как узнать какой резистор стоял на плате
Проверка резистора мультиметром
В разъем COM вставляется черный щуп, а в VΩ красный. VΩ — это измерение напряжения и сопротивления.
Переводим мультиметр в режим измерения сопротивления. Диодная прозвонка не поможет. Прозвонка измеряет только падение напряжения, но не сопротивление. Начинаем с малого значения в 200 Ом.
Точка на экране показывает предел измерения. Здесь выбран предел 20 кОм.
Мультиметр показывает 2,7 кОм. При измерениях нельзя касаться одновременно двух металлических оснований щупов. Ваше тело может шунтировать измеряемую деталь, и показания пробора будут ложными.
Неисправный резистор труднее всего диагностировать. Он может быть как пробитым (короткое замыкание) так и с обрывом. Проблема в том, что если вы не знаете маркировку или у вас нет схемы, определить неисправную деталь будет труднее.
Пробитый резистор мультиметр определит как с 0 сопротивлением. А в режиме диодной прозвонки, мультиметр начнет пищать. Однако, если реальное сопротивление резистора было 1 Ом, то прибор может пищать, а в режиме измерения сопротивления будет показывать погрешности.
Тоже самое с резисторами, чьи номиналы сопротивления выше, чем у измеряемого прибора. Можно его проверить и с помощью диодной прозвонки. При исправном резисторе диодная прозвонка не будет пищать, она покажет падение напряжения. Но и тут проблема.
Чем заменить неисправный
Учитывайте цепь, в которой надо поменять деталь. Если SMD резистор, то подойдет только такой же +-5% от номинала. Если это DIP резистор, который стоит в блоке питания, то можно обойтись с большей погрешностью. Проблема в том, что некоторые схемы могут быть рассчитаны на большую погрешность, а схемы для точны приборов нет. SMD компоненты обладают меньшей емкостью и индуктивностью, чем DIP. И в тоже время, SMD не предназначены для высокой мощности.
Еще можно объединить разные резисторы в один нужный, для временного ремонта. Например, резистор мощностью 2 Вт и сопротивлением 10 кОм чернеет и перегревается. Чем можно его заменить? Можно соединить два резистора по 20 кОм 2 Вт параллельно, и получим эквивалентную мощность 4 Вт и сопротивление 10 кОм. А можно и последовательно соединить два по 5 кОм 2 Вт. И получится резистор 10 кОм 4 Вт.
Маркировка резисторов
Не нужно учить или зубрить маркировку. Она пригодится в тех ситуациях, когда на плате резистор сгорел или повредился, а данных о его сопротивлении нет.
DIP маркируются кольцами. У них есть множители и проценты погрешности.
SMD в виду своих габаритов маркируются цифрами.
Как проверить резистор мультиметром
При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.
Содержание статьи
Особенности измерения сопротивления резистора мультиметром
Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.
Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.
Цифровой тестер для проверки резисторов
Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.
Как проверить резистор не выпаивая: визуальная проверка
Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.
О неисправностях свидетельствуют:
Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.
Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.
Подготовка мультиметра к проведению измерений: какие установить настройки
Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.
Подготовка прибора к проверке
При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».
Как прозвонить резистор
Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.
Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.
Как определить номинал резистора по маркировке
Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.
Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.
В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.
Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.
Таблица кодов для прецизионных резисторов
Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение |
01 | 100 | 17 | 147 | 33 | 215 | 49 | 316 | 65 | 464 | 81 | 681 |
02 | 102 | 18 | 150 | 34 | 221 | 50 | 324 | 66 | 475 | 82 | 698 |
03 | 105 | 19 | 154 | 35 | 226 | 51 | 332 | 67 | 487 | 83 | 715 |
04 | 107 | 20 | 158 | 36 | 232 | 52 | 340 | 68 | 499 | 84 | 732 |
05 | 110 | 21 | 162 | 37 | 237 | 53 | 348 | 69 | 511 | 85 | 750 |
06 | 113 | 22 | 165 | 38 | 243 | 54 | 357 | 70 | 523 | 86 | 768 |
07 | 115 | 23 | 169 | 39 | 249 | 55 | 365 | 71 | 536 | 87 | 787 |
08 | 118 | 24 | 174 | 40 | 255 | 56 | 374 | 72 | 549 | 88 | 806 |
09 | 121 | 25 | 178 | 41 | 261 | 57 | 383 | 73 | 562 | 89 | 825 |
10 | 124 | 26 | 182 | 42 | 267 | 58 | 392 | 74 | 576 | 90 | 845 |
11 | 127 | 27 | 187 | 43 | 274 | 59 | 402 | 75 | 590 | 91 | 866 |
12 | 130 | 28 | 191 | 44 | 280 | 60 | 412 | 76 | 604 | 92 | 887 |
13 | 133 | 29 | 196 | 45 | 287 | 61 | 422 | 77 | 619 | 93 | 909 |
14 | 137 | 30 | 200 | 46 | 294 | 62 | 432 | 78 | 634 | 94 | 931 |
15 | 140 | 31 | 205 | 47 | 301 | 63 | 443 | 79 | 649 | 95 | 953 |
16 | 143 | 32 | 210 | 48 | 309 | 64 | 453 | 80 | 665 | 96 | 976 |
Проверка сопротивления постоянного резистора
После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.
Как проверяют сопротивление резистора
При обрыве цепи на экране горит «1».
Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.
Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.
СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.
Проверка переменного резистора
Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.
Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.
Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:
Видео: как проверить резистор мультиметром
Как проверить резистор мультиметром не выпаивая
Резистор ® — пассивный элемент электрических схем, ограничивающий напряжение или ток на определённом участке цепи за счёт своего сопротивления. Резисторы являются самыми распространёнными деталями в электрике и электронике. Многие начинающие радиолюбители задаются вопросом о том, как проверить резистор мультиметром. Для определения величины сопротивления используются цифровые и стрелочные мультиметры, или тестеры.
Определение при помощи мультиметра
Перед измерением резистора необходимо визуально определить его целостность: осмотреть его на предмет обгоревшего внешнего покрытия — краски или лака, а также проверить надписи на корпусе, если они просматриваются. Определить номинал можно по таблицам рядов или цветовых кодов, после чего при помощи мультиметра можно замерить сопротивление.
Для прозвонки можно использовать простой измерительный прибор, например, DT-830B. В первую очередь необходимо установить переключатель измерений в режим проверки минимального сопротивления — 200 Ом, после чего соединить щупы между собой. Индикатор прибора при соединённых щупах должен показывать минимальное значение R, которое стремится к нулю, например, 0,03 Ома. После так называемой калибровки можно приступить к измерениям.
Проверка сопротивления на плате
Элементы, имеющие омическое сопротивление до 200 Ом, должны прозваниваться в этом диапазоне измерений. Если же показания прибора указывают бесконечность, необходимо увеличить переключателем измеряемый диапазон с 200 Ом до 2000 Ом (2кОм) и выше в зависимости от испытываемого номинала. Перед тем как проверить мультиметром резистор не выпаивая его, нужно:
Прозвонить на плате можно только низкоомные сопротивления, составляющие номинал от одного ома до десятков омов. Начиная от 100 Ом и выше возникает сложность их измерения, так как в схеме могут применяться радиоэлементы, имеющие более низкое сопротивление, чем сам резистор.
Кроме постоянных резисторов, существуют следующие виды элементов:
Проверка резистора мультиметром для измерения работоспособности переменных и подстроечных элементов осуществляется путём присоединения к среднему выводу одного из щупов, к любому из крайних выводов второго щупа. Необходимо произвести регулировку движка измеряемого элемента в одну сторону до упора и обратно, при этом показание прибора должно измениться от минимума до паспортного или фактического сопротивления резистора. Аналогично нужно провести измерение со вторым крайним выводом потенциометра.
Чтобы проверить позистор мультиметром, необходимо подключить измерительный прибор к выводам и приблизить его к источнику тепла. Сопротивление должно увеличиваться в зависимости от приложенной к нему температуры. Тех, кто работает с электроникой, знают, как проверить мультиметром термистор. Перед этим нужно учесть, что при воздействии на него температуры нагретого паяльника его термосопротивление должно уменьшаться. Перед тем как проверить термистор и позистор на плате, необходимо выпаять один из выводов и после этого провести измерение.
Терморезисторы могут работать как при высоких температурах, так и при низких. Позисторы и термисторы применяются там, где необходимо контролировать температуру, например в электронных термометрах, температурных датчиках и других устройствах.
Терморезисторы в схеме используются как температурные стабилизаторы каскадов в усилителях мощности или блоках питания, для защиты от перегрева. Терморезистор может выглядеть как бусина с двумя проводами, а также иметь форму пластины с двумя выводами.
Как определить исправность СМД-резисторов
SMD-резисторы являются компонентами поверхностного монтажа, основным отличием которых, является отсутствие отверстий в плате. Компоненты устанавливаются на токоведущие контакты печатной платы. Преимуществом СМД-компонентов являются их малые габариты, что даёт возможность уменьшить вес и размеры печатных плат.
Проверка SMD-резисторов мультиметром усложняется из-за мелкого размера компонентов и их надписей. Величина сопротивления на СМД-компонентах указывается в виде кода в специальных таблицах, например обозначение 100 или 10R0 соответствует 10 Ом, 102 указывает 1 кОм. Могут встречаться четырёхзначные обозначения, например 7920, где 792 является значением, а 0 — это множитель, что соответствует 792 Ом.
Резистор поверхностного монтажа можно проверить мультиметром, путём его полного выпаивания из схемы, при этом оставив припаянным один из концов на плате и приподняв другой при помощи пинцета. После этого проводится измерение.
Originally posted 2018-07-04 08:12:47.
Как проверить резистор мультиметром на исправность?
Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.
Основные этапы тестирования
Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:
Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.
Виды маркировок
На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.
Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск
Цветовое обозначение
Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.
Рис. 2. Пример цветовой маркировки
Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.
Маркировка SMD элементов
Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).
Рис. 3. Пример расшифровки номинала SMD резистора
Внешний осмотр
Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.
Рисунок 4. Яркий пример того, как может сгореть резистор
Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.
Проверка на обрыв
Действия производятся в следующем порядке:
Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.
Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.
Проверка на номинал
Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.
Алгоритм наших действий следующий:
Что такое допуск, и насколько он важен?
Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.
Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.
Как тестировать переменный резистор?
Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.
Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)
Алгоритм следующий:
Как проверить резистор мультиметром, не выпаивая на плате?
Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.
Резистор. Резисторы постоянного сопротивления
Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы разобрались, какие бывают соединительные провода и линии электрической связи и как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление.
Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.
1. Основные параметры резисторов.
Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению, номинальной мощности и допуску. Рассмотрим эти три основных параметра более подробно.
1.1. Сопротивление.
Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.
Сопротивление измеряется в омах (Ом), килоомах (кОм) и мегаомах (МОм):
1кОм = 1000 Ом;
1МОм = 1000 кОм = 1000000 Ом.
Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:
Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10.
Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой, цифровой или цветовой маркировки.
При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е» и «R», единицу килоом буквой «К», а единицу мегаом буквой «М».
а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е» и «R». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω»:
б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R» на конце, или только одно числовое значение величины без буквы:
К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом
в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К»:
г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М». Букву ставят на месте нуля или запятой:
М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм
д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М»:
е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е, R, К и М, обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:
Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.
Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают численную величину сопротивления в Омах, третье кольцо является множителем, а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.
Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.
Например. Резистор маркирован четырьмя кольцами:
красное — (2)
фиолетовое — (7)
красное — (100)
серебристое — (10%)
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10%.
Резистор маркирован пятью кольцами:
красное — (2)
фиолетовое (7)
красное (2)
красное (100)
золотистое (5%)
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%
Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета.
И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в этой статье.
Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.
При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:
221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 12 МОм.
Если последняя цифра ноль, то множитель будет равен единице, так как десять в нулевой степени равно единице:
100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом.
При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, а четвертая цифра обозначает множитель. Множителем является число 10 возведенное в степень четвертой цифры:
1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм.
1.2. Допуск (класс точности) резистора.
Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).
Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода, состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:
Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.
На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.
У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.
1.3. Номинальная мощность рассеивания.
Третьим важным параметром резистора является его мощность рассеивания
При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.
Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.
За единицу измерения мощности принят ватт (Вт).
Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.
В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.
Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.
На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».
С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку. Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в этой статье.
Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.
Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).
2. Резисторы постоянного сопротивления (постоянные резисторы).
Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.
Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные.
2.1. Непроволочные резисторы.
Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки, нанесенной на керамическое основание.
Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.
В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).
Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.
2.2. Проволочные резисторы.
Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.
Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.
Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.
По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.
Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.
С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.
3. Обозначение резисторов на принципиальных схемах.
На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника, а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).
Рядом с условным обозначением ставят латинскую букву «R» и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.
Значение сопротивления от 0 до 999 Ом обозначают в омах, но единицу измерения не ставят:
На некоторых зарубежных схемах для обозначения Ом ставят букву R:
Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к»:
1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм
Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М»:
Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.
4. Последовательное и параллельное соединение резисторов.
Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.
При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:
Rобщ = R1 + R2 + R3 + … + Rn
Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.
При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:
Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:
И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.
Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью последовательное и параллельное соединение резисторов, в которой способы соединения рассказаны более подробно.
Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.
Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления. Во второй части статьи мы познакомимся с резисторами переменного сопротивления.
Удачи!
Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.