как узнать при каких значениях x функция принимает положительные значения
Как решать задачи на квадратичную функцию
В предыдущем уроке мы подробно разобрали, как построить параболу. В этом уроке мы разберем, как решать типовые задачи на квадратичную функцию.
Как найти нули квадратичной функции
Подставим в исходную функцию вместо « y » ноль и решим полученное квадратное уравнение.
0 = x 2 − 3
x 2 − 3 = 0
x1;2 =
0 ± √ 0 2 − 4 · 1 · (−3) |
2 · 1 |
x1;2 =
± √ 12 |
2 |
x1;2 =
± √ 4 · 3 |
2 |
x1;2 =
± 2√ 3 |
2 |
x1;2 = ±√ 3
x1 = √ 3 | x2 = − √ 3 |
Как найти при каких значениях « x » квадратичная функция принимает заданное числовое значение
Чтобы найти при каких значениях « x » квадратичная функция принимает заданное числовое значение, нужно:
При каких значениях « x » функция принимает значение « −3 ».
Подставим в исходную функцию вместо « y = −3 » и найдем « x ».
−3 = x 2 − x − 3
x 2 − x − 3 = −3
x 2 − x − 3 + 3 = 0
x 2 − x = 0
x1;2 =
1 ± √ 1 2 − 4 · 1 · 0 |
2 · 1 |
x1;2 =
1 ± √ 1 |
2 |
x1;2 =
1 ± 1 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 1 | x2 = 0 |
Как найти координаты точек пересечения параболы и прямой
Чтобы найти точки пересечения параболы с прямой нужно:
Найти координаты точек пересечения параболы « y = x 2 » и прямой « y = 3 − 2x ».
Приравняем правые части функций и решим полученное уравнение относительно « x ».
x 2 = 3 − 2x
x 2 − 3 + 2x = 0
x 2 + 2x − 3 = 0
x1;2 =
2 ± √ 2 2 − 4 · 1 · (−3) |
2 · 1 |
x1;2 =
2 ± √ 4 + 12 |
2 |
x1;2 =
2 ± √ 16 |
2 |
x1;2 =
2 ± 4 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 3 | x2 = −1 |
Теперь подставим в любую из заданных функций (например, в полученные числовые значения « x », чтобы найти координаты « y » точек пересечения.
1) x = 3
y = 3 − 2x
y(3) = 3 − 2 · 3 = 3 − 6 = −3
(·) A (3; −3) — первая точка пересечения.
2) x = −1
y = 3 − 2x
y(−1) = 3 − 2 · (−1) = 3 + 2 = 5
(·) B (−1; 5) — вторая точка пересечения.
Запишем полученные точки пересечения с их координатами в ответ.
Как определить, принадлежит ли точка графику функции параболы
Чтобы проверить принадлежность точки параболе нет необходимости строить график функции.
Достаточно подставить координаты точки в формулу функции (координату по оси « Ox » вместо « x », а координату по оси « Oy » вместо « y ») и выполнить арифметические расчеты.
Как найти точки пересечения параболы с осями координат
Найти координаты точек пересечения параболы с осями координат.
Сначала определим точки пересечения функции с осью « Ox ». На графике функции эти точки выглядят так:
Как видно на рисунке выше, координата « y » точек пересечения с осью « Ox » равна нулю, поэтому подставим « y = 0 » в исходную функцию « y = x 2 −3x + 2 » и найдем их координаты по оси « Ox ».
0 = x 2 −3x + 2
x 2 −3x + 2 = 0
x1;2 =
3 ± √ 3 2 − 4 · 1 · 2 |
2 · 1 |
x1;2 =
3 ± √ 9 − 8 |
2 |
x1;2 =
3 ± √ 1 |
2 |
x1;2 =
3 ± 1 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 2 | x2 = 1 |
Теперь найдем координаты точки пересечения с осью « Oy ».
Как видно на рисунке выше, координата « x » точки пересечения с осью « Oy » равна нулю.
Подставим « x = 0 » в исходную функцию « y = x 2 −3x + 2 » и найдем координату точки по оси « Oy ».
y(0) = 0 2 − 3 · 0 + 2 = 2
Выпишем координаты полученной точки: (·) C (0; 2)
Запишем в ответ все координаты точек пересечения параболы с осями.
Как определить при каких значениях x функция принимает положительные или отрицательные значения
Чтобы по графику функции определить, где функция принимает положительные или отрицательные значения нужно:
С помощью графика квадратичной функции, изображенного на рисунке, ответить: При каких значениях « x » функция принимает 1) положительные значения; значения.
Проведем через точки, где график функции пересекает ось « Ox » прямые.
Определим области, где функция принимает отрицательные или положительные значения.
Подпишем над каждой полученной областью, какие значения принимает « x » в каждой из выделенных областей.
Ответ: при « x » и « x > 2 » функция принимает отрицательные значения; при функция принимает положительные значения.
Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.
теория по математике 📈 функции
Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.
На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.
Остановимся подробнее на свойствах функций.
Нули функции
Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.
На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!
Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет
а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22
Находим х, разделив 22 на 11: х=22:11
Таким образом, мы нашли нуль функции: х=2
Пример №2. Найти нули функции у=f(x) по заданному графику.
Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.
Промежутки знакопостоянства
Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.
Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).
Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.
Возрастание и убывание функции
Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.
Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.
Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.