΡ‚Π΅ это число ΠΊ ΠΎΠ±Π΅ΠΈΠΌ частям уравнСния:

3. Π’ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ – ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚. Π•Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Ρ„ΠΎΡ€ΠΌΠ΅: (x + 4) 2 = 6.

4. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для поиска ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ x, Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΈΡ€Π°Π²Π½ΡΡ‚ΡŒ Π΅Π³ΠΎ ΠΊ 0. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ, x =-4. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° y Ρ€Π°Π²Π½Π° Ρ‚ΠΎΠΌΡƒ, Ρ‡Ρ‚ΠΎ находится Π² ΠΏΡ€Π°Π²ΠΎΠΉ части, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ y =6. Π’Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ этого уравнСния (-4, 6).

Π’Ρ€Π΅Ρ‚ΠΈΠΉ способ

Если Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ производная, Ρ‚ΠΎ для вас Π΅ΡΡ‚ΡŒ другая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°. НСсмотря Π½Π° Ρ‚ΠΎ, ΠΊΡƒΠ΄Π° смотрят Β«Ρ€ΠΎΠ³Π°Β» ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Π΅Ρ‘ Π²Π΅Ρ€ΡˆΠΈΠ½Π° β€” Ρ‚ΠΎΡ‡ΠΊΠ° экстрСмума. Для этого способа Π½Π°Π΄ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ:

1. НахоТдСниС ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ f'(x) = (axΒ² + bx + c)’ = 2ax + b.

2. ΠŸΡ€ΠΈΡ€Π°Π²Π½ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊ 0. Π’ ΠΈΡ‚ΠΎΠ³Π΅ Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ 0 = 2ax + b, ΠΎΡ‚ΡΡŽΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ нас интСрСсуСт.

Рассмотрим этот способ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅.

Π”Π°Π½Π° функция y = 4xΒ²+16x-17;

f'(x) = (4xΒ²+16x-17)’ = 8x+16 =0

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π‘Π°ΠΌΠΎΠ΅ Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΠ΅ ΠΏΡ€ΠΈ построСнии – это Π²Π΅Ρ€Π½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Для ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ³ΠΎ построСния Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ 5–7 Ρ‚ΠΎΡ‡Π΅ΠΊ (для школьного курса Ρ…Π²Π°Ρ‚ΠΈΡ‚ этого). Для этого Π²Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ ΠΊΠ°ΠΊΠΎΠ΅-Π»ΠΈΠ±ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ x ΠΈ подставляСм Π΅Π³ΠΎ Π² Π΄Π°Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ. Π˜Ρ‚ΠΎΠ³ΠΎΠΌ подсчётов Π±ΡƒΠ΄Π΅Ρ‚ число Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ПослС этого ставим Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π°ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’ ΠΈΡ‚ΠΎΠ³Π΅ Ρƒ нас получаСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°.

2) ЗаполняСм Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡΠ΅Π²ΡƒΡŽ ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ значСния справа ΠΈΠ»ΠΈ слСва ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹. Π›ΡƒΡ‡ΡˆΠ΅ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π΅ значСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Π»ΠΈΠΆΠ΅ ΠΊ 0, Ρ‚Π°ΠΊ ΡƒΠ΄ΠΎΠ±Π½Π΅Π΅. Π’ нашСм случаС эти значСния 4 ΠΈ 5.

X455,567
Y-4-6-6,25-6-4

Π‘ΠΎΠ²Π΅Ρ‚Ρ‹

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚Π΅ коэффициСнты.

ΠŸΠΈΡˆΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ вычислСния Π½Π° Π±ΡƒΠΌΠ°Π³Π΅. Π­Ρ‚ΠΎ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ±Π»Π΅Π³Ρ‡ΠΈΡ‚ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Π½ΠΎ ΠΈ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ свои ошибки.

Π”Π΅Π»Π°ΠΉΡ‚Π΅ всё поэтапно. Π‘Π»Π΅Π΄ΡƒΠΉΡ‚Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ вашС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ:

Π’ΠΈΠ΄Π΅ΠΎ

Π­Ρ‚ΠΎ Π²ΠΈΠ΄Π΅ΠΎ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π²Π°ΠΌ Π½Π°ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

8 класс, 9 класс, Π•Π“Π­/ΠžΠ“Π­

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ понятия

Ѐункция β€” это Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Β«yΒ» ΠΎΡ‚ Β«xΒ», ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Β«xΒ» являСтся ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Β«yΒ» β€” зависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π—Π°Π΄Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Π² соотвСтствии с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΠΎ значСниям нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π΅ значСния. Π’ΠΎΡ‚, ΠΊΠ°ΠΊΠΈΠΌΠΈ способами Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ:

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это объСдинСниС всСх Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΠ³Π΄Π° вмСсто Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ значСния ΠΈ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этих Ρ‚ΠΎΡ‡Π΅ΠΊ.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция задаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ y = ax 2 + bx + c, Π³Π΄Π΅ x ΠΈ y β€” ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅, a, b, c β€” Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ числа, ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ условиС β€” a β‰  0. Π’ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ сущСствуСт ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ распрСдСлСниС:

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, которая ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄ для y = x 2 :

Если Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Ρƒ ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒ, ΠΊΠ°ΠΊ y = x 2 ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… значСниях ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… коэффициСнтов.

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = –x 2 выглядит, ΠΊΠ°ΠΊ пСрСвСрнутая ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°:

ЗафиксируСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅:

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Π² Π½Π° ΠΎΠ±Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ ΠΈΡ… ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ОΠ₯. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ Π²Π°ΠΆΠ½Ρ‹Π΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹:

Рассмотрим Ρ‚Ρ€ΠΈ случая:

Если a > 0, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ выглядит ΠΊΠ°ΠΊ-Ρ‚ΠΎ Ρ‚Π°ΠΊ:

0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>

На основС Π²Ρ‹ΡˆΠ΅ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ясно, Ρ‡Ρ‚ΠΎ зная Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΈ Π·Π½Π°ΠΊ дискриминанта, Ρƒ нас Π΅ΡΡ‚ΡŒ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΠΊΠ°ΠΊ Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π°ΠΆΠ½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ находятся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ способом:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Ось симмСтрии ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ β€” прямая, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ оси OY.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ, Π½Π°ΠΌ Π½ΡƒΠΆΠ½Π° Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью OY. Π’Π°ΠΊ ΠΊΠ°ΠΊ абсцисса ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ оси OY Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ y = ax 2 + bx + c с осью OY, Π½ΡƒΠΆΠ½ΠΎ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ вмСсто Ρ… ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ноль: y(0) = c. Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этой Ρ‚ΠΎΡ‡ΠΊΠΈ Π±ΡƒΠ΄ΡƒΡ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ: (0; c).

На ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ основныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Алгоритм построСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Рассмотрим нСсколько способов построСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. НаиболСС ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ способ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π² соотвСтствии с Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ Π·Π°Π΄Π°Π½Π° квадратичная функция.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ y = ax 2 + bx + c.

Как строим:

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС дискриминант большС нуля, поэтому ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью ОΠ₯. Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Ρ€Π΅ΡˆΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

Как строим:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ y = (x + a) Γ— (x + b)

Рассмотрим ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€: y = (x βˆ’ 2) Γ— (x + 1).

Как строим:

Π”Π°Π½Π½Ρ‹ΠΉ Π²ΠΈΠ΄ уравнСния позволяСт быстро Π½Π°ΠΉΡ‚ΠΈ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

(x βˆ’ 2) Γ— (x + 1) = 0, ΠΎΡ‚ΡΡŽΠ΄Π° х₁ = 2, Ρ…β‚‚ = βˆ’1.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Найти Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния с осью OY:

с = ab = (βˆ’2) Γ— (1) = βˆ’2 ΠΈ Π΅ΠΉ симмСтричная.

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΠΈ соСдиним ΠΏΠ»Π°Π²Π½ΠΎΠΉ прямой.

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

БСсплатный ΠΌΠ°Ρ€Π°Ρ„ΠΎΠ½: ΠΊΠ°ΠΊ самому ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΈΠ³Ρ€Ρ‹, Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ Π² Π½ΠΈΡ… (β—•α΄—β—•)

Π—Π°ΠΏΠΈΡΠ°Ρ‚ΡŒΡΡ Π½Π° ΠΌΠ°Ρ€Π°Ρ„ΠΎΠ½

БСсплатный ΠΌΠ°Ρ€Π°Ρ„ΠΎΠ½: ΠΊΠ°ΠΊ самому ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ ΠΈΠ³Ρ€Ρ‹, Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ Π² Π½ΠΈΡ… (β—•α΄—β—•)

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ: ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°

МногиС тСхничСскиС, экономичСскиС ΠΈ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ вопросы ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΊΡ€ΠΈΠ²Ρ‹Ρ…. НаиболСС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌ Ρ‚ΠΈΠΏΠΎΠΌ срСди Π½ΠΈΡ… являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, Π° Ρ‚ΠΎΡ‡Π½Π΅Π΅, Π΅Π΅ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π°. Π’Π°ΠΆΠ½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ любой параболичСской ΠΊΡ€ΠΈΠ²ΠΎΠΉ являСтся Π΅Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΠ½ΠΎΠ³Π΄Π° ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² самом ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ протСкания процСсса, Π½ΠΎ ΠΈ для ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ². О Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, ΠΈ ΠΏΠΎΠΉΠ΄Π΅Ρ‚ Ρ€Π΅Ρ‡ΡŒ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅β€¦.

Начало поиска

ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ поиску ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, ознакомимся с самим ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π΅Π³ΠΎ свойствами. Π’ классичСском ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΉ называСтся Ρ‚Π°ΠΊΠΎΠ΅ располоТСниС Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ΄Π°Π»Π΅Π½Ρ‹ Π½Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΌ расстоянии ΠΎΡ‚ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ (фокус, Ρ‚ΠΎΡ‡ΠΊΠ° F), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ прямой, которая Π½Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ F. Рассмотрим Π΄Π°Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎ Π½Π° рисункС 1.

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Рисунок 1. ΠšΠ»Π°ΡΡΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π²ΠΈΠ΄ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

На рисункС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π° классичСская Ρ„ΠΎΡ€ΠΌΠ°. Ѐокусом являСтся Ρ‚ΠΎΡ‡ΠΊΠ° F. ДирСктрисой Π² Π΄Π°Π½Π½ΠΎΠΌ случаС Π±ΡƒΠ΄Π΅Ρ‚ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ прямая ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси Y (Π²Ρ‹Π΄Π΅Π»Π΅Π½Π° красным Ρ†Π²Π΅Ρ‚ΠΎΠΌ). Из опрСдСлСния ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ любая Ρ‚ΠΎΡ‡ΠΊΠ° ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Π½Π΅ считая фокуса, ΠΈΠΌΠ΅Π΅Ρ‚ сСбС ΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ с Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, ΡƒΠ΄Π°Π»Π΅Π½Π½ΡƒΡŽ Π½Π° Ρ‚Π°ΠΊΠΎΠΌ ΠΆΠ΅ расстояниС ΠΎΡ‚ оси симмСтрии, ΠΊΠ°ΠΊ ΠΈ сама. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, расстояниС ΠΎΡ‚ любой ΠΈΠ· Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅ Ρ€Π°Π²Π½ΠΎ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ Π΄ΠΎ дирСктрисы. ЗабСгая Π²ΠΏΠ΅Ρ€Π΅Π΄, скаТСм, Ρ‡Ρ‚ΠΎ Ρ†Π΅Π½Ρ‚Ρ€ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π° Π²Π΅Ρ‚ΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π² Ρ€Π°Π·Π½Ρ‹Π΅ стороны.

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π°, ΠΊΠ°ΠΊ ΠΈ любая другая функция, ΠΈΠΌΠ΅Π΅Ρ‚ свою запись Π² Π²ΠΈΠ΄Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(1).

Π’ ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π±ΡƒΠΊΠ²Π° Β«sΒ» ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, которая Ρ€Π°Π²Π½Π° Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ ΠΎΡ‚ фокуса Π΄ΠΎ дирСктрисы. Π’Π°ΠΊΠΆΠ΅ Π΅ΡΡ‚ΡŒ ΠΈ другая Ρ„ΠΎΡ€ΠΌΠ° записи, ΡƒΠΊΠ°Π·Π°Π½ΠΎ Π“ΠœΠ’, ΠΈΠΌΠ΅ΡŽΡ‰Π°Ρ Π²ΠΈΠ΄:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(2).

Вакая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ ΠΈΠ· области матСматичСского Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ примСняСтся Ρ‡Π°Ρ‰Π΅, Ρ‡Π΅ΠΌ традиционная (Π² силу удобства). Π’ дальнСйшСм Π±ΡƒΠ΄Π΅ΠΌ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π½Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ запись.

Π­Ρ‚ΠΎ интСрСсно! ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ равСнства Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²: Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ

РасчСт коэффициСнтов ΠΈ основных Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

К числу основных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² принято ΠΎΡ‚Π½ΠΎΡΠΈΡ‚ΡŒ располоТСниС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π½Π° оси абсцисс, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π½Π° оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ дирСктрисы.

ЧислСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π½Π° оси абсцисс

Если ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π·Π°Π΄Π°Π½ΠΎ Π² классичСском Π²ΠΈΠ΄Π΅ (1), Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ абсциссы Π² искомой Ρ‚ΠΎΡ‡ΠΊΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΡΡ‚ΡŒΡΡ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° s (ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ дирСктрисой ΠΈ фокусом). Π’ случаС, Ссли функция прСдставлСна Π² Π²ΠΈΠ΄Π΅ (2), Ρ‚ΠΎ x Π½ΡƒΠ»Π΅Π²ΠΎΠ΅ рассчитываСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(3).

Π’.Π΅., глядя Π½Π° эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, ΠΌΠΎΠΆΠ½ΠΎ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² ΠΏΡ€Π°Π²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси y Π² Ρ‚ΠΎΠΌ случаС, Ссли ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² a ΠΈΠ»ΠΈ b Π±ΡƒΠ΄Π΅Ρ‚ мСньшС нуля.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ дирСктрисы опрСдСляСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(4).

Π­Ρ‚ΠΎ интСрСсно! Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ с остатком: ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ для Ρ€Π΅Π±Π΅Π½ΠΊΠ° Π² 3, 4 классС

Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π½Π° оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ЧислСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ мСстонахоТдСния Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ для Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ (2) Π½Π° оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

ΠžΡ‚ΡΡŽΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ Π² случаС Ссли Π°&lt,0, Ρ‚ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ полуплоскости, Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС – Π² Π½ΠΈΠΆΠ½Π΅ΠΉ. ΠŸΡ€ΠΈ этом Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠ±Π»Π°Π΄Π°Ρ‚ΡŒ Ρ‚Π΅ΠΌΠΈ ΠΆΠ΅ свойствами, Ρ‡Ρ‚ΠΎ Π±Ρ‹Π»ΠΈ упомянуты Ρ€Π°Π½Π΅Π΅.

Если Π΄Π°Π½Π° классичСская Ρ„ΠΎΡ€ΠΌΠ° записи, Ρ‚ΠΎ Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ вычислСниС значСния располоТСния Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π½Π° оси абсцисс, Π° Ρ‡Π΅Ρ€Π΅Π· Π½Π΅Π³ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ для Ρ„ΠΎΡ€ΠΌΡ‹ записи (2), ось симмСтрии ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Π² классичСском прСдставлСнии, Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠ²ΠΏΠ°Π΄Π°Ρ‚ΡŒ с осью ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π’Π°ΠΆΠ½ΠΎ! ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Π½ΠΈΠΉ с использованиСм уравнСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚Π΅ основныС значСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠΆΠ΅ извСстны. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, нСлишним Π±ΡƒΠ΄Π΅Ρ‚, Ссли Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π΅Π΄ΠΎΡΡ‚Π°ΡŽΡ‰ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹. Π’Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Π·Π°Ρ€Π°Π½Π΅Π΅ даст большСС «пространство для ΠΌΠ°Π½Π΅Π²Ρ€Π°Β» ΠΈ Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΡΡ‚Π°Ρ€Π°ΠΉΡ‚Π΅ΡΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ запись (2). Она Π±ΠΎΠ»Π΅Π΅ проста для восприятия (Π½Π΅ придСтся Β«ΠΏΠ΅Ρ€Π΅Π²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π”Π΅ΠΊΠ°Ρ€Ρ‚Π°), ΠΊ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‰Π΅Π΅ количСство Π·Π°Π΄Π°Π½ΠΈΠΉ приспособлСно ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΠ΄ Ρ‚Π°ΠΊΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ записи.

Π­Ρ‚ΠΎ интСрСсно! Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° ΠΈ ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ равностороннСго Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ параболичСского Ρ‚ΠΈΠΏΠ°

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Π΅Π½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ записи, ΠΏΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ ΠΊΠ°ΠΊ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ, трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΅Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ. ΠŸΡ€ΠΎΡ‰Π΅ говоря, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ:

Π’.Π΅. Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ Π½Π΅ прСдставляСт собой Π½ΠΈΡ‡Π΅Π³ΠΎ слоТного, основной Π°ΠΊΡ†Π΅Π½Ρ‚ дСлаСтся Π½Π° Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΠΉ процСсс построСния ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ мСханичСским.

ΠŸΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… извСстны, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ самой ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΡ‚ΡŒ порядок дСйствий, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π±Ρ‹Π» описан Ρ€Π°Π½Π΅Π΅. Π’.ΠΊ. Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ (2) ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ 3 коэффициСнта, Ρ‚ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, вычислим ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· Π½ΠΈΡ…:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(5.1).

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(5.2).

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(5.3).

Π’ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… (5.1), (5.2), (5.3) ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ соотвСтствСнно Ρ‚Π΅Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ извСстны (ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ А ( ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, B ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(, C ( ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π’Π°ΠΊΠΈΠΌ ΠΏΡƒΡ‚Π΅ΠΌ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠΎ 3 Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ. Π‘ практичСской стороны Ρ‚Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Π½Π΅ являСтся самым «приятным», ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΎΠ½ Π΄Π°Π΅Ρ‚ Ρ‡Π΅Ρ‚ΠΊΠΈΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, Π½Π° основС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ впослСдствии строится сама кривая.

ΠŸΡ€ΠΈ построСнии ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ всСгда Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ось симмСтрии. Π€ΠΎΡ€ΠΌΡƒΠ»Π° оси симмСтрии для записи (2) Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹(6).

Π’.Π΅. Π½Π°ΠΉΡ‚ΠΈ ось симмСтрии, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ симмСтричны всС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Π½Π΅ составляСт Ρ‚Ρ€ΡƒΠ΄Π°. Π’ΠΎΡ‡Π½Π΅Π΅, ΠΎΠ½Π° Ρ€Π°Π²Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

Π­Ρ‚ΠΎ интСрСсно! Π˜Π·ΡƒΡ‡Π°Π΅ΠΌ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ Π² ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅: ΠΊΠ°ΠΊ Ρ€Π΅Π±Π΅Π½ΠΊΡƒ быстро Π²Ρ‹ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ умноТСния

НаглядныС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Допустим, ΠΈΠΌΠ΅Π΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ВрСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° D (10, 5) Π΄Π°Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

РСшСниС: ΠŸΡ€Π΅ΠΆΠ΄Π΅ всСго ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ упомянутой Ρ‚ΠΎΡ‡ΠΊΠΈ самой ΠΊΡ€ΠΈΠ²ΠΎΠΉ

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠžΡ‚ΠΊΡƒΠ΄Π° Π΄Π΅Π»Π°Π΅ΠΌ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ указанная Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ. НайдСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Из Ρ„ΠΎΡ€ΠΌΡƒΠ» (4) ΠΈ (5) ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Ρ‚Π°ΠΊΡƒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Найти Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, зная Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΅ΠΉ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚: A (2,3), B (3,5), C (6,2). Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ (5.1), (5.2), (5.3), Π½Π°ΠΉΠ΄Π΅ΠΌ коэффициСнты уравнСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ значСния, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

На рисункС заданная функция Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ (рисунок 2):

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Рисунок 2. Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, проходящий Ρ‡Π΅Ρ€Π΅Π· 3 Ρ‚ΠΎΡ‡ΠΊΠΈ

Π’.Π΅. Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ, Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ Π² 1-ΠΉ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ. Однако Π²Π΅Ρ‚ΠΊΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·, Ρ‚.Π΅. имССтся смСщСниС ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Π’Π°ΠΊΠΎΠ΅ построСниС ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄Π΅Ρ‚ΡŒ, ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠ² Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° коэффициСнты a, b, c.

Π’ частности, Ссли a&lt,0, Ρ‚ΠΎ Π²Π΅Ρ‚ΠΊΠΈΒ» Π±ΡƒΠ΄ΡƒΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·. ΠŸΡ€ΠΈ a&gt,1 кривая Π±ΡƒΠ΄Π΅Ρ‚ растянута, Π° Ссли мСньшС 1 – сТата.

ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Π° c ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° Β«Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β» ΠΊΡ€ΠΈΠ²ΠΎΠΉ вдоль оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Если c&gt,0, Ρ‚ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Β«ΠΏΠΎΠ»Π·Π΅Ρ‚Β» Π²Π²Π΅Ρ€Ρ…, Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС – Π²Π½ΠΈΠ·. ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ коэффициСнта b, Ρ‚ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ влияния ΠΌΠΎΠΆΠ½ΠΎ лишь ΠΈΠ·ΠΌΠ΅Π½ΠΈΠ² Ρ„ΠΎΡ€ΠΌΡƒ записи уравнСния, привСдя Π΅Π΅ ΠΊ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ:

ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠ° Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Если коэффициСнт b&gt,0, Ρ‚ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ смСщСны Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° b Π΅Π΄ΠΈΠ½ΠΈΡ†, Ссли мСньшС – Ρ‚ΠΎ Π½Π° b Π΅Π΄ΠΈΠ½ΠΈΡ† Π²Π»Π΅Π²ΠΎ.

Π’Π°ΠΆΠ½ΠΎ! ИспользованиС ΠΏΡ€ΠΈΠ΅ΠΌΠΎΠ² опрСдСлСния смСщСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости подчас ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ‚ΡŒ врСмя ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ Π»ΠΈΠ±ΠΎ ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΌ пСрСсСчСнии ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π΅Ρ‰Π΅ Π΄ΠΎ построСния. ΠžΠ±Ρ‹Ρ‡Π½ΠΎ смотрят Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° коэффициСнт a, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ Π΄Π°Π΅Ρ‚ Ρ‡Π΅Ρ‚ΠΊΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° поставлСнный вопрос.

ПолСзноС Π²ΠΈΠ΄Π΅ΠΎ: ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ПолСзноС Π²ΠΈΠ΄Π΅ΠΎ: ΠΊΠ°ΠΊ Π»Π΅Π³ΠΊΠΎ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ°

Π’Ρ‹Π²ΠΎΠ΄

Π’Π°ΠΊΠΎΠΉ ΠΊΠ°ΠΊ алгСбраичСский процСсс, ΠΊΠ°ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Π½Π΅ являСтся слоТным, Π½ΠΎ ΠΏΡ€ΠΈ этом достаточно Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΉ. На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΡΡ‚Π°Ρ€Π°ΡŽΡ‚ΡΡ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠΌΠ΅Π½Π½ΠΎ Π²Ρ‚ΠΎΡ€ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ записи с Ρ†Π΅Π»ΡŒΡŽ облСгчСния понимания графичСского Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Ρ†Π΅Π»ΠΎΠΌ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π½Π°ΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, ΠΈ Ссли Π½Π΅ ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Ρ‚ΠΎ хотя Π±Ρ‹ ΠΈΠΌΠ΅Ρ‚ΡŒ ΡˆΠΏΠ°Ρ€Π³Π°Π»ΠΊΡƒ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *