Проекционные волокна связывают мозговую кору частью с thalamus и corpora geniculata, частью с нижележащими отделами центральной нервной системы до спинного мозга включительно. Одни из этих волокон проводят возбуждения центростремительно, по направлению к коре, а другие, наоборот,— центробежно.
Проекционные волокна в белом веществе полушария ближе к коре образуют так называемый лучистый венец, corona radiata, и затем главная часть их сходится во внутреннюю капсулу, о которой упоминалось выше.
Внутренняя капсула, capsula interna
Внутренняя капсула, capsula interna, как было указано, представляет слой белого вещества между nucleus lentiformis, с одной стороны, и хвостатым ядром и таламусом — с другой.
На фронтальном разрезе мозга внутренняя капсула имеет вид косо идущей белой полосы, продолжающейся в ножку мозга. На горизонтальном разрезе она представляется в форме угла, открытого в латеральную сторону; вследствие этого в capsula interna различают переднюю ножку, crus anterius capsulae internae, — между хвостатым ядром и передней половиной внутренней поверхности nucleus lentiformis, заднюю ножку, crus posterius,— между таламусом и задней половиной чечевицеобразного ядра и колено, genu capsulae internae, лежащее на месте перегиба между обеими частями внутренней капсулы. Проекционные волокна по их длине могут быть разделены на следующие системы, начиная с самых длинных:
Видео урок для зубрешки анатомия базальных ядер, внутренней капсулы, белого вещества и волокон полушарий мозга
1. Пирамидный путь, tractus corticospinalis (pyramidalis) проводит двигательные волевые импульсы к мышцам туловища и конечностей. Начавшись от пирамидных клеток коры средней и верхней частей предцентральной извилины и lobulus paracentralis, волокна пирамидного пути идут в составе лучистого венца, а затем проходят через внутреннюю капсулу, занимая передние две трети ее задней ножки, причем волокна для верхней конечности идут спереди волокон для нижней конечности. Далее они проходят через ножку мозга, pedunculus cerebri, а оттуда через мост в продолговатый мозг.
Редактор: Искандер Милевски. Дата последнего обновления публикации: 13.8.2020
Существуют следующие нисходящие проводящие пути: • корково-спинномозговой проводящий путь (пирамидный проводящий путь); • ретикуло-спинномозговой проводящий путь (экстрапира-мидный путь); • преддверно-спинномозговой проводящий путь; • покрышечно-спинномозговой проводящий путь; • шовно-спинномозговой проводящий путь; • проводящие пути аминергических систем ЦНС; • проводящие пути вегетативной нервной системы.
Корково-спинномозговой проводящий путь
Корково-спинномозговой проводящий путь представляет собой крупный проводящий путь произвольной двигательной активности. Около 40 % его волокон начинается из первичной моторной коры прецентральной извилины. Остальные волокна берут начало из дополнительной моторной области на медиальной стороне полушария, премоторной коры головного мозга на латеральной стороне полушария, соматической сенсорной коры, коры теменной доли и коры поясной извилины. Волокна от двух вышеупомянутых сенсорных центров заканчиваются на чувствительных ядрах ствола головного мозга и спинного мозга, где они регулируют передачу чувствительных импульсов.
Корково-спинномозговой проводящий путь спускается вниз через лучистый венец и заднюю ножку внутренней капсулы к стволу головного мозга. Затем он проходит в ножке (головного мозга) на уровне среднего мозга и базилярной части моста, достигая продолговатого мозга. Здесь он образует пирамиду (отсюда название — пирамидный проводящий путь).
Демонстрация хода волокон пирамидного пути с левой стороны. Дополнительная моторная область на медиальной стороне полушария. Стрелкой показан уровень перекреста пирамид. Чувствительные нейроны выделены синим цветом.Коронарный срез бальзамированного головного мозга пациента с последующей обработкой сульфатом меди (окраска по Маллигану), демонстрирующий неокрашенные корково-спинномозговые волокна, идущие через ядра моста в сторону пирамид.
Характеристика волокон корково-спинномозгового пути выше уровня спинномозгового перехода:
• около 80 % (70-90 %) волокон переходят на противоположную сторону на уровне перекреста пирамид;
• эти волокна спускаются по противоположной стороне спинного мозга и составляют латеральный корково-спинномозговой проводящий путь (перекрещивающийся корково-спинномозговой проводящий путь); оставшиеся 20 % волокон не перекрещиваются и продолжают спускаться вниз в передней части спинного мозга;
• половина из этих неперекрещивающихся волокон вступает в передний/вентральный корково-спинномозговой проводящий путь и располагается в вентральном/переднем канатике спинного мозга на шейном и верхнем грудном уровнях; данные волокна переходят на противоположную сторону на уровне белой спайки и иннервируют мышцы передней и задней стенок брюшной полости;
• другая половина вступает в латеральный корково-спинномозговой проводящий путь на своей половине спинного мозга.
Считают, что корково-спинномозговой проводящий путь содержит около 1 млн. нервных волокон. Средняя скорость проведения импульса составляет 60 м/с, что указывает на средний диаметр волокна, равный 10 мкм («правило шести»). Около 3 % волокон — очень крупные (до 20 мкм); они отходят от гигантских нейронов (клетки Беца), расположенных в основном в области двигательной коры, отвечающей за иннервацию нижних конечностей. Все волокна корково-спинномозгового пути — возбуждающие и в качестве медиатора используют глутамат.
а) Мотонейроны дистальных отделов конечностей. В передних рогах серого вещества спинного мозга аксоны латерального корково-спинномозгового пути могут непосредственно образовывать синапсы на дендритах α- и γ-мотонейронов, иннервирующих мышцы конечностей, особенно верхних (однако, как правило, это происходит через интернейроны в пределах серого вещества спинного мозга). Отдельные аксоны латерального корково-спинномозгового пути могут активировать «большие» или «малые» двигательные единицы.
Двигательная единица — это комплекс, состоящий из нейрона переднего рога спинного мозга и всех мышечных волокон, которые этот нейрон иннервирует. Нейроны малых двигательных единиц избирательно иннервируют небольшое количество мышечных волокон и участвуют в выполнении тонких и точных движений (например, при игре на пианино). Нейроны переднего рога, иннервирующие крупные мышцы (например, большую ягодичную мышцу), способны по отдельности вызвать сокращение сотни мышечных клеток сразу, так эти мышцы отвечают за грубые и простые движения.
Уникальное свойство этих корковомотонейронных волокон латерального корково-спинномозгового пути демонстрирует понятие «фракционирования», относящееся к переменной активности интернейронов, в результате чего небольшие группы нейронов могут быть избирательно активированы для выполнения конкретной общей функции. Это легко показать на указательном пальце, который может быть согнут или разогнут независимо от положения других пальцев (хотя три из его длинных сухожилий имеют общее начало с мышечным ложем всех четырех пальцев).
Фракционирование имеет большое значение при выполнении привычных движений, таких как застегивание пальто или завязывание шнурков. Травматическое или другое повреждение корковомотонейронной системы на любом уровне влечет за собой утрату навыков выполнения привычных движений, которые затем редко поддаются восстановлению.
При выполнении данных движений α- и γ-мотонейроны активируются совместно через латеральный корково-спинномозговой проводящий путь таким образом, что веретена мышц, первично задействованных в движении, посылают импульсы об активном растяжении, а веретена мышц-антагонистов — о пассивном растяжении.
Продолговатый мозг и верхние отделы спинного мозга, вид спереди. Продемонстрированы три группы нервных волокон левой пирамиды.
б) Клетки Реншоу. Функции синапсов латерального корково-спинномозгового пути на клетках Реншоу довольно многочисленны, так как торможение на некоторых клеточных синапсах главным образом происходит за счет интернейронов типа Iа; на других синапсах данную функцию выполняют клетки Реншоу. Вероятно, наиболее важная функция — контроль совместного сокращения основных движущих мышц и их антагонистов для фиксации одного или нескольких суставов, например при работе с кухонным ножом или лопатой. Совместное сокращение происходит за счет инактивации ингибирующих интернейронов Iа клетками Реншоу.
в) Возбуждающие интернейроны. Латеральный корково-спинно-мозговой проводящий путь влияет на деятельность двигательных нейронов, расположенных в средней части серого вещества и в основании переднего рога спинного мозга, иннервирующих осевые (позвоночные) мышцы и мышцы проксимальных отделов конечностей посредством возбуждающих интернейронов. г) la-ингибирующие интернейроны. Эти нейроны также расположены в средней части серого вещества спинного мозга и активируются латеральным корково-спинномозговым путем в первую очередь при совершении произвольных движений.
Активность Ia-интернейронов способствует расслаблению мышц-антагонистов до того, как начнут сокращаться мышцы-агонисты. Кроме того, они вызывают рефрактерность мотонейронов мышц-антагонистов к стимуляции афферентами нервно-мышечного веретена при их пассивном растяжении во время движения. Последовательность процессов при произвольном сгибания коленного сустава показана на рисунке ниже.
(Обратите внимание на терминологию: в спокойном положении стоя колени человека «закрыты» в небольшом переразгибании, а четырехглавая мышца бедра находится в неактивном состоянии, о чем свидетельствует «свободное» положение надколенника. При попытке сгибания одного или обоих колен происходит подергивание четырехглавой мышцы бедра в ответ на пассивное растяжение в ней десятков мышечных веретен. Поскольку таким образом происходит сопротивление сгибанию, рефлекс называют рефлексом сопротивления.
С другой стороны, во время произвольного сгибания коленного сустава мышцы способствуют данному движению с помощью такого же механизма, но уже через рефлекс помощи. Изменение знака с отрицательного на положительный называют рефлексом перемены направления.)
д) Пресинаптические ингибиторные нейроны, обеспечивающие рефлекс растяжения. Рассмотрим движения спринтера. На каждом шаге сила тяжести тянет его тело вниз, на выпрямленное четырехглавой мышцей колено. В момент соприкосновения с землей все нервно-мышечные веретена в сокращенной четырехглавой мышце резко растягиваются, в результате чего возникает опасность разрыва мышцы. Сухожильный орган Гольджи обеспечивает некоторую защиту посредством внутреннего торможения, однако основной защитный механизм обеспечивает латеральный корково-спинномозговой путь через пресинаптическое торможение афферентов веретен вблизи их контакта с мотонейронами.
В то же время удлинение паузы до ахиллового рефлекса служит преимуществом в этой ситуации, так как происходит восстановление мотонейронов, иннервирующих заднюю часть голени, для следующего рывка. Предполагают, что степень подавления рефлекса растяжения со стороны латерального корково-спинномозгового пути зависит от конкретных движений.
е) Пресинаптическое ингибирование чувствительных нейронов первого порядка. В заднем роге серого вещества спинного мозга существует некоторое подавление передачи чувствительных импульсов в спиноталамический проводящий путь при совершении произвольных движений. Это происходит путем активации синапсов, образованных ингибирующими вставочными нейронами и первичными чувствительными нервными окончаниями.
Еще более тонкую регуляцию наблюдают на уровне тонкого и клиновидного ядер, где волокна пирамидного пути (после пересечения) способны усиливать передачу чувствительных импульсов во время медленных аккуратных движений или ослаблять ее во время совершения быстрых движений.
Последовательность событий при выполнении произвольного движения (сгибания колена). МН — мотонейроны. (1) Активация la интернейронов ингибирует их антагонисты-α-мотонейроны. (2) Активация агонистов α- и γ-мотонейронов. (3) Активация экстрафузальных и интрафузальных мышечных волокон. (4) Импульсация от активно растянутых нервно-мышечных веретен увеличивает активность агониста а-мотонейрона и снижает активность его антагонистов. (5) Iа-волокна от пассивно растянутых нервно-мышечных веретен-антагонистов направляются к соответствующим рефрактерным а-мотонейронам. Обратите внимание: последовательность «γ-мотонейронон—Ia-волокно—α-мотонейрон» образует γ-петлю.
Редактор: Искандер Милевски. Дата публикации: 15.11.2018
Пирамидная система — это система эфферентных нейронов, тела которых располагаются в коре большого мозга, оканчиваются в двигательных ядрах черепных нервов и сером веществе спинного мозга. В составе пирамидного пути (tractus pyramidalis) выделяют корково-ядерные волокна (fibrae corticonucleares) и корково-спинномозговые волокна (fibrae corticospinales). И те, и другие являются аксонами нервных клеток внутреннего, пирамидного, слоя коры большого мозга.
Они располагаются в предцентральной извилине и прилегающих к ней полях лобной и теменной долей. В предцентральной извилине локализуется первичное двигательное поле, где располагаются пирамидные нейроны, управляющие отдельными мышцами и группами мышц. В этой извилине существует соматотопическое представительство мускулатуры.
Нейроны, управляющие мышцами глотки, языка и головы, занимают нижнюю часть извилины; выше располагаются участки, связанные с мышцами верхней конечности и туловища; проекция мускулатуры нижней конечности находится в верхней части предцентральной извилины и переходит на медиальную поверхность полушария.
Пирамидный путь образуют преимущественно тонкие нервные волокна, которые проходят в белом веществе полушария и конвергируют к внутренней капсуле.
Корково-ядерные волокна формируют колено, а корково-спинномозговые волокна — передние 2/3 задней ножки внутренней капсулы. Отсюда пирамидный путь продолжается в основание ножки мозга и далее в переднюю часть моста.
На протяжении ствола мозга корково-ядерные волокна переходят на противоположную сторону к дорсолатеральным участкам ретикулярной формации, где они переключаются на двигательные ядра III, IV, V, VI, VII, IX, X, XI, XII черепных нервов; только к верхней трети ядра лицевого нерва идут неперекрещенные волокна. Часть волокон пирамидного пути проходит из ствола головного мозга в мозжечок.
В продолговатом мозге пирамидный путь располагается в пирамидах, которые на границе со спинным мозгом образуют перекрест (decussatio pyramidum). Выше перекреста пирамидный путь содержит от 700 000 до 1 300 000 нервных волокон с одной стороны. В результате перекреста 80% волокон переходит на противоположную сторону и образует в боковом канатике спинного мозга латеральный корково-спинномозговой (пирамидный) путь. Не перекрещенные волокна из продолговатого мозга продолжаются в передний канатик спинного мозга в виде переднего корково-спинномозгового (пирамидного) пути.
Волокна этого пути переходят на противоположную сторону на протяжении спинного мозга в его белой спайке (посегментно).
Большинство корково-спинномозговых волокон оканчивается в промежуточном сером веществе спинного мозга на его вставочных нейронах, лишь часть их образует синапсы непосредственно с двигательными нейронами передних рогов, которые дают начало двигательным волокнам спинномозговых нервов. В шейных сегментах спинного мозга оканчивается около 55% корково-спинномозговых волокон, в грудных сегментах 20% и в поясничных сегментах 25%.
Передний корково-спинномозговой путь продолжается только до средних грудных сегментов. Благодаря перекресту волокон в пирамидной системы левое полушарие головного мозга управляет движениями правой половины тела, а правое полушарие — движениями левой половины тела, однако мышцы туловища и верхней трети лица получают волокна пирамидного пути из обоих полушарий.
Функция пирамидной системы состоит в восприятии программы произвольного движения и проведении импульсов этой программы до сегментарного аппарата ствола головного и спинного мозга.
В клинической практике состояние пирамидной системы определяют по характеру произвольных движений.
Оценивают объем движений и силу сокращения поперечнополосатых мышц по шестибалльной системе (полная сила мышц — 5 баллов, «уступчивость» мышечной силы — 4 балла, умеренное снижение силы при полном объеме активных движений — 3 балла, возможность полного объема движений только после относительного устранения силы тяжести конечности — 2 балла, сохранность шевеления с едва заметным сокращением мышцы — 1 балл и отсутствие произвольного движения — 0).
Оценить силу сокращения мышц количественно можно с помощью динамометра. Для оценки сохранности пирамидного корково-ядерного пути к двигательным ядрам черепных нервов используют тесты, с помощью которых определяют функцию мышц головы и шеи, иннервируемых этими ядрами, кортикоспинального тракта — при исследовании мышц туловища и конечностей. О поражении пирамидной системы судят также по состоянию мышечного тонуса и трофике мышц.
Термин «экстрапирамидная двигательная система» широко используют в клинических кругах для обозначения всех отделов головного мозга, которые участвуют в двигательном контроле, но не являются частью прямой кортикоспинальной пирамидной системы. Сюда входят пути через базальные ганглии, ретикулярную формацию ствола мозга, вестибулярные ядра и часто — через красные ядра.
Это всеобъемлющая и многообразная группа областей нервной системы, контролирующих двигательные функции, что так называемой экстрапирамидной системе как целостной системе трудно приписать специфические нейрофизиологические функции. По этой причине термин «экстрапирамидная двигательная система» все реже используют как в клинике, так и в физиологии.
Кортикоруброспинальный путь двигательного контроля; показана также связь этого пути с мозжечком
а) Возбуждение двигательных областей спинного мозга первичной моторной корой и красным ядром. Нейроны моторной коры организованы в вертикальные колонки. В отдельных статьях на сайте (просим вас пользоваться формой поиска выше) указывалось, что клетки соматосенсорной и зрительной коры организованы в вертикальные колонки. Клетки моторной коры также собраны в вертикальные колонки, диаметр которых составляет долю миллиметра; одна колонка включает тысячи нейронов.
Каждая колонка клеток функционирует как единое целое, обычно стимулируя группу мышц-синергистов, а иногда лишь одну мышцу. Кроме того, как и вся кора большого мозга, колонка имеет 6 отдельных слоев клеток. Все пирамидные клетки, дающие начало кортикоспинальным волокнам, лежат в 5 слое клеток от поверхности коры, а сигналы входят в колонку через 2-4 слои; 6 слой дает начало основной части волокон, которые связывают колонку с другими регионами самой коры большого мозга.
б) Функция каждой колонки нейронов. Нейроны каждой колонки действуют как интегративная система обработки данных, использующая информацию от множества источников, на основании которой формируется ответ на «выходе» из колонки. Кроме того, каждая колонка может функционировать как усилительная система, стимулируя одновременно большое число пирамидных волокон, связанных с одной мышцей или с мышцами-синергистами.
Это важно, поскольку стимуляция одиночной пирамидной клетки редко может возбудить мышцу. Обычно для вызова сокращения определенной мышцы нужно, чтобы одновременно или в быстрой последовательности возбудились 50-100 пирамидных клеток.
Конвергенция различных двигательных регуляторных путей на передних мотонейронах
в) Динамические и статические сигналы, передаваемые пирамидными нейронами. Если для запуска быстрого сокращения к мышце посылается сильный сигнал, то дальнейшее длительное поддержание сокращения может обеспечить гораздо более слабый продолжительный сигнал. Это обычный характер возбуждения, обеспечивающий мышечные сокращения.
Для этого каждая колонка клеток возбуждает две популяции пирамидных нейронов, одну из которых называют динамическими нейронами, а другую — статическими нейронами. В течение короткого периода в начале сокращения интенсивно возбуждаются динамические нейроны, вызывая начальное быстрое разбитие силы. Затем статические нейроны возбуждаются с гораздо меньшей частотой и, продолжая возбуждаться с этой частотой, поддерживают силу сокращения так долго, как это необходимо.
Нейроны красного ядра имеют подобные динамические и статические характеристики, за исключением того, что в красном ядре больше процент динамических нейронов, а в первичной моторной коре больше процент статических нейронов. Возможно, это объясняется тем, что красное ядро тесно связано с мозжечком, а мозжечок играет важную роль в быстрой инициации мышечного сокращения.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021