к какому классу относится солнце как звезда

Какой звездой является Солнце? К какому типу звезд относится наше светило?

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Существует множество типов звезд: красные гиганты, белые карлики и т.п. А к какому классу относится наше Солнце?

Чаще всего звезды классифицируют по их положению на так называемой главной последовательности, или диаграмме Герцшпрунга–Рассела. По спектральной классификации Солнце принадлежит к классу G2V (желтый карлик). Признаками, по которым звезду относят к тому или иному классу, являются ее масса и температура поверхности. Если звезда имеет температуру 5000-6000 К (у Солнца она равна 5778 К) и массу в диапазоне 0,8-1,2 масса Солнца, то ее относят к желтым карликам. Другими известными представителями этого класса являются Альфа Центавра А и Тау Кита. Средняя продолжительность жизни желтых карликов составляет 10 млрд лет.

Хотя астрономы и называют Солнце карликом, на самом деле оно превосходит по яркости большую часть звезд в Млечном Пути. Дело в том, что 70-90% звезд в нашей галактике относятся к красным карликам, которые меньше и тусклее Солнца.

Не следует думать, что желтые карлики светят желтым светом. На самом деле и Солнце, и почти все остальные звезды светят белым цветом.

Стоит отметить, что положение звезд на диаграмме Герцшпрунга–Рассела меняется со временем. Примерно через 5 млрд лет Солнце резко вырастет в размерах (но не по массе) и станет красным гигантом. Далее наша звезда потеряет большую часть своей материи и превратится в белого карлика. Можно считать, что на этом эволюция Солнца прекратится, и оно будет медленно остывать.

Также существует классификация звезд по их химическому составу. Солнце считается звездой, относящейся к типу «население I». Это значит, что в его составе очень много тяжелых элементов (металлов). Существуют еще звезды «населения II», металличность которых на порядки ниже. Теоретически могут существовать и звезды «населения III», в которых тяжелых элементов почти нет, однако пока что астрономам не удалось их обнаружить.

Население звезды указывает на время её рождения. Звезды «населения III» возникли самыми первыми, но, вероятно, не дожили до наших дней. Из их материи сформировалось население II, а население I – это уже третье поколение звезд.

Список использованных источников

Источник

Солнце — звезда, которая нас греет или уничтожает?

Глядя на светило, которое миллиарды лет греет и освещает нашу планету, мало кто из нас догадывается, что перед нами работающий естественный термоядерный реактор. Столь грозное и пугающее сравнение связано с природой Солнца, которое по происхождению и своему составу является типичной звездой нашей галактики. Несмотря на то, что процессы, происходящие на Солнце, никак нельзя назвать животворными, эта звезда несет нам жизнь.

Что представляет собой Солнце?

Почему Солнце — звезда, похожая на миллиарды других в галактике Млечный Путь – так интересует астрофизиков и ученых-ядерщиков? Дело в том, что это самая близкая к нам звезда, благодаря которой мы можем понять суть процессов, которые бушуют во Вселенной с момента ее рождения. Изучив Солнце, мы поймем, что такое звезды, как они живут и чем заканчивается столь блистательное зрелище. Другие звезды, ввиду значительного своего удаления от нашей Солнечной системы, не могут нам продемонстрировать особенности своего внешнего вида.

Наша звезда является центральным объектом Солнечной системы, вокруг которого по своим орбитам вращаются восемь планет, астероиды и карликовые планеты, кометы и другие космические объекты. Солнце относится к звездам G класса в соответствии с гарвардской классификацией. В соответствии с классификацией Анджело Секки Солнце так же, как Арктур и Капелла, это желтый карлик II класса. В отличие от других звезд, находящихся в десятках, в сотнях световых лет от нашей планеты, наше светило располагается практически рядом. Землю от Солнца отделяет 150 млн. км – ничтожное расстояние по сравнению с колоссальными расстояниями, которые преобладают во Вселенной.

Ближайшая к Солнцу звезда – красный карлик Проксима Центавра – находится на расстоянии 4 световых лет. Мы находимся вдалеке от туманностей и звездных скоплений, которые являются самыми беспокойными областями галактики. Такое расположение обеспечивает спокойное движение Солнца по своей орбите уже 14 млрд. лет, с тех пор как образовалась галактика Млечный Путь и наша Вселенная в целом. Скорость движения звезды по орбите вокруг галактического центра составляет 200 км в секунду.

По земным меркам 150 млн. километров – это большое расстояние. Однако даже на таком удалении мы в полной мере ощущаем тепло, которое излучает Солнце. Свет нашей звезды идет к нам 8 секунд и продолжает греть и освещать нашу планету. Все дело в размерах нашей звезды. Несмотря на то, что наше светило относится к нормальным звездам, со средней массой, его масса превосходит в 700 раз массу всех небесных тел Солнечной системы. Размер солнечного диска сегодня определен и составляет 1 млн. 392 тыс. 20 км. Это в 109 раз больше диаметра Земли.

Происхождение Солнца, его жизнь и смерть

Наше светило родилось вместе с другими звездами более 4-5 млрд. лет назад. Родильным домом для Солнца стало газовое облако, которое образовалось в результате колоссальных по своим масштабам космических катаклизмов. По одной из версий, облака газа появились в результате Большого Взрыва, который потряс пространство. По своему составу газопылевые облака состояли на 99% из атомов водорода. Лишь 1% приходился на атомы гелия и другие элементы. Весь этот набор элементов под действием сил гравитации получил необходимый импульс и стал плотно сжиматься в одну субстанцию.

Чем быстрее росла масса, тем быстрее становилась скорость вращения. Атомы соединялись в крупные соединения, образуя молекулярный водород и гелий. В результате физических процессов и стремительного вращения в центре облака сложилось шарообразное образование. Появилась протозвезда – древнейшая форма, которая предшествует последующему образованию полноценной звезды. Первоначальное количество космического газа превышало нынешние размеры нашей Солнечной системы. В дальнейшем под воздействием гравитационных сил звездное вещество стало плотно сжиматься, увеличивая массу будущей звезды.

Вместе с уменьшением размеров протозвезды, увеличивалось давление внутри звездной субстанции. Это в свою очередь привело к стремительному росту температуры внутри газового образования. Высокая плотность и температура в 100 млн. Кельвина запустили процесс термоядерного синтеза водорода.

Термоядерная реакция порождает огромное количество тепловой и световой энергии, которая распространяется от внутренних областей Солнца к его поверхности. Ежесекундно с его поверхности улетучивается в открытый космос более 4 млн. тонн. Учитывая, что наша звезда существует уже не один миллиард лет и продолжает светить без видимых и существенных изменений, можно сделать вывод – запасы водорода у нашего Солнца колоссальны. Когда этот запас исчерпается, остается только догадываться, занимаясь математическими вычислениями. Судя по расчетам ученых, Солнце будет еще так же греть и светить десяток миллиардов лет, пока не закончатся запасы термоядерного топлива.

По мере угасания интенсивности термоядерных процессов начинается заключительная фаза жизни звезды. Плотность звезды уменьшится, а вот ее размеры значительно увеличатся. Вместо желтого карлика Солнце станет Красным гигантом. Достигнув этой стадии, наша звезда покинет главную последовательность и будет спокойно ждать своей смерти. Человечеству не дождаться финала этой драмы, так как гигантское Красное Солнце уничтожит своим огнем практически все живое на нашей планете. Поверхность огромного красного диска раскалиться до температуры 5800 К. Радиус Солнца станет больше в 250 раз по сравнению с нынешними значениями.

Постепенно температура поверхности будет снижаться, а звезда будет увеличиваться в размерах. Заметно вырастет и ее светимость, в 2700 раз по сравнению с нынешней яркостью. Первыми исчезнут Меркурий и Венера. Планета Земля неизбежно через десятки миллиардов лет прекратит свое существование. Атмосфера планеты под влиянием солнечного ветра исчезнет, вода испарится и поверхность планеты превратится в раскаленную каменную глыбу.

В такой фазе наше светило будет пребывать несколько десятков миллионов лет. После того, как температура в центре солнечного ядра достигнет значений 100 миллионов по Кельвину, запустится процесс горения гелия и углерода. Новый виток цепных реакций окончательно истощит Солнце. Сильно уменьшившаяся масса звезды не сможет удерживать внешнюю оболочку, которую пульсирующие термоядерные процессы развеют в пространстве. На месте красного гиганта образуется планетарная туманность, в центре которой останется ядро бывшей звезды – белый карлик. Другими словами, через десятки миллиардов лет наше гостеприимное светило превратится в маленький плотный и горячий объект размерами с нашу планету. В таком состоянии звезда будет пребывать еще довольно длительное время, медленно умирая и тлея.

Строение и структура Солнца

Близость Солнца позволяет получить представление о его строении и структуре, получить данные о том, как работает этот естественный термоядерный реактор и какие в нем происходят процессы. Интересным будет разобрать структуру, которая состоит из следующих компонентов:

Далее начинаются слои солнечной атмосферы:

Звезда не является твердым телом, ввиду того, что мы имеем дело с раскаленным газом, плотно сжатым в сферическую область. При таких температурах существование любого вещества в твердом виде физически невозможно. Яркий свет и тепло, излучаемые Солнцем, являются следствием тех же процессов, с которыми человек столкнулся при создании атомной бомбы. Т.е. материя под действием огромного давления и высоких температур преобразуется в энергию. Основным топливом является водород, который в составе Солнца составляет 73,5-75%, поэтому основным источником тепла является процесс термоядерного синтеза водорода, сосредоточенный главным образом в ядре, центральной части звезды.

Солнечное ядро составляет ориентировочно 0,2 солнечного радиуса. Именно здесь идут главные процессы, за счет которых Солнце живет и снабжает световой и кинетической энергией окружающее космическое пространство. Процесс переноса лучистой энергии от центра звезды к верхним слоям осуществляется в зоне лучистого переноса. Здесь фотоны, стремящиеся от ядра к поверхности, перемешиваются с частицами ионизированного газа (плазмой). За счет этого происходит обмен энергией. В этой части солнечного шара располагается особая зона – тахоклин, которая отвечает за образование магнитного поля нашей звезды.

Далее начинается самая масштабная область Солнца – конвективная зона. Эта область составляет почти 2/3 солнечного диаметра. Один только радиус конвективной зоны практически равен диаметру нашей планеты – 140 тыс. километров. Конвекция представляет собой процесс, при котором плотный и разогретый газ равномерно распределяется по всему внутреннему объему звезды по направлению к поверхности, отдавая тепло следующим слоям. Этот процесс происходит беспрерывно и его можно видеть, наблюдая за поверхностью Солнца в мощный телескоп.

На границе внутренней структуры и атмосферы звезды находится фотосфера – тонкая, всего 400 км глубиной, оболочка. Именно ее мы и видим при своих наблюдениях за Солнцем. Фотосфера состоит из гранул и неоднородна по своей структуре. Темные пятна сменяются яркими участками. Такая неоднородность связана с разным периодом остывания поверхности Солнца. Что касается невидимой части спектра поверхности нашего светила, то в этом случае мы имеем дело с хромосферой. Это плотный слой атмосферы Солнца, и его можно видеть только во время солнечного затмения.

Наиболее интересными солнечными объектами для наблюдения являются протуберанцы, которые по виду напоминают длинные волокна, и солнечная корона. Эти образования являются гигантскими выбросами водорода. Возникают протуберанцы и перемещаются по поверхности Солнца с огромной скоростью – 300 км/с. Температура этих петлей превышает отметку 10 тыс. градусов. Солнечная корона представляет собой внешние слои атмосферы, которые по толщине превышают диаметр самой звезды в несколько раз. Точной границы у солнечной короны нет. Ее видимая граница является только частью этого огромного образования.

Завершающим этапом солнечной активности является солнечный ветер. Этот процесс связан с естественным истечением звездного вещества через внешние слои в окружающее космическое пространство. Солнечный ветер в основном состоит из заряженных элементарных частиц – протонов и электронов. В зависимости от цикла солнечной активности скорость солнечного ветра может быть различной от 300 км в секунду до отметки в 1500 км/с. Эта субстанция распространяется по всей солнечной системе, оказывая влияние на все небесные тела нашего ближнего космоса.

Примерно такую структуру имеют и другие звезды, входящие в главную последовательность. Другие небесные светила, которые мы наблюдаем на ночном небосклоне, могут иметь другую структуру. Различия могут состоять только в массе звезды, которая в данном случае является ключевым фактором для звездной активности.

Особенности нашей звезды

Как и все нормальные звезды, которых во Вселенной большинство, Солнце является основным объектом нашей планетарной системы. Огромная масса звезды и ее размеры обеспечивают баланс гравитационных сил, обеспечивая упорядоченное движение небесных тел вокруг нее. На первый взгляд наше светило ничем особенным не отличается. Однако за последние годы сделан ряд открытий, которые позволяют утверждать об уникальности Солнца. К примеру, Солнце дает на порядок меньше излучения в ультрафиолетовом диапазоне, чем другие однотипные звезды. Другая особенность заключается в состоянии нашей звезды. Солнце относится к переменным звездам, однако в отличие от своих сестер по космосу, которые меняются интенсивность и яркость света, наше светило продолжает светить ровным светом.

Также оно выделяет огромное количество энергии, при этом видимыми являются только 48% этого количества. Невидимое человеческому глазу инфракрасное излучение составляет 45% энергии Солнца. Из всего того огромного количества солнечного излучения наша планета получает совсем крохи, около половины миллиардной доли, однако этого вполне хватает для поддержания баланса, создавшихся на Земле условий.

Заключение

Оценивая полученные на сегодняшний день данные о Солнце, нельзя утверждать, что мы досконально знаем природу нашей звезды. Все представления о строении и структуре Солнца держатся на математических и физических моделях, созданных человеком. Анализ процессов, происходящих внутри нашей звезды и на ее поверхности, позволяет найти объяснение тем процессам и явлениям, которые происходят на нашей планете. Солнце является не только генератором энергии, обогревающим нашу планету, но и самым мощным источником радиоизлучения и электромагнитных волн, которые воздействуют на биосферу Земли. Любое изменение активности Солнца мгновенно отражается на состоянии земного климата и нашем самочувствии.

Источник

Какой звездой является наше Солнце

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Как вы, наверное, знаете, наше Солнце является самой близкой к нам звездой. Но какая по типу она звезда? По существующей системе классификации, класс нашего светила — желтый карлик. Эта группа, содержит относительно небольшие объекты, содержащие от 80% до 100% массы Солнца. Таким образом, оно находится на более высоком конце этой группы.

Класс Солнца как звезды

Официальное обозначение — класс G2V. Звезды желтые карлики имеют температуру поверхности между 5300 и 6000 К. Они обычно живут в течение 10 и более миллиардов лет. Солнце находится в середине своей жизни, его возраст примерно 4,3-4,6 миллиарда лет, и, скорее всего, оно будет светить еще 7 миллиардов лет.

По прошествии этого времени, оно превратится в красного гиганта, и в конце концов, сожмется в белого карлика.

Солнце принадлежит к так называемой I группе звезд, которые содержат относительно большое количество тяжелых элементов. Первые в истории звезды, содержащие чистый водород и гелий относились к III группе. Они взорвались, распространяя в космосе более тяжелые элементы.

Наше светило содержит металл от предыдущих поколений, которые также взорвались как сверхновые.

К желтым карликам также относятся такие знаменитые объекты как Альфа Центавра, Тау Кита и 51 Пегаса.

Источник

Солнце

Солнце выступает центром и источником жизни для нашей Солнечной системы. Звезда относится к классу желтых карликов и занимает 99.86% всей массы нашей системы, а гравитация по силе преобладает над всеми небесными телами. В древности люди сразу поняли, какое значение имеет Солнце для земной жизни, поэтому упоминание о яркой звезде встречается в самых первых текстах и наскальных рисунках. Это было центральное божество, правящее над всеми.

Интересные факты

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Характеристика

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Сравнительные размеры Солнца и планет Солнечной системы. Расстояние между объектами на соблюдено

В небе кажется желтым, но истинный цвет – белый. Видимость создается атмосферой. Температура возрастает с приближенностью к центру. Ядро нагревается до 15.7 млн. К, корона – 5 млн. К, а видимая поверхность – 5778 К.

Физические характеристики Солнца

радиус6,9551·10 8 мДлина окружности экватора4,370·10 9 мПолярное сжатие9·10 −6Площадь поверхности6,078·10 18 м²Объём1,41·10 27 м³Масса1,99·10 30 кгСредняя плотность1409 кг/м³Ускорение свободного

падения на экваторе274,0 м/с²Вторая космическая скорость
(для поверхности)617,7 км/сЭффективная температура

поверхности5778 КТемпература
короны

1 500 000 КТемпература
ядра

13 500 000 КСветимость3,85·10 26 Вт
(

3,75·10 28 Лм)Яркость2,01·10 7 Вт/м²/ср

Солнце выполнено из плазмы, поэтому наделено высоким магнетизмом. Есть северный и южный магнитные полюса, а линии формируют активность, наблюдаемую на поверхностном слое. Темные пятна отмечают прохладные точки и поддаются цикличности.

Выброс корональной массы и вспышки происходят, когда линии магнитного поля перенастраиваются. Цикл занимает 11 лет, во время которого активность возрастает и утихает. Наибольшее количество солнечных пятен возникает в максимуме активности.

Состав и структура

Звезда наполнена водородом (74.9%) и гелием (23.8%). Среди более тяжелых элементов присутствуют кислород (1%), углерод (0.3%), неон (0.2%) и железо (0.2%). Внутренняя часть делится на слои: ядро, радиационная и конвективная зоны, фотосфера и атмосфера. Наибольшей плотностью (150 г/см 3 ) наделено ядро и занимает 20-25% всего объема.

На оборот оси звезда тратит месяц, но это приблизительная оценка, потому что перед нами плазменный шар. Анализ показывает, что ядро вращается быстрее внешних слоев. Пока экваториальная линия тратит 25.4 дней на оборот, то у полюсов уходит 36 дней.

В ядре небесного тела формируется солнечная энергия из-за ядерного синтеза, трансформирующего водород в гелий. В нем создается почти 99% тепловой энергии.

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Внутренняя структура Солнца. Радиационная зона охватывает 0.25-0.7 солнечного радиуса. Температура падает с отдалением от ядра. Здесь она сокращается от 7 млн. К до 2 млн. С плотностью происходит то же самое – от 20 г/см3 до 0.2 г/см3.

Между радиационной и конвективной зонами расположен переходный слой – тахолин. В нем заметно резкая перемена равномерного вращения радиационной зоны и дифференциальное вращение конвекционной, что вызывает серьезный сдвиг. Конвективная зона находится на 200000 км ниже поверхности, где температура и плотность также ниже.

Видимая поверхность именуется фотосферой. Над этим шаром свет может свободно распространяться в пространство, высвобождая солнечную энергию. В толщину охватывает сотни километров.

Атмосфера Солнца представлена тремя слоями: хромосфера, переходная часть и корона. Первая простирается на 2000 км. Переходная занимает 200 км и прогревается до 20000-100000 К. Четких границ у слоя нет, но заметен нимб с постоянным хаотичным движением. Корона прогревается до 8-20 млн. К, на что влияет солнечное магнитное поле.

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Солнечная гелиосфера с кораблями Вояджер-1 и 2

Гелиосфера – магнитная сфера, простирающаяся за черту гелиопаузы (на 50 а.е. от звезды). Ее также называют солнечным ветром.

Эволюция и будущее

Ученые убеждены, что Солнце появилось 4.57 млрд. лет назад из-за крушения части молекулярного облака, представленного водородом и гелием. При этом оно запустило вращение (из-за углового момента) и начало нагреваться с ростом давления.

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Сейчас звезда пребывает в фазе главной последовательности. Внутри ядра трансформируется больше 4 млн. тон вещества в энергию. Температура постоянно растет. Анализ показывает, что за последние 4.5 млрд. лет Солнце стало ярче на 30% с увеличением в 1% на каждые 100 млн. лет.

Полагают, что в итоге оно начнет расширяться и превратится в красного гиганта. Из-за увеличения размера погибнет Меркурий, Венера и, возможно, Земля. В фазе гиганта пробудет примерно 120 млн. лет.

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Потом начнется процесс уменьшения размера и температуры. Оно продолжит сжигать остатки гелия в ядре, пока не закончатся запасы. Через 20 млн. лет оно потеряет стабильность. Земля уничтожится или же раскалится. Через 500000 лет останется лишь половина солнечной массы, а внешняя оболочка создаст туманность. В итоге, мы получим белый карлик, который проживет триллионы лет и лишь потом станет черным.

Расположение в галактике

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Галактическое расположение Солнца

Солнце находится ближе к внутреннему краю рукава Ориона в Млечном Пути. Удаленность от галактического центра составляет 7.5-8.5 тысяч парсеков. Находится внутри локального пузыря – полость в межзвездной среде с раскаленным газом.

Солнечная система проживает в галактической жилой зоне. Эта территория наделена особыми характеристиками, способными поддерживать жизнь. Солнечное движение направлено к Веге на территории Лиры и под углом в 60 градусов от галактического центра. Среди ближайших 50 систем наше Солнце стоит на 40-м месте по массивности.

Полагают, что орбитальный путь эллиптический с присутствием возмущения от галактических спиральных рукавов. Тратит 225-250 млн. лет на один орбитальный пролет. Поэтому на сегодняшний момент выполнило лишь 20-25 орбит. Ниже можно рассмотреть карту поверхности Солнца. При желании воспользуйтесь нашими телескопами онлайн в режиме реального времени, чтобы полюбоваться звездой системы. Не забывайте отслеживать космическую погоду с указанием магнитных бурь и солнечных вспышек.

Карта поверхности

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Нажмите на изображение, чтобы его увеличить

Источник

Солнце

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звездаСолнце – звезда, образующая Солнечную систему. Вокруг нее обращаются восемь планет, в том числе и Земля, а также другие объекты: карликовые планеты, спутники, астероиды, кометы, космическая пыль. По причине близости к Земле ее свойства и строение изучены лучше, чем у других известных нам звезд.

Общая информация

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Луна и Солнце. Вид с Земли.

Земля удалена от Солнца на расстояние 1,5·10 8 км, это и есть примерная величина астрономической единицы. На небе размер диска Солнца почти не отличается от Луны и составляет немногим больше половины градуса.

Солнце, как и любая звезда, представляет собой газовый шар, а значит, не имеет четко определенной границы, которая разделяла бы различные агрегатные состояния вещества. За условную границу поверхности Солнца принимают фотометрический край – точку перегиба в распределении яркости Солнца рядом с лимбом (резко очерченным краем). Расстояние от центра до таким образом определенной границы и есть условный радиус Солнца. Он равен 696 тысячам км. Условная поверхность Солнца близка к ее фотосфере – верхнему слою самой глубокой части атмосферы. Температура фотосферы минимальна, а газы наиболее непрозрачны. Благодаря этому видимый край Солнца резок и хорошо заметен.

Одна из главных характеристик любой звезды – масса – у Солнца равняется 2·10 30 кг. Эта величина настолько огромна, что составляет массу практически всей Солнечной системы. Вклад всех остальных объектов – всего лишь около 1%. Средняя плотность вещества Солнца – 1,41 г/см³.

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Солнце излучает колоссальное количество энергии во всех диапазонах. Еще одна важнейшая звездная характеристика – светимость – для нашей звезды составляет 3,828·1026 Вт. Солнце синтезирует свою энергию в недрах, где происходят термоядерные реакции. Однако при прохождении сквозь космическое пространство, особенно через атмосферы планет, большая часть энергии теряется. Мощность энергии, достигающей нашей планеты, – всего 1000 Вт/м². Но и эта часть энергии – колоссальный ресурс, необходимый для существования жизни, поддержания благоприятного климата, фотосинтеза растений и выработки кислорода, а также альтернативный источник электроэнергии для человека.

Средняя температура на поверхности Солнца составляет около 6 тысяч кельвинов. Она увеличивается с глубиной, и в недрах достигает 10 миллионов кельвинов.

Основные элементы, из которых состоит Солнце – это водород (70%) и гелий (28%). Остальные элементы составляют всего 2%, и в эту часть входят кислород, углерод, азот, сера и множество металлов. Спектральный состав Солнца говорит нам о том, что оно является типичной звездой главной последовательности, а также относится к желтым карликам (спектральный класс G). Видимое солнечное излучение имеет непрерывный спектр с десятками тысяч линий поглощения.

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звездаНаша звезда расположена на периферии Млечного Пути, в рукаве Ориона (Местном рукаве). Солнечная система находится около его внутреннего края, в Местном межзвездном облаке, имеющем высокую плотность, находящемся в более разреженном Местном пузыре – области горячего межзвездного газа. Расстояние от Солнца до центра Галактики – 26 тысяч световых лет. Солнце вместе со своей системой движется вокруг центра Млечного Пути со скоростью 217 км/с и обращается полностью примерно за 250 млн. лет.

Солнце обладает очень мощным магнитным полем, напряженность которого подвержена временным изменениям. Направление поля тоже меняется с периодом в 11 лет. Изменения магнитного поля порождают различные эффекты, такие как солнечные вспышки, пятна, магнитные бури, полярные сияния и геомагнитные бури на Земле и другие. Совокупность всех этих явлений называется солнечной активностью.

Внутреннее строение

Из-за неравномерного распределения вещества в подфотосферной области невозможно узнать точную картину строения Солнца. Поэтому для того, чтобы иметь представление об условиях в его недрах, предполагают, что вещество в нем распределено равномерно. Наиболее близкие к реальному Солнцу условия такая модель дает в средней точке, на глубине, равной половине радиуса. Именно для этой точки определены средние значения плотности (1,41 г/см³), давления (6,6·10 13 ) и ускорения свободного падения (1,37·10 2 ). Температура в средней точке достигает 2,8 млн. кельвинов.к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

В недрах Солнца идут термоядерные реакции нескольких типов. Основные цепочки реакций – водородный и углеродный циклы. Первый вид называют также протон-протонной цепочкой, поскольку суть этого процесса состоит в столкновении протонов. Такая цепочка реакций приводит к превращению атомов водорода в атомы гелия. Наибольшая часть солнечной энергии синтезируется именно в ходе водородного цикла, поэтому он является важнейшим типом реакций в ядре Солнца. Второй тип – углеродный цикл – также приводит к превращению протонов в гелий (альфа-частицу). Но эти реакции происходят, только если в окружающей среде находится углерод. Этот цикл – важнейший источник энергии для звезд, масса которых чуть больше солнечной, однако у самого Солнца он обеспечивает лишь 1-2% синтеза.

Во время термоядерных реакций в ядре Солнца кроме непосредственно энергии образуются нейтрино – частицы, практические не взаимодействующие с веществом. Они проходят через звезду с околосветовой скоростью и практически не поглощаются веществом, распространяясь в космосе. Именно поэтому с помощью регистрации их потоков можно получить непосредственные данные об условиях в солнечных недрах.

Таким образом, тепловая энергия Солнца синтезируется только в ее ядре, а остальная ее часть нагревается посредством этом энергии, проходя постепенно сквозь все слои до фотосферы, где она выделяется в виде солнечного света.

С увеличением расстояния от ядра уменьшаются плотность и температура, а также прекращается углеродный цикл. На уровне 0,3 радиуса Солнца перестает идти и водородный цикл, поскольку здесь происходит резкое падение температуры и плотности. Выше этого уровня энергия передается только за счет теплопроводности между слоями. Эта область звезды простирается до 0,7 солнечного радиуса и называется зоной лучистого переноса.

Выше уровня в 0,7 радиуса энергия переносится за счет движения вещества. Верхние слои сильно охлаждаются из-за постоянного оттока излучения во внешнюю среду. Следовательно, газ становится менее ионизированным, а из-за этого уменьшается его непрозрачность. Возникают условия для конвекции – перемешивание холодных слоев с более горячими и их нагревание. Эта конвективная зона располагается до начального уровня атмосферы Солнца.

Атмосфера

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Фотосфера

Хромосфера

За фотосферой следует хромосфера – одна из внешних оболочек Солнца. Ее яркость в сотни раз ниже яркости предыдущего слоя, из-за чего ее невозможно наблюдать без специальных фильтров. Толщина этой оболочки примерно 2000 км. Спектр хромосферы имеет очень много линий гелия – именно по ним был открыт этот элемент в составе Солнца. В видимой части спектра наиболее мощное излучение исходит от красной Hα линии водорода, благодаря чему хромосфера имеет красноватый цвет при наблюдении. Структура хромосферы очень неоднородна. Из верхней границы слоя происходят выбросы горячего вещества – спикулы. Они имеют продолговатую форму, длина их может быть около нескольких тысяч километров, а толщина – около тысячи. Спикулы со скоростью в несколько десятков км/с вырываются из хромосферы в следующий слой – корону – и растворяются. Вещество короны также может попадать в нижележащий слой. Совокупность спикул на поверхности хромосферы называют хромосферной сеткой. Другие образования в этом слое находятся в областях с сильными магнитными полями. Это флоккулы – светлые «облака», окружающие солнечные пятна, – и фибриллы – темные полосы разных размеров.

Корона

Внешняя часть атмосферы – корона – самая разреженная. Она в миллион раз тусклее фотосферы и посему доступна для наблюдения невооруженным глазом лишь во время полных солнечных затмений. По величине яркости этот слой атмосферы разделяется на две части: яркую и тонкую нижнюю (0,2 – 0,3 радиуса Солнца) и внешнюю менее яркую протяженную область. Форма короны неправильная, состоящая из лучей, длина которых может превышать 10 солнечных радиусов, и активно меняющаяся со временем.

Температура короны невероятно высокая – несколько миллионов кельвинов, а максимальная достигает 20 миллионов. Однако в некоторых местах на ее поверхности температура может быть существенно ниже – около 600 тыс. К. Эти области называют корональными дырами. Они также гораздо более темные, чем соседние участки. Из них выходят магнитные силовые линии Солнца, а также более интенсивно истекает вещество. Неравномерность поверхности короны обусловлена постоянными извержениями энергии, происходящих в ней и выходящих в пространство на миллионы километров.

Солнечный ветер

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звездаКорона продолжается за пределы Солнца на огромные расстояния. Она достигает Земли и простирается за ее орбиту на расстояние порядка 100 а.е. Из нее постоянно истекает плазма, скорость которой увеличивается с удалением от звезды, – солнечный ветер. Он исходит в основном из корональных дыр. Около планет он достигает сверхзвуковой скорости (на расстоянии Земли примерно 300-400 км/с), потому при взаимодействии с их магнитными полями образуются ударные волны.

Магнитное поле

Солнце, как и все звезды, обладает очень мощным магнитным полем, наличие которого обусловлено электрическими токами, возникающими в плазме. Оно играет важную роль во всех идущих в звезде процессах. Генерация поля происходит в конвективной зоне и, подпитываясь конвективным и турбулентным движением плазмы, оно всплывает в фотосферу.

Структура магнитного поля Солнца сложная. От размера рассматриваемой области зависит величина поля и упорядоченность его силовых линий. Чем больше площадь поверхности, тем величина поля меньше, а силовые линии более упорядочены. В соответствии с этой особенностью солнечное магнитное поле разделяют на два типа – глобальное и локальное.

Масштаб глобального поля сравним с площадью поверхности Солнца. С глобальным полем связана средняя величина магнитного поля Солнца, которая равняется примерно нескольким Гс (гаусс – единица измерения магнитной индукции). В глобальном масштабе Солнце можно приблизительно считать диполем. Структура поля и его полярность зависят от цикличности солнечной активности. Преобладание той или иной полярности в северном и южном полушарии меняется с каждым последующим циклом. Во время минимума 11-летнего цикла напряженности на полюсах максимальны, а с приближением к максимуму их величины постепенно уменьшаются до нуля. После чего полярность диполя изменяется, и с началом нового цикла напряженности на полюсах вновь начинают расти. Из этого следует закон Хейла – полный цикл изменения глобального магнитного поля на Солнце длится 22 года.

Локальные солнечные поля намного менее упорядочены и характеризуются гораздо большими величинами, порядка 1 кГс (до нескольких килогаусс в солнечных пятнах в период максимума активности). Локальное поле уже не может рассматриваться как диполь, поскольку на разных частях выбранного участка поверхности оно часто имеет разные полярности.

Солнечные циклы и активность

Конфигурация магнитного поля в атмосфере Солнца непрерывно меняется. Причины этих изменений пока что не вполне ясны. Они могут возникать в силу сконцентрированности магнитных полей в каком-либо из слоев звезды, а их периодическое усиление может вызываться процессом, напоминающим возбуждение магнитного поля в динамо-машине (так называемое магнитное динамо).

Вследствие магнитной индукции солнечная плазма не может двигаться перпендикулярно линиям магнитного поля, но вдоль них она перемещается свободно. Из-за этого чаще всего плазма либо передвигается вдоль силовых линий, либо увлекает за собой силовые линии слабого поля («вмороженность» поля в плазму).

Солнечная активность – это явления, возникшие в результате изменения структуры магнитного поля, резко отличающиеся от окружающих невозмущенных областей и очень быстро меняющиеся. В каждом слое атмосферы они будут различны. В тех областях фотосферы, где силовые линии магнитного поля выходят на поверхность, образуются солнечные пятна – темные и более холодные, чем окружающее вещество, области. Увеличение числа пятен и появление их групп говорит об образовании активной области, которая может положить начало различным проявлениям солнечной активности – факелам, вспышкам, протуберанцам, потокам солнечных космических лучей, корональным выбросам.

Пятно рождается в фотосфере в виде небольшой поры, которая спустя сутки развивается в темную область с резкой границей и диаметром в несколько десятков тысяч километров. В конвективной зоне под пятном замедляется движение газов, а ведь именно благодаря им основная часть энергии переносится в верхние слои. Из-за этого «недостатка» энергии температура в пятне оказывается на несколько тысяч кельвинов меньше, чем в окружающих невозмущенных областях. В развивающейся группе пятен отчетливо видны два самых крупных пятна противоположной полярности: одно в западной части, другое – в восточной. Со временем площадь группы растет и примерно на десятые сутки достигает своего максимума. Далее пятна начинают уменьшаться и исчезают, сперва самые мелкие, а затем два крупнейших, сначала распадаясь на несколько более мелких фрагментов. Такой процесс занимает около двух месяцев.

При небольших усилениях магнитных полей вокруг пятен могут появляться яркие образования – атмосферные факелы. Их структура напоминает ячейки, а группы факелов образуют сетки, которые могут занимать значительную часть площади фотосферы. Факелы могут существовать и без пятен, часто являясь предвестниками их появления или же, наоборот, остатками активной области. Их температура выше окружающей невозмущенной области на 200-300 К. Время их жизни составляет обычно несколько недель или месяцев.

В хромосфере и нижних слоях короны петли силовых линий магнитного поля выходят на поверхность, вызывая солнечные вспышки – самые мощные проявления солнечной активности. Это своего рода сильный разряд, при котором за короткое время конфигурация и напряженность магнитного поля сильно меняется. За считанные секунды либо образуется длинный «жгут», либо заливается область длиной в десятки тысяч километров. Вспышка порождает резкое возрастание интенсивности излучения практически во всех областях спектра, даже вплоть до гамма-излучения. Всплески интенсивности происходят за несколько минут и по достижении максимума ослабевают почти так же быстро. Кроме увеличения яркости свечения, во время вспышек также происходят выбросы газов и плазмы, и поскольку плазма тесно взаимодействует с магнитным полем, то значительная часть его энергии переходит в тепло и нагревает газ до десятков миллионов кельвинов, а также ускоряет облака плазмы. Вместе с ускорением облаков ускоряются и отдельные частицы – протоны и электроны – порождая потоки солнечных космических лучей и солнечного ветра. Хоть энергия этих лучей существенно меньше, чем у галактических, они оказывают более существенное влияние на магнитосферу Земли и верхние слои ее атмосферы. Вблизи Меркурия и Венеры эти потоки не встречают препятствий, поскольку эти планеты не имеют собственного поля. А вот в окрестностях Земли, Юпитера и Сатурна на корональные выбросы влияет собственное магнитное поле этих планет, из-за чего происходит возмущение магнитосферы. В целом корональное вещество и солнечный ветер как бы обтекают магнитное поле планеты, деформируя его. Плазма может проникать сквозь магнитосферу в промежутки между замкнутыми силовыми линиями на полюсах, из-за чего возникают полярные сияния.

Кроме того, в хромосфере и короне наблюдаются протуберанцы – активные и крупномасштабные уплотнения плазмы. Они могут быть различных размеров и форм, однако чаще всего бывают в форме дуг, расположенных перпендикулярно к поверхности Солнца. Их температура ниже окружающей плазмы, порядка 10 000 К. Это самые крупные и устойчивые образования в атмосфере Солнца. Длина протуберанцев может достигать сотен тысяч километров, а ширина до десяти тысяч. Их долгоживучесть обусловлена вмороженностью магнитного поля в плазму. Так как нижние части протуберанцев находятся в верхних слоях хромосферы, а верхние простираются в корону, они являются связующим звеном между этими слоями атмосферы и способствуют обмену веществом между ними. Протуберанцы рождаются в группах солнечных пятен во время стадии их развития, после чего могут внезапно активизироваться, что сопровождается взрывами и выбросами вещества в корону.

Уровень активности в атмосфере Солнца не всегда одинаков. Смена полюсов магнитного поля приводит к изменению числа пятен и их групп, что в свою очередь влияет на количество других проявлений активности. Уровень активности в данный момент времени характеризует число Вольфа. Оно учитывает количество пятен и групп пятен на диске Солнца. Наибольшее число Вольфа говорит о максимуме солнечной активности, а малое (когда пятен практически совсем нет) – о минимуме. Чередование максимумов и минимумов происходит в среднем каждые 11 лет, однако этот период может и меньше, и больше. Полный цикл изменения активности длится в среднем 22 года. Так, последний минимум наблюдался в 2008 году, а максимум – в 2000. Кроме того, существуют и циклы гораздо большей длительности. Об этом говорит тот факт, что в определенные эпохи солнечные максимумы заметно ослаблены, а в минимумах практически не наблюдается пятен. Эти большие циклы длятся около 2300 лет.

Изучение

к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звездаЕще с древнейших времен Солнце представляло интерес для человека и активно изучалось им. От простых наблюдений люди постепенно перешли к измерениям времени с помощью солнечных часов, отмечавших положение светила на небе в течение суток. Древние памятники и мегалиты служили для измерения длительности светового дня, определения дня летнего солнцестояния и дней равноденствия. Древние греки, наблюдая за годовым движением Солнца по небесной сфере, считали его одной из планет. Однако в самой же Древней Греции появились первые догадки о том, что Солнце все же не планета, а гигантский раскаленный шар. Так считал древнегреческий философ Анаксагор, за что был осужден и отправлен в тюрьму.

В Греции же родилась и гелиоцентрическая система мира, говорящая о том, что Солнце – это центр, вокруг которого обращается Земля наравне с остальными планетами. Эта идея была революционной и еще многие века подвергалась осуждению и нападкам, вплоть до XVI века, когда она была вновь высказана Коперником.

По другую сторону континента китайские астрономы первыми пронаблюдали пятна на Солнце еще за два века до нашей эры. В XII веке они были впервые зарисованы средневековым английским историком.

Инструментальное исследование Солнца начинается с 1610 года, когда Галилеем был изобретен первый телескоп. Галилей же первым определил, что пятна являются частью поверхности Солнца, а не силуэтами планет, проходящих по его диску. По наблюдению за их движением он также смог высчитать период его вращения.

В XIX веке началась эра спектроскопии. Первым разложить солнечный свет на отдельные цвета смог астроном Петро Анджело Секки. Его дело продолжил Фраунгофер, начавший изучение состава звезды по ее спектру и обнаружив линии поглощения. В 1868 году французский ученый Пьер Жансен открыл гелий, изучая спектры солнечной хромосферы и протуберанцев.

В том же веке шли споры об источниках энергии в недрах Солнца. В 1848 году была выдвинута гипотеза о том, что звезда нагревается благодаря постоянным метеоритным ударам. Однако в таком случае получалось, что наряду с Солнцем этот же механизм обеспечивает сильное нагревание и любой планеты, в том числе и Земли. Другая, более правдоподобная гипотеза, высказанная Кельвином и Гельмгольцем, подразумевала образование тепловой энергии Солнца за счет ее гравитационного сжатия. На основании этой идеи был оценен возраст Солнца в 20 млн лет, что противоречило геологическим данным, но тем не менее этот механизм считался верным еще долгое время. И уже в XX веке Резерфорд предложил гипотезу о термоядерном синтезе в ядре Солнца благодаря высокой температуре и давлении. Эта теория была подтверждена и развита в 30-х годах, тогда же были определены две основные ядерные реакции, ответственные за выделение энергии в Солнце.

В 1957 году были запущены первые искусственные спутники, и тогда же начались первые космические исследования Солнца. Уже в 1959 году был проведен опыт по обнаружению солнечного ветра с помощью аппаратов «Луна-1» и «Луна-2». Кроме того, солнечный ветер исследовался спутниками NASA «Пионер» в 1960-68 годах. В 1973 была выведена на орбиту первая солнечная космическая обсерватория. С ее помощью проведены наблюдения короны и открыты корональные выбросы массы. В 80-х и 90-х годах также было запущено множество спутников и зондов, наблюдавших Солнце во всех спектральных диапазонах. Для изучения полярных областей Солнца, недоступных для аппаратов, находящихся в плоскости эклиптики, в 1990 году был запущен зонд «Улисс», изучивший потоки солнечного ветра и магнитного поле на высоких широтах. В наши дни с помощью новых спутников и обсерваторий продолжает проводиться спектральное изучение Солнца по всем слоям его атмосферы, динамики магнитного поля и ее связи с солнечной активностью.

Солнце и человек

Испокон веков Солнце – основной источник жизни на Земле – играет важнейшую роль в жизни человека. Людям, как и всем живым существам, необходимы свет и тепло Солнца для поддержания своего существования. Благодаря фотосинтезу, происходящему в растениях только на свету, в атмосферу Земли выделяется кислород, необходимый для дыхания большинству организмов, повлиявший на состав минералов и образовавший биосферу нашей планеты. Энергия, приходящая от Солнца, нагревает нижние слои атмосферы, влияя на климат, погодные явления, океанские течения в разных уголках планеты, а также запускает механизмы выветривания и эрозии горных пород. Все это делает Землю разнообразной и оптимально подходящей для жизни людей.к какому классу относится солнце как звезда. Смотреть фото к какому классу относится солнце как звезда. Смотреть картинку к какому классу относится солнце как звезда. Картинка про к какому классу относится солнце как звезда. Фото к какому классу относится солнце как звезда

Изменение длины светового дня также влияет на человеческий организм. В зависимости от времени суток меняются интенсивности многих биологических процессов. Эти периодические колебания называют циркадными ритмами, и их период у человека и других живых существ составляет около 24 часов. Так, из-за периодичности смены дня и ночи у человека сменяются фазы сна и бодрствования, поскольку в темное время суток в организме увеличивается количество «гормона сна» – мелатонина.

Не все излучение, приходящее от Солнца, достигает поверхности Земли. В основном до поверхности доходят видимое и инфракрасное. Большая часть ультрафиолетового излучения поглощается в нижних слоях атмосферы, разрушая молекулы кислорода и тем самым создавая озоновый слой, защищающий биосферу Земли от губительного воздействия УФ. Однако небольшое количество ультрафиолета полезно для человека, так как именно под его воздействием образуется необходимый для организма витамин D.

Кроме излучений, земной атмосферы достигает и солнечный ветер, истекающий из солнечной короны. Возмущая магнитосферу Земли, потоки ионизированных частиц вызывают магнитные бури, также влияющие на организм человека.

Несомненно, люди всегда осознавали влияние, которое оказывает на них и на природу дневное светило. В древние времена у многих народов Солнце было объектом поклонения. Культы Солнца и божества, олицетворяющие его, были по всему свету. Отражение солнечного культа нашлось в общности корня sol, означающего Солнце в большинстве индоевропейских языков.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *