как определить какая линза рассеивающая или собирающая
Оптика. Линза. Собирающая линза. Действительное и мнимое изображение.
Собирающая линза – это линза которая в средней части толще, чем по краям. Если на собирающую линзу попадает пучок лучей, параллельных главной оптической оси, то после преломления в линзе они собираются в одной точке F, которую обозначают как главный фокус линзы.
Посредствам линз получится делать увеличенные и уменьшенные изображения объектов.
Опыты демонстрируют: отчётливое изображение формируется, когда объект, линза и экран размещены на определённых расстояниях друг от друга. В зависимости от их взаимного положения изображения могут быть перевёрнутыми или прямыми, увеличенными или уменьшенными, действительными или мнимыми.
Изображение, даваемое собирающей линзой, в зависимости от соотношения дистанции d от предмета до линзы и ее фокусным расстоянием F:
— d 2F – уменьшенное, перевернутое, действительное (предмет расположен за точкой двойного фокуса, пример – фотоаппарат, глаз).
Когда изображение действительное, его получится спроецировать на экран. В этом случае изображение будет видно из всякой точки комнаты, из которой виден экран.
Когда изображение мнимое, то его не получится спроецировать на экран, а можно только увидеть глазом, располагая его определённым образом по отношению к линзе (нужно смотреть «в неё»).
Собирающие и рассеивающие линзы
Наиболее важное применение преломления света – это использование линз, которые обычно делают из стекла. На рисунке вы видите поперечные разрезы различных линз. Линзой называют прозрачное тело, ограниченное сферическими или плоско-сферическими поверхностями. Всякая линза, которая в средней части тоньше, чем по краям, в вакууме или газе будет рассеивающей линзой. И наоборот: всякая линза, которая в средней части толще, чем по краям, будет собирающей линзой.
Для пояснений обратимся к чертежам. Слева показано, что лучи, идущие параллельно главной оптической оси собирающей линзы, после неё «сходятся», проходя через точку F – действительный главный фокус собирающей линзы. Справа показано прохождение лучей света через рассеивающую линзу параллельно её главной оптической оси. Лучи после линзы «расходятся» и кажутся исходящими из точки F’, называемой мнимым главным фокусом рассеивающей линзы. Он не действительный, а мнимый потому, что через него лучи света не проходят: там пересекаются лишь их воображаемые (мнимые) продолжения.
В школьной физике изучаются только так называемые тонкие линзы, которые вне зависимости от их симметричности «в разрезе» всегда имеют два главных фокуса, расположенные на равных расстояних от линзы. Если лучи направлять под углом к главной оптической оси, то мы обнаружим множество других фокусов у собирающей и/или рассеивающей линзы. Эти, побочные фокусы, будут находиться в стороне от главной оптической оси, но по-прежнему попарно на равных расстояниях от линзы.
Линзой можно не только собирать или рассеивать лучи. При помощи линз можно получать увеличенные и уменьшенные изображения предметов. Например, благодаря собирающей линзе на экране получается увеличенное и перевёрнутое изображение золотой статуэтки (см. рисунок).
Опыты показывают: отчётливое изображение возникает, если предмет, линза и экран расположены на определённых расстояниях друг от друга. В зависимости от них изображения могут быть перевёрнутыми или прямыми, увеличенными или уменьшенными, действительными или мнимыми.
Ситуация, когда расстояние d от предмета до линзы больше её фокусного расстояния F, но меньше двойного фокусного расстояния 2F, описана во второй строке таблицы. Именно это мы и наблюдаем со статуэткой: её изображение действительное, перевёрнутое и увеличенное.
Изображения, даваемые собирающей линзой | |||
d 2F | уменьшенное | перевёрнутое | действительное |
Если изображение действительное, его можно спроецировать на экран. При этом изображение будет видно из любого места комнаты, из которого виден экран. Если изображение мнимое, то его нельзя спроецировать на экран, а можно лишь увидеть глазом, располагая его определённым образом по отношению к линзе (нужно смотреть «в неё»).
Опыты показывают, что рассеивающие линзы дают уменьшенное прямое мнимое изображение при любом расстоянии от предмета до линзы.
Как определить какая линза рассеивающая или собирающая
Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.
Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.
Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.
Величины и также подчиняются определенному правилу знаков:
и – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
и – для мнимых источников и изображений.
Для случая, изображенного на рис. 3.3.3, имеем: (линза собирающая), (действительный предмет).
По формуле тонкой линзы получим: следовательно, изображение действительное.
В случае, изображенном на рис. 3.3.4, (линза рассеивающая), (действительный предмет), то есть изображение мнимое.
Оптическая сила линзы зависит как от радиусов кривизны и ее сферических поверхностей, так и от показателя преломления материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:
Радиус кривизны выпуклой поверхности считается положительным, вогнутой – отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.
Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах – астрономической трубе Кеплера и земной трубе Галилея (см. § 3.5).
Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.
В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.
Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.
Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.
В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия (рис. 3.3.5). Это приводит к увеличению глубины резкости.
3.6.6 Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы
Лекция: Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы
Линза. Виды линз
Как известно, все физические явления и процессы используются при проектировании техники и иного оборудования. Преломление света не является исключением. Данное явление получило применение при изготовлении камер, биноклей, а также человеческий глаз также является неким оптическим прибором, способным изменять ход лучей. Для этого используется линза.
В школьном курсе физики рассматриваются линзы, выполненные из стекла. Однако, могут использоваться и другие материалы.
Существует несколько основных видов линз, выполняющих определенные функции.
Двояковыпуклая линза
Если линзы выполнены из двух выпуклых полусфер, то они называются двояковыпуклыми. Давайте рассмотрим, как ведут себя лучи при прохождении через такую линзу.
Рассмотрим падающий луч АВ, который из-за перехода в другую среду преломляется. После того, как преломленный луч касается второй стенки сферы, он преломляется еще раз до пересечения с главной оптической осью.
Отсюда можно сделать вывод, что если некоторый луч шел параллельно главной оптической оси, то после прохождения через линзу он пересечет главную оптическую ось.
Все лучи, которые находятся неподалеку от оси, пересекаются в одной точке, создавая пучок. Те лучи, что далеки от оси, пересекаются в месте, находящемся ближе к линзе.
Фокус (фокусное расстояние) обозначается на рисунке буквой F.
Линза, в которой лучи собираются в одной точке за ней, называется собирающей. То есть двояковыпуклая линза является собирающей.
Двояковогнутая линза
Линза, выполненная из двух вогнутых полусфер, называется двояковогнутой.
Как видно из рисунка, лучи, попавшие на такую линзу, преломляются, и на выходе не пересекают ось, а наоборот, стремятся от нее.
Отсюда можно сделать вывод, что такая линза рассеивает, и поэтому называется рассеивающей.
Линзы
Ещё одной оптической преломляющей системой, рассматриваемой в школе, является линза. Линза — оптическая система, составленная из оптически прозрачного материала, ограниченная двумя преломляющими поверхностями: двумя сферическими или плоской и сферической (рис. 1).
На рисунке 1.1 представлены вогнутые и двояковогнутая линзы (будущие рассеивающие линзы), на рисунке 1.2 представлены выпуклые и двояковыпуклая линзы (будущие собирающие линзы).
Рассматриваемая в школьной программе система — тонкая линза — линза, ширина которой намного меньше, чем остальные геометрические размеры линзы.
Введём точки, линии и плоскости, характеризующие любой тип линзы (рис. 2).
Рис. 2. Произвольная линза (составляющие)
В любой линзе выделяют:
Положение точки фокуса (фокусное расстояние) — основной параметр любой линзы, зависящий от геометрических особенностей линзы (радиусы сферических поверхностей) и материала, из которого она выполнена.
В курсе школьной физики достаточно мало задач на поиск фокусного расстояния, исходя из геометрии, линзы, но все они решаются через одну и ту же формулу:
Данная формула справедлива для любых тонких линз. Необходимо запомнить правило знаков: если радиус закругления совпадает с направлением распространения света, то радиус следует считать положительным, в обратном случае — отрицательным.
Важно: для собирающих линз фокусное расстояние положительно, для рассеивающих линз — отрицательно.
Каждый раз прорисовывать линзы в виде, представленном на рис.1 не продуктивно, тем более часть различных по форме линз одинакова по логике преломления лучей. Поэтому тонкие линзы разделяют на два типа: собирающие и рассеивающие. Для каждого из этих типов линз есть условные обозначения (рис. 3).
Рис. 3. Рассеивающая и собирающая линза
На рисунке 3.1 представлена собирающая линза (обычная стрелка), на рисунке 3.2 представлено обозначение рассеивающей линзы (стрелки дужками вверх). Также рисунком 3 можно ввести и разделение на два типа линз. Направим на линзу широкий пучок света параллельно главной оптической оси, если после преломления в линзе ширина пучка уменьшается, назовём такую линзу собирающей, если увеличивается — рассеивающей.