как определить в какой четверти находится точка
Как найти координаты точки?
3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ
Понятие системы координат
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
Определение координат точки
Каждой точке координатной плоскости соответствуют две координаты.
Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.
Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.
Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.
Смотрим на график и фиксируем: A (1; 2) и B (2; 3).
Особые случаи расположения точек
В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:
Способы нахождения точки по её координатам
Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.
Способ первый. Как определить положение точки D по её координатам (-4, 2):
Способ второй. Как определить положение точки D (-4, 2):
Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:
Координатные четверти – расположение
Человечество с самого начала своего существования нуждалось в определении своего места положения. Как узнать конкретное расположение точки с точностью до миллиметра? Только с помощью системы координат, об особенностях которой и пойдет речь сегодня.
Что такое система координат?
Система координат это комплекс мер, которые позволяют определить положение точки в пространстве или на плоскости.
В физике помимо комплекса определения положения точки используется еще и прибор для определения времени. В математике достаточно определить положение точки в один момент времени.
Существует две разновидности систем координат:
Полярная система в современности используется крайне редко, она сложнее декартовой системы, а потому утратила свою популярность.
Координатные четверти
Два взаимно перпендикулярных луча образуют четыре координатные четверти. Горизонтальная ось называется осью абсцисс или осью Ох, вертикальная оси называется осью ординат или осью Оу. Начало координат рассекает оси на положительную и отрицательную часть.
Каждая из координатных четвертей имеет свой номер и обозначение в виде римской цифры. Сначала нумеруют верхние четверти, так верхняя правая четверть зовется первой, верхняя левая второй, нижняя левая третье, а нижняя правая четвертой.
Для того, чтобы узнать координаты точки в прямоугольной системе координат, следует опустить от точки перпендикуляры на оси и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты прописываются в скобочках, первой идет координата по оси Ох, второй по Оу.
Разберемся, какие координаты могут быть в осях:
Что мы узнали?
Мы поговорили о системах координат. Выделили две системы координат. Поговорили о координатных четвертях, а также сказали, как определить расположение точки в зависимости от ее координат.