ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΡΠ΅ ΡΡ Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΊΠ°ΠΊΠΈΠΌ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y x 2 bx c Π΅ΡΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΠ°ΡΠ°Π±ΠΎΠ»Ρ
8 ΠΊΠ»Π°ΡΡ, 9 ΠΊΠ»Π°ΡΡ, ΠΠΠ/ΠΠΠ
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Β«yΒ» ΠΎΡ Β«xΒ», ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Β«xΒ» ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Β«yΒ» β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠ³Π΄Π° Π²ΠΌΠ΅ΡΡΠΎ Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ y = ax 2 + bx + c, Π³Π΄Π΅ x ΠΈ y β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅, a, b, c β Π·Π°Π΄Π°Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ β a β 0. Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:
ΠΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄ Π΄Π»Ρ y = x 2 :
ΠΡΠ»ΠΈ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ ΡΡ ΠΆΠ΅ ΡΠΎΡΠΌΡ, ΠΊΠ°ΠΊ y = x 2 ΠΏΡΠΈ Π»ΡΠ±ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = βx 2 Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΠ°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°:
ΠΠ°ΡΠΈΠΊΡΠΈΡΡΠ΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π±Π°Π·ΠΎΠ²ΡΡ ΡΠΎΡΠ΅ΠΊ Π² ΡΠ°Π±Π»ΠΈΡΠ΅:
ΠΠΎΡΠΌΠΎΡΡΠ΅Π² Π½Π° ΠΎΠ±Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ ΠΈΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΠ₯. ΠΡΠΌΠ΅ΡΠΈΠΌ Π²Π°ΠΆΠ½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΈ ΡΠ»ΡΡΠ°Ρ:
ΠΡΠ»ΠΈ a > 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΠΊΠ°ΠΊ-ΡΠΎ ΡΠ°ΠΊ:
0β³ height=Β»671β³ src=Β»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7β³ width=Β»602β³>
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ Π²ΡΡΠ΅ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ½ΠΎ, ΡΡΠΎ Π·Π½Π°Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΈ Π·Π½Π°ΠΊ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, Ρ Π½Π°Ρ Π΅ΡΡΡ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΠΊΠ°ΠΊ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ:
ΠΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ OY.
Π§ΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ, Π½Π°ΠΌ Π½ΡΠΆΠ½Π° ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ OY. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π°Π±ΡΡΠΈΡΡΠ° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΎΡΠΈ OY ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ y = ax 2 + bx + c Ρ ΠΎΡΡΡ OY, Π½ΡΠΆΠ½ΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΌΠ΅ΡΡΠΎ Ρ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π½ΠΎΠ»Ρ: y(0) = c. Π’ΠΎ Π΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π±ΡΠ΄ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ: (0; c).
ΠΠ° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ Π·Π°Π΄Π°Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ y = ax 2 + bx + c.
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΠ₯. Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ, ΡΠ΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ y = (x + a) * (x + b)
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ y ΠΎΡ x, Π³Π΄Π΅ x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° y β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ , ΡΠΎ Π΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠΎΡΠΌΡΠ»Π΅.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ, ΡΠΎ Π΅ΡΡΡ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = xΒ² β ΡΡΠΎ Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π±ΠΎΠ»ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½ΡΠ΅ Π½ΡΠ»Ρ. ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π²ΠΎΡ ΡΠ°ΠΊ: Π (Ρ): Ρ β₯ 0.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ y = f(x). Π‘Π°ΠΌΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), Π³Π΄Π΅ x β ΡΡΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, Π° y β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΄Π°Π½Π½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ.
ΠΡΠΎΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π² ΡΡΠ½ΠΊΡΠΈΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π° Π²ΠΌΠ΅ΡΡΠΎ x.
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π²ΠΎΠ·ΡΠΌΡΠΌ ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ y = x.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π°ΠΌ Π½Π΅ ΠΏΡΠΈΠ΄ΡΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Ρ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ Π½Π°ΡΠ΅Π³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° Π°Π±ΡΡΠΈΡΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅.
ΠΡΠ»ΠΈ ΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΊ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΡΠΎ Ρ Π½Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ½Π°ΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΠ°Π΄ΠΏΠΈΡΡ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ y = x β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ°. Π‘ΡΠ°Π²ΠΈΡΡ Π½Π°Π΄ΠΏΠΈΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΡΠ΄ΠΎΠ±Π½ΠΎ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ.
ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½Π° Π² ΠΎΠ±Π΅ ΡΡΠΎΡΠΎΠ½Ρ. Π₯ΠΎΡΡ ΠΌΡ ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΡΠ°ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ°Π»Π°Ρ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΆΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x):
Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅. Π’ΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π΅ΡΠ»ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π° Π΅ΡΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΠΌΠΏΡΠΎΡΠ° β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ°ΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ, ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎ ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ ΠΏΡΠΈ Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΌ ΡΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌ ΠΈΡ ΠΎΡΡΡΠΊΠ°Π½ΠΈΡ Π²ΡΠ΄Π΅Π»ΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° Π°ΡΠΈΠΌΠΏΡΠΎΡ: Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅, Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠ΅, Π½Π°ΠΊΠ»ΠΎΠ½Π½ΡΠ΅.
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π² ΡΠΎΡΠΊΠ΅ k, Π΅ΡΠ»ΠΈ ΠΏΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅:
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f(x) Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ x = a, ΡΠΎ Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ f(x) ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΡΡΠ² Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠ»ΠΈ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π·Π°ΡΠ°Π½Π΅Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ°, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΡ Π΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ½Π° ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΊΠ°ΠΌ.
Π‘Ρ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
Π£ Π½Π°Ρ Π΅ΡΡΡ ΠΎΡΠ»ΠΈΡΠ½ΡΠ΅ ΠΎΠ½Π»Π°ΠΉΠ½ Π·Π°Π½ΡΡΠΈΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Ρ 1 ΠΏΠΎ 11 ΠΊΠ»Π°ΡΡΡ! ΠΡΠΈΡ ΠΎΠ΄ΠΈ Π½Π° ΠΏΡΠΎΠ±Π½ΠΎΠ΅ Π·Π°Π½ΡΡΠΈΠ΅ Ρ Π½Π°ΡΠΈΠΌΠΈ Π»ΡΡΡΠΈΠΌΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΠΌΠΈ!
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ .
ΠΠ°Π΄Π°ΡΠ° 1. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°, ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ Π½Π° 3 Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅ΡΡ
ΠΏΠΎ y ΠΈ ΡΠ°ΡΡΡΠ½ΡΡΠ°Ρ Π² 10 ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΠΏΠΎΠ»Π΅Π·Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ΅Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½.
ΠΠ°Π΄Π°ΡΠ° 3. ΠΠΎ Π²ΠΈΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΠ±ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π° ΡΡΠ½ΠΊΡΠΈΠΈ y = ax2 + bx + c.
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ a, b ΠΈ c ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Oy β c = 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b > 0.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ ΠΎΡΠΈ Ox ΠΎΡΡΡΡΠΉ, B = 0 β Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ°Π΄Π°ΡΠ° 5. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ D(y): x β 4; x β 0.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ: 3, 2, 6.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΠ΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ: x = 0, x = 4.
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ 1. ΠΠ½Π°ΡΠΈΡ, y = 1 β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°.
ΠΠΎΡ ΡΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ:
ΠΠ°Π΄Π°ΡΠ° 6. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π±)
Π³)
Π΄)
ΠΠΎΠ³Π΄Π° ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΈΠ· ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ.
Π°)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ° f(x) + a.
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 1:
Π±)
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 2:
Π³)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ°
Π Π°ΡΡΡΠ³ΠΈΠ²Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² 2 ΡΠ°Π·Π° ΠΎΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π΄)
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΠΎΡΡΠ΄ΠΎΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ: ΡΠ½Π°ΡΠ°Π»Π° ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ, Π·Π°ΡΠ΅ΠΌ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ, Π° ΡΠΆΠ΅ ΠΏΠΎΡΠΎΠΌ ΠΌΠ΅Π½ΡΠ΅ΠΌ Π·Π½Π°ΠΊ. Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎ Π²ΡΠ΅ΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² ΡΠ΅Π»ΠΎΠΌ, Π²ΡΠ½Π΅ΡΠ΅ΠΌ Π΄Π²ΠΎΠΉΠΊΡ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΠΌΠΎΠ΄ΡΠ»Π΅.
Π‘ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² Π΄Π²Π° ΡΠ°Π·Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π»Π΅Π²ΠΎ Π½Π° 1/2 Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΡΡΠ°ΠΆΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ°ΡΠ°Π±ΠΎΠ»Π°
ΠΡΠ΅ΠΆΠ΄Π΅ ΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΉΡΠΈ ΠΊ ΡΠ°Π·Π±ΠΎΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡΡ, ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅.
ΠΡΠ»ΠΈ Π²Ρ ΠΏΡΠΎΡΠ½ΠΎ Π·Π°ΠΊΡΠ΅ΠΏΠΈΡΠ΅ ΠΎΠ±ΡΠΈΠ΅ Π·Π½Π°Π½ΠΈΡ ΠΎ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠΏΠΎΡΠΎΠ±Ρ Π·Π°Π΄Π°Π½ΠΈΡ, ΠΏΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ°) Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π΄ΡΡΠ³ΠΈΡ Π²ΠΈΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π°Π²Π°ΡΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π»Π΅Π³ΡΠ΅.
Π§ΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π°
ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π² ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠ°ΡΡΠ°Ρ (ΡΠΎ Π΅ΡΡΡ ΡΠ°ΠΌΠ°Ρ Π±ΠΎΠ»ΡΡΠ°Ρ) ΡΡΠ΅ΠΏΠ΅Π½Ρ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΎΠΈΡ Β« x Β» β ΡΡΠΎ Β« 2 Β», ΡΠΎ ΠΏΠ΅ΡΠ΅Π΄ Π½Π°ΠΌΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ Π² Π½ΠΈΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β« a Β», Β« b Β» ΠΈ Β« Ρ Β».
ΠΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»ΠΎΠΉ.
ΠΠ°ΡΠ°Π±ΠΎΠ»Π° Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ.
Π’Π°ΠΊΠΆΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΠΎΠΉ.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ΅ΡΠΊΠΈΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π²ΡΠ΅Π³Π΄Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΡΠΎΠΌΡ ΠΏΠΎΡΡΠ΄ΠΊΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ, ΡΠΎΠ³Π΄Π° Π²Ρ ΡΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ.
Π§ΡΠΎΠ±Ρ Π±ΡΠ»ΠΎ ΠΏΡΠΎΡΠ΅ ΠΏΠΎΠ½ΡΡΡ ΡΡΠΎΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ, ΡΡΠ°Π·Ρ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ Π΅Π³ΠΎ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅.
ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = x 2 β7x + 10 Β».
ΠΡΠ»ΠΈ Β« a > 0 Β», ΡΠΎ Π²Π΅ΡΠ²ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ
.
ΠΡΠ»ΠΈ Β« a Β», ΡΠΎ Π²Π΅ΡΠ²ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π½ΠΈΠ·.
Π Π½Π°ΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β« a = 1 Β», ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ Π²Π΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ
.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Β« x0 Β» (ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠΎ ΠΎΡΠΈ Β« Ox Β») Π½ΡΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠ°ΠΉΠ΄Π΅ΠΌ Β« x0 Β» Π΄Π»Ρ Π½Π°ΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = x 2 β7x + 10 Β».
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Β« y0 Β» (ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠΎ ΠΎΡΠΈ Β« Oy Β»). ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« x0 Β» Π² ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ. ΠΡΠΏΠΎΠΌΠ½ΠΈΡΡ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π² ΡΡΠΎΠΊΠ΅ Β«ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΡΡΠ½ΠΊΡΠΈΡΒ» Π² ΠΏΠΎΠ΄ΡΠ°Π·Π΄Π΅Π»Π΅ Β«ΠΠ°ΠΊ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈΒ».
ΠΡΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
(Β·) A (3,5; β2,25) β Π²Π΅ΡΡΠΈΠ½Π° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΡΠΌΠ΅ΡΠΈΠΌ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅ΠΌ ΡΠ΅ΡΠ΅Π· ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΎΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° β ΡΡΠΎ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΠΉ Π³ΡΠ°ΡΠΈΠΊ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Β« Oy Β».
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° Π΄Π°Π²Π°ΠΉΡΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌΡΡ, ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π½ΡΠ»ΡΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΡΡ Β« Ox Β» (ΠΎΡΡΡ Π°Π±ΡΡΠΈΡΡ).
ΠΠ°Π³Π»ΡΠ΄Π½ΠΎ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ Π²ΡΠ³Π»ΡΠ΄ΡΡ ΡΠ°ΠΊ:
Π‘Π²ΠΎΠ΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΠΈΠ·-Π·Π° ΡΠΎΠ³ΠΎ, ΡΡΠΎ Ρ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Oy Β» ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
Π’Π΅ΠΏΠ΅ΡΡ Π΄Π°Π²Π°ΠΉΡΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌΡΡ, ΠΊΠ°ΠΊ Π΄ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ Π½ΡΠ»Π΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ Π½ΡΠ»Π΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½ΡΠΆΠ½ΠΎ Π² ΠΈΡΡ ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΌΠ΅ΡΡΠΎ Β« y = 0 Β».
0 = x 2 β7x + 10
x 2 β7x + 10 = 0
x1;2 =
7 Β± β 49 β 4 Β· 1 Β· 10 |
2 Β· 1 |
x1;2 =
7 Β± β 9 |
2 |
x1;2 =
7 Β± 3 |
2 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 5 | x2 = 2 |
ΠΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ, Π·Π½Π°ΡΠΈΡ, Ρ Π½Π°Ρ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Β« Ox Β». ΠΠ°Π·ΠΎΠ²Π΅ΠΌ ΡΡΠΈ ΡΠΎΡΠΊΠΈ ΠΈ Π²ΡΠΏΠΈΡΠ΅ΠΌ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ.
ΠΡΠΌΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ (Β«Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈΒ») Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠΎΠ·ΡΠΌΠ΅ΠΌ ΡΠ΅ΡΡΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ Β« x Β». Π¦Π΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ Π±ΡΠ°ΡΡ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΠΈ Β« Ox Β», ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π±Π»ΠΈΠ·ΠΊΠΈ ΠΊ ΠΎΡΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ. Π§ΠΈΡΠ»Π° Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ.
ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Β« x Β» ΡΠ°ΡΡΡΠΈΡΠ°Π΅ΠΌ Β« y Β».
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ°Π±Π»ΠΈΡΡ.
x | 1 | 3 | 4 | 6 |
y | 4 | β2 | β2 | 4 |
ΠΡΠΌΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ (Π·Π΅Π»Π΅Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ).
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΡ Π³ΠΎΡΠΎΠ²Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ. ΠΠ° Π·Π°Π±ΡΠ΄ΡΡΠ΅ ΠΏΠΎΡΠ»Π΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎΠ΄ΠΏΠΈΡΠ°ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠ°ΡΠΊΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄ΡΡΠ³ΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π’ΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΏΠ΅ΡΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΊΠΎ Π±Π΅Π· ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΡΡΠ΅ΠΉ.
ΠΡΡΡΡ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β3x 2 β 6x β 4 Β».
x0 =
βb |
2a |
x0 =
β(β6) |
2 Β· (β3) |
=
6 |
β6 |
= β1
y0(β1) = (β3) Β· (β1) 2 β 6 Β· (β1) β 4 = β3 Β· 1 + 6 β 4 = β1
(Β·) A (β1; β1) β Π²Π΅ΡΡΠΈΠ½Π° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
Π’ΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Β« Ox Β» ( y = 0 ).
x1;2 =
β6 Β± β 6 2 β 4 Β· 3 Β· 4 |
2 Β· 1 |
x1;2 =
β6 Β± β 36 β 48 |
2 |
x1;2 =
β6 Β± β β12 |
2 |
ΠΡΠ²Π΅Ρ: Π½Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ, Π·Π½Π°ΡΠΈΡ, Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ Β« Ox Β».
ΠΡΠΌΠ΅ΡΠΈΠΌ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ. ΠΡΠΌΠ΅ΡΠ°Π΅ΠΌ Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ Π²ΡΡ ΠΎΠ΄ΡΡ Π·Π° ΠΌΠ°ΡΡΡΠ°Π± Π½Π°ΡΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΡΠΎ Π΅ΡΡΡ ΡΠΎΡΠΊΠΈ Β« (β2; β4) Β» ΠΈ Β« (0; β4) Β». ΠΠΎΡΡΡΠΎΠΈΠΌ ΠΈ ΠΏΠΎΠ΄ΠΏΠΈΡΠ΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ (ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°)
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ ΠΏΠΎ ΡΠΎΡΠΊΠ°ΠΌ ΡΡΡΠΎΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ:
ΠΠ°ΡΠ°Π±ΠΎΠ»Ρ y = ax 2 + bx + c ΠΌΡ Π½Π΅ ΡΡΠ°Π½Π΅ΠΌ ΡΡΡΠΎΠΈΡΡ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π· Β«ΠΏΠΎ ΡΠΎΡΠΊΠ°ΠΌΒ» β Π΄Π»Ρ Π²ΡΠΏΡΡΠΊΠ½ΠΈΠΊΠ° ΡΠΊΠΎΠ»Ρ ΡΡΠΎ ΠΏΡΠΎΡΡΠΎ Π½Π΅ΡΠΎΠ»ΠΈΠ΄Π½ΠΎ. ΠΠ΅Π΄Ρ Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π ΡΡΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΡΠ°ΠΊΠΎΠ²Ρ.
1. ΠΠ½Π°ΠΊ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° a ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ. ΠΡΠΈ a > 0 Π²Π΅ΡΠ²ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ , ΠΏΡΠΈ a 2 Ρ ΡΠ°Π²Π½ΡΠΌΠΈ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ, Π½ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠΌΠΈ ΠΏΠΎ Π·Π½Π°ΠΊΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ a.
2. ΠΠ±ΡΠΎΠ»ΡΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° a ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° Β«ΡΠ°ΡΠΊΡΡΠ²Β» ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ |a|, ΡΠ΅ΠΌ ΡΜΠΆΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° (Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠΈΠΆΠ°ΡΠ° ΠΊ ΠΎΡΠΈ Y ). ΠΠ°ΠΎΠ±ΠΎΡΠΎΡ, ΡΠ΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ |a|, ΡΠ΅ΠΌ ΡΠΈΡΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° (Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠΈΠΆΠ°ΡΠ° ΠΊ ΠΎΡΠΈ X).
3. ΠΠ±ΡΡΠΈΡΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ y = ax 2 + bx + c Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΠ»Ρ Π½Π°Ρ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ y0 ΡΠ΄ΠΎΠ±Π½Π΅Π΅ Π²ΡΠ΅Π³ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ x0 Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΠΎ Π²ΠΎΠΎΠ±ΡΠ΅, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡΡ, ΡΡΠΎ
Π³Π΄Π΅ D = b 2 β 4ac β Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ.
4. Π’ΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ y = ax 2 + bx + c Ρ ΠΎΡΡΡ X Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ax 2 + bx + c = 0. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΊΠ°ΡΠ°Π΅ΡΡΡ ΠΎΡΠΈ X. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΡΠΎ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ X.
5. Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Y Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π»Π΅Π³ΠΊΠΎ: ΠΌΡ ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ x = 0 Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠΎΡΠΊΠ° (0, c).
Π ΡΠ΅ΠΏΠ΅ΡΡ ΠΏΠΎΠΊΠ°ΠΆΠ΅ΠΌ, ΠΊΠ°ΠΊ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = ax 2 + bx + c ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°.
1. Π§Π°ΡΡΠΎ Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌ ΡΠ΅ΡΠΈΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ
x 2 2 ΠΈ ΠΎΡΠΌΠ΅ΡΠΈΠΌ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ x, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΡΡ y 2 β 3x β 10 β₯ 0.
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = x 2 β 3x β 10 ΡΠ»ΡΠΆΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°, Π²Π΅ΡΠ²ΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ . Π Π΅ΡΠ°Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ x 2 β 3x β 10 = 0, Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ x1 = β2 ΠΈ x2 = 5 β Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ X. ΠΠ°ΡΠΈΡΡΠ΅ΠΌ ΡΡ Π΅ΠΌΠ°ΡΠΈΡΠ½ΠΎ Π½Π°ΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ:
ΠΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΈ x β (β2; 5) Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Ρ (Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ
ΠΎΠ΄ΠΈΡ Π½ΠΈΠΆΠ΅ ΠΎΡΠΈ X). Π ΡΠΎΡΠΊΠ°Ρ
β2 ΠΈ 5 ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΡΠ»Ρ, Π° ΠΏΡΠΈ x 5 Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Ρ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π½Π°ΡΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΠΏΡΠΈ .
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π½Π°ΠΌ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΡΠ»ΠΎ ΡΡ Π΅ΠΌΠ°ΡΠΈΡΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΡΡ Y Π²ΠΎΠΎΠ±ΡΠ΅ Π½Π΅ ΠΏΠΎΠ½Π°Π΄ΠΎΠ±ΠΈΠ»Π°ΡΡ!
3. ΠΡΡ ΠΎΠ΄Π½ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: x 2 + 2x + 4 > 0.
ΠΠ΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ y = x 2 + 2x + 4 Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ . ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½, Ρ. Π΅. ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ x 2 + 2x + 4 = 0 Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΡΠ½Π΅ΠΉ. Π‘ΡΠ°Π»ΠΎ Π±ΡΡΡ, Π½Π΅Ρ ΠΈ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ X.
Π Π°Π· Π²Π΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ ΠΈ ΠΎΠ½Π° Π½Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ X β Π·Π½Π°ΡΠΈΡ, ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π° Π½Π°Π΄ ΠΎΡΡΡ X.
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Ρ ΠΏΡΠΈ Π²ΡΠ΅Ρ
Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
x. ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π°ΡΠ΅Π³ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° β ΡΡΠΎ Π²ΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΡΠ²Π΅Ρ: .
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΡΠ²Π»ΡΡΡΡΡ Π½Π΅ΠΎΡΡΠ΅ΠΌΠ»Π΅ΠΌΠΎΠΉ ΡΠ°ΡΡΡΡ ΠΠΠ. Π Π°Π·Π±Π΅ΡΡΠΌ ΡΠΈΠΏΠΈΡΠ½ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΈΠ· Π±Π°Π½ΠΊΠ° Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΠΠ.
4. ΠΠ°Π²ΠΈcΠΈΠΌΠΎcΡΡ ΠΎΠ±ΡeΠΌΠ° cΠΏΡΠΎcΠ° q (ΡΡc. ΡΡΠ±.) Π½Π° ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡ ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΡ-ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΠΈcΡΠ° ΠΎΡ ΡΠ΅Π½Ρ p (ΡΡc. ΡΡΠ±.) Π·Π°Π΄Π°eΡcΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ q = 100 β 10p. ΠΡΡΡΡΠΊΠ° ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΡ Π·Π° ΠΌΠ΅cΡΡ r (Π² ΡΡc. ΡΡΠ±.) Π²ΡΡΠΈcΠ»ΡΠ΅ΡcΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ r(p) = q Β· p. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΡΡ ΡΠ΅Π½Ρ p, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠ΅cΡΡΠ½Π°Ρ Π²ΡΡΡΡΠΊΠ° r(p) cΠΎcΡΠ°Π²ΠΈΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 240 ΡΡc. ΡΡΠ±. ΠΡΠ²Π΅Ρ ΠΏΡΠΈΠ²Π΅Π΄ΠΈΡΠ΅ Π² ΡΡc. ΡΡΠ±.
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ q Π² ΡΠΎΡΠΌΡΠ»Ρ Π²ΡΡΡΡΠΊΠΈ:
r(p) = qp = (100 β 10p)p = 100p β 10p 2
ΠΡΡΡΡΠΊΠ° Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ (ΡΠΎ Π΅ΡΡΡ Π±ΠΎΠ»ΡΡΠ΅ ΠΈΠ»ΠΈ ΡΠ°Π²Π½Π°) 240 ΡΡΡΡΡ ΡΡΠ±Π»Π΅ΠΉ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ΅Π½Π° p ΡΠΆΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½Π° Π² ΡΡΡΡΡΠ°Ρ ΡΡΠ±Π»Π΅ΠΉ, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΡΠΎ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°:
ΠΠ΅ΡΠ΅Π½ΠΎΡΠΈΠΌ Π²ΡΡ Π²ΠΏΡΠ°Π²ΠΎ ΠΈ Π΄Π΅Π»ΠΈΠΌ Π½Π° 10:
ΠΠ»Ρ ΡΡ
Π΅ΠΌΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°Ρ
ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ p 2 β 10p + 24 = 0. ΠΠ½ΠΈ ΡΠ°Π²Π½Ρ 4 ΠΈ 6. ΠΡΡΠ°ΡΡΡΡ ΡΠ΄Π΅Π»Π°ΡΡ ΡΠΈΡΡΠ½ΠΎΠΊ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°ΡΠ΅Π³ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΡΠ»ΡΠΆΠΈΡ ΠΎΡΡΠ΅Π·ΠΎΠΊ [4; 6]. ΠΠ°Ρ ΠΏΡΠΎΡΠΈΠ»ΠΈ Π½Π°ΠΉΡΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ p. ΠΠ½ΠΎ ΡΠ°Π²Π½ΠΎ 6.
ΠΡΠ°ΠΊ, ΡΡΠ΅Π±ΡΠ΅ΡΡΡ, ΡΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ h(t) β₯ 3. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΡΡΠ΄Π° Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ h:
Π‘ΠΎΠ±ΠΈΡΠ°Π΅ΠΌ Π²ΡΡ ΡΠΏΡΠ°Π²Π°:
ΠΠΎΡΠ½ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 5t 2 β8t+1,4 = 0 ΡΠ°Π²Π½Ρ t1 = 0,2 ΠΈ t2 = 1,4. ΠΠ°ΠΊ Π΄Π°Π»ΡΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°ΡΡ β ΠΌΡ Π·Π½Π°Π΅ΠΌ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ΅ΡΠ΅Π· t1 = 0,2 ΡΠ΅ΠΊΡΠ½Π΄Ρ ΠΏΠΎΡΠ»Π΅ Π½Π°ΡΠ°Π»Π° ΠΏΠΎΠ»ΡΡΠ° ΠΌΡΡ ΠΎΠΊΠ°Π·Π°Π»ΡΡ Π½Π° Π²ΡΡΠΎΡΠ΅ 3 ΠΌΠ΅ΡΡΠ°. ΠΡΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π» Π»Π΅ΡΠ΅ΡΡ Π²Π²Π΅ΡΡ
, Π²ΡΡΠΎΡΠ° ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π»Π°ΡΡ; Π·Π°ΡΠ΅ΠΌ Π½Π°ΡΠ°Π»ΠΎΡΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅, Π²ΡΡΠΎΡΠ° ΡΠΌΠ΅Π½ΡΡΠ°Π»Π°ΡΡ, ΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t = 1,4 ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ½ΠΎΠ²Π° ΡΡΠ°Π»Π° ΡΠ°Π²Π½Π° ΡΡΡΠΌ ΠΌΠ΅ΡΡΠ°ΠΌ Π½Π°Π΄ Π·Π΅ΠΌΠ»Π΅ΠΉ.
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΠΌΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΠ»ΡΡ Π½Π° Π²ΡΡΠΎΡΠ΅ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΡΡΡΡ ΠΌΠ΅ΡΡΠΎΠ² Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ t2 β t1 = 1,2 ΡΠ΅ΠΊΡΠ½Π΄. Π Π±Π»Π°Π½ΠΊ ΠΎΡΠ²Π΅ΡΠΎΠ² Π²ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ 1,2.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ, Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π½Π°Π³ΡΠ΅Π²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
T(t) = 1400 + 200t β 10t 2
Π Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ°Π±ΠΎΡΡ ΠΏΡΠΈΠ±ΠΎΡΠ° Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ T β€ 1760, ΠΈΠ»ΠΈ
1400 + 200t β 10t 2 β€ 1760
ΠΠ΅ΡΠ΅Π½ΠΎΡΠΈΠΌ Π²ΡΡ Π²ΠΏΡΠ°Π²ΠΎ ΠΈ Π΄Π΅Π»ΠΈΠΌ Π½Π° 10:
ΠΠ°Ρ
ΠΎΠ΄ΠΈΠΌ t1 = 2, t2 = 18 ΠΈ Π΄Π΅Π»Π°Π΅ΠΌ ΡΠΈΡΡΠ½ΠΎΠΊ:
ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π°ΡΠ΅Π³ΠΎ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°:
ΠΡΡΠ°ΡΡΡΡ ΠΏΠΎΠ½ΡΡΡ: Π² ΠΊΠ°ΠΊΠΎΠΉ ΠΆΠ΅ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΠΊΠ»ΡΡΠ°ΡΡ ΠΏΡΠΈΠ±ΠΎΡ? ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°Π΄ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΡΡ ΠΊΠ°ΡΡΠΈΠ½Ρ ΠΏΡΠΎΡΠ΅ΡΡΠ°.
ΠΡ Π²ΠΊΠ»ΡΡΠ°Π΅ΠΌ ΠΏΡΠΈΠ±ΠΎΡ Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t = 0. Π’Π΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° Π½Π°Π³ΡΠ΅Π²Π°ΡΠ΅Π»Ρ ΠΏΠΎΠ²ΡΡΠ°Π΅ΡΡΡ ΠΈ ΠΏΡΠΈ t = 2 ΠΌΠΈΠ½ Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ 1760 Π. ΠΠ°ΡΠ΅ΠΌ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅ΡΡΡ, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΈΠ±ΠΎΡ ΠΌΠΎΠΆΠ΅Ρ ΠΈΡΠΏΠΎΡΡΠΈΡΡΡΡ. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΡΠΊΠ»ΡΡΠ°ΡΡ Π΅Π³ΠΎ Π½Π°Π΄ΠΎ ΠΏΡΠΈ t = 2.