изучение математики в школе начинается с какого этапа

Особенности изучения предмета «Математика» в начальной школе

Особенности изучения предмета «Математика» в начальной школе

Образование, полученное в начальной школе, служит базой, фундаментом для последующего обучения. Определить современные требования к начальной школе, обеспечить качество начального образования- основные задачи государственных образовательных стандартов нового поколения.

В начальной школе математика служит опорным предметом для изучения смежных дисциплин, а в дальнейшем знания и умения, приобретенные при ее изучении, и первоначальное овладение математическим языком станут необходимыми для применения в жизни и фундаментом обучения в старших классах школы.

Весь программный материал представляется концентрически, что позволяет постепенно углублять умения и навыки, формировать осознанные способы математической деятельности. Характерными особенностями содержания математики являются: наличие содержания, обеспечивающего формирование общих учебных умений, навыков и способов деятельности; возможность осуществлять межпредметные связи с другими учебными предметами начальной школы. Примерная программа определяет также необходимый минимум практических работ.

Изучение математики в начальной школе направлено на достижение следующих целей:

– математическое развитие младшего школьника: использование математических представлений для описания окружающих предметов, процессов, явлений в количественном и пространственном отношении; формирование способности к продолжительной умственной деятельности, основ логического мышления, пространственного воображения, математической речи и аргументации, способности различать обоснованные и необоснованные суждения.

– Освоение начальных математических знаний. Формирование умения решать учебные и практические задачи средствами математики:

-вести поиск информации (фактов, сходства, различий, закономерностей, оснований для упорядочивания, вариантов);

-понимать значение величин и способов их измерения;

-использовать арифметические способы для разрешения сюжетных ситуаций;

-работать с алгоритмами выполнения арифметический действий, решения задач, проведения простейших построений;

-проявлять математическую готовность к продолжению образования.

– Воспитание критичности мышления, интереса к умственному труду, стремления использовать математические знания в повседневной жизни.

Если изучение предмета «Математика» выдвигает цели, то должны быть и результаты. В федеральном государственном стандарте прописано, что по предмету «Математика» на пороге выпуска из начальной школы, ученик должен уметь:

1) использовать начальные математические знания для описания и объяснения окружающих предметов, процессов, явлений, а также оценки их количественных и пространственных отношений;

2) владеть основами логического и алгоритмического мышления, пространственного воображения и математической речи, измерения, пересчета, прикидки и оценки, наглядного представления данных и процессов, записи и выполнения алгоритмов;

3) использовать начальный опыт применения математических знаний для решения учебно-познавательных и учебно-практических задач;

4) выполнять устно и письменно арифметические действия с числами и числовыми выражениями, решать текстовые задачи, умение действовать в соответствии с алгоритмом и строить простейшие алгоритмы, исследовать, распознавать и изображать геометрические фигуры, работать с таблицами, схемами, графиками и диаграммами, цепочками, совокупностями, представлять, анализировать и интерпретировать данные.

Говоря об особенностях изучения предмета «Математика» в начальной школе нельзя не коснуться учебного плана. В федеральном базисном учебном плане на изучение математики в каждом классе начальной школы отводится 4 часа в неделю, всего – 540 часов. Основное содержание обучения в примерной программе представлено крупными блоками. Такое построение программы позволяет создавать различные модели курса математики, по-разному структурировать содержание учебников, распределять разными способами учебный материал и время для его изучения.

В его содержании принято выделять следующие блоки:

1) «Числа и вычисления»;

2) «Арифметические действия»;

3) «Работа с текстовыми задачами»;

4) «Пространственные отношения. Геометрические фигуры»;

5) «Геометрические величины»;

6) «Работа с информацией».

Предусмотрен резерв свободного учебного времени – 10% от общего объема учебных часов, то есть 54 учебных часа на 4 учебных года. Этот резерв может быть использован по своему усмотрению разработчиками программ для авторского наполнения указанных содержательных линий.

Нельзя не сказать и о принципах преподавания предмета «Математика», их выделяют 9:

1)По возможности, значение (определение) каждого математического термина, употребляющегося на уроке, должно быть пояснено и повторено учениками. Как правило, в пределах одного урока упоминается не так много терминов (5-10 штук), и вряд ли придется потратить больше 2-3 минут на пояснение их значений. Так, например, при изучении темы «Нахождение дроби от числа» следует пояснить, что такое числитель, что такое знаменатель, что такое обыкновенная дробь и каков смысл обыкновенных дробей. По усмотрению учителя, это повторение может осуществляться: в ходе устного опроса класса, в качестве дополнительных вопросов при решении задач у доски, учителем при объяснении материала и т.д.

2) Следует при любой возможности проговаривать алгоритмы решения задач со ссылками на аксиомы, определения, теоремы – например, при выполнении заданий у доски ученик ни в коем случае не должен молчать. Так, при нахождение дроби от числа нужно, чтобы ученик не только сформулировал правило «исходное число разделить на знаменатель дроби и умножить на числитель», но и обратить внимание ученика, что результат дробления будет меньше исходного числа, т.к. часть не превосходит целого (это здравый смысл и аксиома математики).

3) Известно, что ребенок усваивает некий факт или алгоритм вычислений в среднем после 7 повторений. Значит, на один определенный навык необходимо решить минимум 7 задач; причем, как можно более простых, чтобы на момент закрепления навыка никакие второстепенные трудности (типа сложности арифметических вычислений) не отвлекали от главного навыка.

4) Навык усваивается при решении множества простых однотипных задач. К сожалению, в современных учебниках математики для 4 класса наблюдается дефицит простых однотипных задач, акцентировано направленных на отработку одного навыка. Как правило, учебники содержит совсем мало простых однотипных задач на определенный навык (по 2-3 задачи на урок, чего явно недостаточно), но при этом содержит огромное количество комплексных задач (объединяющих несколько навыков), задач повышенной трудности и олимпиадных задач – невозможно обучить определенному навыку на задачах такого типа. Ввиду этого, учителю необходимо либо пользоваться дополнительными задачниками, либо придумывать задачи самостоятельно. Это не означает, что не нужно решать комплексные задачи или задачи повышенной трудности – нужно, но не на момент усвоения и закрепления навыка, а после его усвоения!

5) Простые однотипные задачи должны решаться в различных режимах: устно, письменно, при помощи учителя или одноклассников, самостоятельно в тетрадях, у доски, в домашних работах и т.д. – для разных детей могут подходить разные режимы усвоения материала.

6) Принцип раздельного усвоения навыков, предполагающий, что единовременно следует концентрироваться на одном навыке как можно большее время. Например, при изучении сравнения дробей один час нужно потратить на сравнение дробей с одинаковыми знаменателями; второй час – на сравнение дробей с одинаковыми числителями; и только при условии твердого усвоения третий час можно посвятить задачам, в которых используются оба этих типа сравнения.

8) Необходимо обучать детей выполнению самостоятельных и контрольных работ. Для формального получения оценок важно не столько то, что ученик знает и умеет, сколько то, что он может показать при выполнении работ на оценку. Умение решать контрольные работы – навык, который требует, чтобы ему обучали: нужно, чтобы ученик умел справиться с волнением, умел следить за временем, рационально распределять усилия, выделать наиболее легкие и наиболее трудоемкие задачи и т.д. Основная проблема – ученикам не хватает времени. Для тренировки навыка рационального использования времени, как представляется, лучше всего подходят домашние работы: 1-2 раза в неделю можно так компоновать домашние задания, чтобы они по количеству и типу задач были сходны с ближайшей проверочной работой; при этом просить учеников засечь время выполнения домашнего задания.

9) Единственно приемлемая оценка за домашнее задание – 5 баллов. Как представляется, при качественной организации учебного процесса у учеников нет причин получать другую оценку за домашние задания – в отличие от контрольных работ, дома нет волнения, практически нет ограничений по времени и т.д.

Таким образом, нужно отметить, что предмет «Математика» в начальной школе предъявляет, как к учителю, так и к ученику много требований. Математика базируется на 6 блоках, которые пересекаются во всех классах.

Источник

Методика обучения математике в современной школе

изучение математики в школе начинается с какого этапа. Смотреть фото изучение математики в школе начинается с какого этапа. Смотреть картинку изучение математики в школе начинается с какого этапа. Картинка про изучение математики в школе начинается с какого этапа. Фото изучение математики в школе начинается с какого этапа Юлия Васильевна
Методика обучения математике в современной школе

Пономарева Юлия Васильевна

Учитель математики

МБОУ Каменно-Балковская СОШ

Методика обучения математике в современной школе

Существуют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений.

Методика обучения математике – это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.

Методика преподавания математики занимается, прежде всего, изучением, разработкой, усовершенствованием различных методов и форм преподавания математики в школах, а также многообразными организационными вопросами, возникающими при применении этих методов и форм на практике. Эта дисциплина выясняет, как обеспечить прочные систематизированные знания и навыки в объеме, установленном программой, тратя на это минимум времени и сил, и как обеспечить достижение тех воспитательных целей, какие ставит себе изучение математики. Методика преподавания математики изучает и систематизирует опыт лучших учителей и даёт возможность начинающему учителю избежать многих ошибок, легко допускаемых на первых порах и приводящих к большим потерям для учащихся. Исходя из конкретных задач, стоящих перед учителем математики, имеющим класс с определенным составом учащихся, определенную программу, определенные учебники, твердое расписание, методика устанавливает способы наилучшего использования всех этих конкретных условий для достижения поставленной цели. Кроме того, она накопляет также опыт учителей, говорящий о желательности тех или иных изменений в учебных планах, программах, учебниках.

Методика математики – наука, выводы которой немедленно и самым широким образом применяются на практике и являются базой искусства преподавания.

Методика преподавания математики прежде всего должна ответить на несколько основных, тесно связанных между собой вопросов.

Первый из них – зачем обучать математике? Очевидно, ответ на этот вопрос можно получить, исходя из общих задач воспитания, которые, в свою очередь, определяются задачами, стоящими перед обществом на соответствующем этапе его развития.

Второй вопрос – кого обучать математике? С одной стороны,это вопрос о возрасте: когда целесообразно приступать к обучению детей математике и когда следует заканчивать изучение обязательной для всех программы? С другой стороны это приобретающий все большую актуальность вопрос о «послешкольном» продолжении математического образования.

Третий вопрос – каково содержание изучаемого курса математики? Ответ на этот вопрос теснейшим образом связан с ответом на вопрос о целях обучения математике. Следует подчеркнуть, что, пожалуй, именно в математике вопрос о том, что именно и в каком объеме следует отобрать из сегодняшней науки для школьной программы, является наиболее сложным, важным и спорным.

Наконец, четвертый вопрос – как обучать математике? Очевидно, что ответ на этот вопрос и составляет важнейшую часть курса методики преподавания математики, причем материал этот является наиболее подвижным, наиболее конкретным, наиболее близким учителю-практику, требует к себе поистине творческого отношения.

Дидактика математики относится к группе педагогических наук и находится в тесной связи с педагогикой. Влияние на нее оказывают и математические науки. Также методика математики основывается на понятиях и законах психологии. Физиология высшей нервной деятельности, в частности учение И. П. Павлова об условных рефлексах, находит применение в обучении математике. Плодотворное влияние на дидактику математики оказывает связь логикой, историей математики, с ее историей.

Методика преподавания математики рассматривает такие вопросы, как цели обучения, математические понятия и предложения, теоремы и их доказательство, задачи и их решение, методы и формы обучения, урок по математике и др.

Методика преподавания математики в школе возникла с целью поиска педагогически целесообразных путей и способов изложения учебного материала. Методика преподавания математики начала разрабатываться чешским учёным Я. А. Коменским. Методика обучения математике впервые выделилась как самостоятельная дисциплина в книге швейцарского учёного И. Г. Песталоцци «Наглядное учение о числе» (1803, русский перевод 1806). Первым пособием по методике математики в России стала книга Ф. И. Буссе «Руководство к преподаванию арифметики для учителей» (1831). Создателем русской методики арифметики для народной школы считается П. С. Гурьев, который критерием правильности решения методических проблем признавал опыт и практику.

Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними.Под основными компонентами понимаются: цели, содержание, методы, формы и средства обучения математике.

Предмет методики обучения математике отличается исключительной сложностью. Предметом методики обучения математике является обучение математике, состоящее из целей и содержания математического образования, методов, средств, форм обучения математике. На функционирование системы обучения математикеоказывает влияние ряд факторов: общие цели образования, гуманизация и гуманитаризация образования, развитие математики как науки, прикладная и практическая направленность математики, новые образовательные идеи и технологии, результаты исследований в психологии, дидактике, логике и т. д. Совокупность этих факторов образует внешнюю среду, которая оказывает непосредственное влияние на систему обучения математике. Многие компоненты внешней среды воздействуют на нее через цели обучения математике.

Методика преподавания математики претерпевает в своем развитии большие трудности, прежде всего, из-за сложностей преодоления разрыва между школьной математикой и математической наукой, а также из-за того, что она является пограничным разделом педагогики на стыке философии, математики, логики, психологии, биологии, кибернетики и, кроме того, искусства

Долгое время история математического образования не являлась специальным объектом научных исследований, и ее отдельные грани освещались либо в рамках истории развития различных учебных заведений, либо в контексте истории математики, либо на фоне материалов, посвященных персоналиям. Поэтому отрадно отметить, что на рубеже XX-XXI веков выходят фундаментальные работы по истории обучения математике в России Ю. М. Колягина и Т. С. Поляковой[3].

Несмотря на уникальность этих сочинений, все же следует отметить, что, вследствие поставленных авторами задач, они описывают историю отечественного математического образования в целом.Между тем не в меньшей степени представляется интересной история преподавания конкретных дисциплин: арифметики, алгебры, геометрии и т. д. Тем более важно исследовать эволюцию обучения высшей математике в школе, поскольку наличие этого раздела в школьном курсе на протяжении столетий вызывает у педагогов наибольшее количество споров.Даже сегодня представляется весьма затруднительным получить однозначные и исчерпывающие ответы на традиционные вопросы: «Нужна ли высшая математика в школе, «Какие вопросы высшей математики должны найти отражение в школьной программе?», «Каким образом осуществить введение элементов высшей математики в школу?» и, наконец, «Как при этом эффективно организовать процесс обучения?». Но, несмотря на различие мнений, элементы высшей математики уже стали неотъемлемой частью школьного курса математики.

Детальный анализ историко-педагогической и методико-математической литературы позволяет утверждать, что приводимые в ней сведения не дают даже общей картины постановки преподавания элементов высшей математики в XVIII-XX вв. как в высшей, так и в средней школе; все эти сведения весьма разрозненны, не систематизированы, имеют расхождения в датах, описании фактов, оценке событий. Требуют уточнения, к примеру, многочисленные факты о жизни и научной деятельности таких педагогов-математиков, как, Семен Кирилович Котельников Михаил Георгиевич. Г. Попруженко и многих др. ; имеют место разночтения в сроках и причинах проникновения элементов высшей математики в школьный курс; встречается переоценка роли педагогов «в борьбе» за внедрение идей высшей математики в среднюю школу и т. п.

Сказанное во многом можно отнести и к другим разделам школьного курса математики. Таким образом, есть все основания констатировать,что в настоящее время обострились противоречия между:

— сохранением традиций отечественной системы математического образования и необходимостью ее обновления, вызванного требованиями времени (в т. ч. в контексте модернизации средней школы);

— фактическим проникновением элементов высшей математики в школьный курс и отсутствием единой теории, обосновывающей необходимость изучения высшей математики в средней школе;

— историко-культурной и педагогической потребностью в осмыслении исторического опыта обучения высшей математике в средней школе и недостатком знаний об этом важном разделе истории математического образования (в т. ч. недостаточной его освещенностью в научных исследованиях).

История развития математики – это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох.

Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями. Например, один, два, много… Эти нечисловые понятия всегда ограждали сферу математики. Математика придавала законченный вид всем наукам, где она применялась. В Европе сложилось разделение на гуманитарные и естественные науки по степени влияния математики на эти части.

Перед преподаванием математики в школе кроме общих целей обучения стоят ещё свои специфические цели, определяемые особенностями математической науки. Одна из них – это формирование и развитие математического мышления. Это способствует выявлению и более эффективному развитию математических способностей школьников, подготавливает их к творческой деятельности вообще и в математике с ее многочисленными приложениями в частности.

Вообще интеллектуальное развитие детей можно ускорить по трём направлениям: понятийный строй мышления, речевой интеллект и внутренний план действий.

Прочное усвоение знаний невозможно без целенаправленного развития мышления, которое является одной из основных задач современного школьного обучения.

Хочется обратить внимание на две главные проблемы дидактики математики: модернизация содержания школьного математического образования и совершенствование структуры курса.

Быстрый рост объема научной информации, ограниченность срока школьного обучения и невозможность сокращения объема изучаемых в школе основ науки с целью включения новой информации усложняют проведение реформ по модернизации школьного образования, а поэтому готовить их придется в течение более длительного времени, тщательно и строго на научной основе.

Имеют место успешные эксперименты по модернизации курса начальных классов и изучению в нем начал алгебры, что позволило дать значительную пропедевтику алгебры и геометрии в I-V классах, позволяющую изучить систематические курсы этих предметов в более быстром темпе и перенести ряд тем из старших классов в средние; включить в программу старших классов элементы высшей математики. Таким образом, улучшение системы курса возможно и в период между реформами, т. е. независимо от модернизации образования.

Ряд исследователей, таких как Юрий Михайлович. Колягин, Татьяна Сергеевна Полякова, Ольга Алексеевна Саввина, Ольга Викторовна Тарасова, Ростислав Семенович Черкасов, в своих работах предлагают разные подходы к периодизации развития математического образования. В научных работах И. К. Андронова и Р. С. Черкасова предприняты попытки определить не только периодизацию математического образования, но и периодизацию методики преподавания математики как науки.

Современные подходы к организации системы школьного образования, в том числе и математического образования, определяются, прежде всего, отказом от единообразной, унитарной средней школы.

Направляющими векторами этого подхода являются гуманизация и гуманитаризация школьного образования.

Гуманитаризация школьного математического образования реализуется как гуманитарная ориентация обучения математике. Гуманитарная ориентация является одним из основополагающих принципов новой концепции и выражается, условно говоря, тезисом «не ученик для математики, а математика для ученика», означающим постановку акцента на личность, на человека.

Этим определяется переход от принципа «вся математика для всех» к внимательному учету индивидуальных параметров личности — для чего конкретному ученику нужна и будет нужна в дальнейшем математика, в каких пределах и на каком уровне он хочет и/или может ее освоить, к конструированию курса «математики для всех», или, более точно, «математики для каждого».

Одной из основных целей учебного предмета «Математика» как компоненты общего среднего образования, относящейся к каждому учащемуся, является развитие мышления, прежде всего, формирование абстрактного мышления, способности к абстрагированию и умению «работать» с абстрактными, «неосязаемыми» объектами. В процессе изучения математики в наиболее чистом виде может быть сформировано логическое и алгоритмическое мышление, многие качества мышления, такие, как сила и гибкость, конструктивность и критичность и т. д.

Эти качества мышления сами по себе не связаны с каким-либо математическим содержанием и вообще с математикой, но обучение математике вносит в их формирование важную и специфическую компоненту, которая в настоящее время не может быть эффективно реализована даже всей совокупностью отдельных школьных предметов.

В то же время конкретные математические знания, лежащие за пределами, условно говоря, арифметики натуральных чисел и первичных основ геометрии, не являются «предметом первой необходимости» для подавляющего большинства людей и не могут, поэтому составлять целевую основу обучения математике как предмету общего образования.

Именно поэтому в качестве основополагающего принципа образовательной технологии в аспекте «математики для каждого» на первый план выдвигается принцип приоритета развивающей функции в обучении математике. Иными словами, обучение математике ориентировано не столько на собственно математическое образование, в узком смысле слова, сколько на образование с помощью математики.

В соответствии с этим принципом главной задачей обучения математике становится не изучение основ математической науки как таковой, а общеинтеллектуальное развитие — формирование у учащихся в процессе изучения математики качеств мышления, необходимых для полноценного функционирования человека в современном обществе, для динамичной адаптации человека к этому обществу.

Формирование условий для индивидуальной деятельности человека, основывающейся на приобретенных конкретных математических знаниях, для познания и осознания им окружающего мира средствами математики остается, естественно, столь же существенной компонентой школьного математического образования.

С точки зрения приоритета развивающей функции конкретные математические знания в «математике для каждого» рассматриваются не столько как цель обучения, сколько как база, «полигон» для организации полноценной в интеллектуальном отношении деятельности учащихся. Для формирования личности учащегося, для достижения высокого уровня его развития именно эта деятельность, если говорить о массовой школе, как правило, оказывается более значимой, чем те конкретные математические знания, которые послужили ее базой.

Гуманитарная ориентация обучения математике как предмету общего образования и вытекающая из нее идея приоритета в «математике для каждого» развивающей функции обучения по отношению к его чисто образовательной функции требует переориентации методической системы обучения математике с увеличения объема информации, предназначенной для «стопроцентного» усвоения учащимися, на формирование умений анализировать, продуцировать и использовать информацию.

Среди общих целей математического образования центральное место занимает развитие абстрактного мышления, включающего в себя не только умение воспринимать специфические, свойственные математике абстрактные объекты и конструкции, но и умение оперировать с такими объектами и конструкциями по предписанным правилам. Необходимой компонентой абстрактного мышления является логическое мышление — как дедуктивное, в том числе и аксиоматическое, так и продуктивное — эвристическое и алгоритмическое мышление.

В качестве общих целей математического образования рассматриваются также умение видеть математические закономерности в повседневной практике и использовать их на основе математического моделирования, освоение математической терминологии как слов родного языка и математической символики как фрагмента общемирового искусственного языка, играющего существенную роль в процессе коммуникации и необходимого в настоящее время каждому образованному человеку.

Гуманитарная ориентация обучения математике как общеобразовательному предмету определяет конкретизацию общих целей в построении методической системы обучения математике, отражающей приоритет развивающей функции обучения. С учетом очевидной и безусловной необходимости приобретения всеми учащимися определенного объема конкретных математических знаний и умений, цели обучения математике образовательной технологии “Школа 2100”могут быть сформулированы следующим образом:

— овладение комплексом математических знаний, умений и навыков,необходимых: а) для повседневной жизни на высоком качественном уровне и профессиональной деятельности, содержание которой не требует использования математических знаний, выходящих за пределы потребностей повседневной жизни; б) для изучения на современном уровне школьных предметов естественнонаучного и гуманитарного циклов; в) для продолжения изучения математики в любой из форм непрерывного образования (в том числе, на соответствующем этапе обучения, при переходе к обучению в любом профиле на старшей ступени школы);

— формирование и развитие качеств мышления, необходимых образованному человеку для полноценного функционирования в современном обществе, в частности эвристического (творческого) и алгоритмического (исполнительского) мышления в их единстве и внутренне противоречивой взаимосвязи;

— формирование и развитие у учащихся абстрактного мышления и, прежде всего, логического мышления, его дедуктивной составляющей как специфической характеристики математики;

— повышение уровня владения учащимися родным языком с точки зрения правильности и точности выражения мыслей в активной и пассивной речи;

— формирование умений деятельности и развитие у учащихся морально-этических качеств личности, адекватных полноценной математической деятельности;

— реализация возможностей математики в формировании научного мировоззрения учащихся, в освоении ими научной картины мира;

— формирование математического языка и математического аппарата как средства описания и исследования окружающего мира и его закономерностей, в частности как базы компьютерной грамотности и культуры;

— ознакомление с ролью математики в развитии человеческой цивилизации и культуры, в научно-техническом прогрессе общества, в современной науке и производстве;

— ознакомление с природой научного знания, с принципами построения научных теорий в единстве и противоположности математики и естественных и гуманитарных наук, с критериями истинности в разных формах человеческой деятельности.

Консультация для воспитателей «Методика обучения дошкольников театрализованной деятельности» Годованая О. Ю., музыкальный руководитель МБДОУ д/с «Академия детства», г. Нижний Тагил Свердловской области. Данная методическая разработка.

Краткая методика обучения детей дошкольного возраста пересказу Методика обучения детей дошкольного возраста пересказуВсе знают о важности развития связной речи в дошкольном периоде. Рассмотрим такую.

Методика обучения дошкольников ползанию и лазанью Содержание Введение 1. Лазанье. Ползание. Программные требования 2. Методика обучения лазанью и ползанию в разных возрастных группах Заключение.

Методика обучения ползанию в старшей группе 1. Возрастная группа: (5-6 лет) 2. Виды упражнений: ползанье на четвереньках по гимнастической скамейке 3. Графическое изображение: 4.

Методика обучения связным высказываниям типа рассуждений Муниципальное бюджетное дошкольное образовательное учреждение «Детский сад «Радуга» г. Козловка Чувашской Республики Консультация.

Методика обучения технике квиллинга на мастер-классе ]Декоративно-прикладная деятельность школьников в дополнительном образовании. К возможностям декоративно-прикладного искусства художники-педагоги.

Методика проведения и особенности приемов обучения на занятиях в раннем возрасте Методика проведения и особенности приемов обучения на занятиях в раннем возрасте Разработал: Старший воспитатель МБДОУ № 19 «Золотая рыбка».

Педагогическая консультация «Методика обучения упражнениям со скакалкой» Педагогическая консультация. «Методика обучения упражнениям со скакалкой». Комарова Л. А. г. Ялуторовск, 2019 Прыжки со скакалкой укрепляют.

Теория и методика физической культуры и спорта. Методика обучения двигательным действиям Теория и методика физической культуры и спорта Методика обучения двигательным действиям. 1. Двигательные умения и навыки как предмет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *