Что тяжелее вода или бетон
Материал: Бетон, как он работает ч2
А что такое бетон и как он работает?
Я думаю многие даже постоянно имеющее дело с ним люди не смогут сказать, «ну бетон и бетон, сначала жидкий а потом застывает в камень». Уверен многие из них даже не знают, что действительно обозначает надпись «М-400» на мешке цемента.
Пожалуй самый богатый на мифы материал.
• Из двух основных компонентов, цемента и заполнителя.
• Воды необходимой для реакции. (образование цементного камня)
• Присадок необходимых для предания определённых характеристик (необязательно).
Заполнитель – в основной своей массе это песок и щебень в определённой пропорции, но это может быть и отдельно песок, и даже отдельно щебень.
Что такое бетон и роль цемента.
Сам по себе цемент (вернее цемент+вода=цементный камень) достаточно непрочный материал. Легко можно провести эксперимент взять чистый цемент добавить воды и скатать небольшой шарик диаметром до сантиметра (больше не получится он треснет) дать ему застыть и набрать прочность. Вы спокойно разломаете его пальцами.
В бетоне всю нагрузку несёт заполнитель, а цемент просто не даёт смещаться частичкам заполнителя друг относительно друга. Если бы частицы заполнителя были пригнаны друг к другу как на этой головоломке цемент вообще не был бы нужен.
Если говорить проще.
От чего зависит прочность бетона.
Заодно разоблачу очень популярный миф, что прочность бетона прямо зависит от марки цемента и является его потолком. То есть из цемента М-400 сделать бетон прочнее М-400 (B30) нельзя.
Как я уже говорил, основная задача цемента это не дать смещаться частицам заполнителя друг относительно друга. Сам по себе цемент не прочный и много не выдержит. И поэтому чем плотнее уложен заполнитель, чем лучше он соприкасается между собой тем выше прочность бетона.
Достигается это прежде всего правильным подбором заполнителя, его размерами, и правильным смешением. Если в обычном бетоне до B30 используется одна фракция (размер) щебня и одна фракция (размер) песка, да в общем не особо и важно какой.
То в более прочных бетонах, используется разный по фракции (размеру) песок ещё и определённой формы. А так же различный по фракции (размеру) и форме щебень. Поэтому получить из цемента М-400 бетон М-800(B60) реально.
Отсюда следует ещё один вывод, чем более грубая и угловатая форма у заполнителя тем выше прочность бетона. Галька и речной песок плохой выбор.
Что на самом деле значит надпись м-400 на мешке цемента.
Как писал выше, чистый цемент очень непрочный и его прочность не говорит не о чём. Поэтому в маркировке используется значение прочности пескоцементной смеси в пропорции 3:1 и 0,4 воды. Объём воды это очень важно, но об этом ниже.
Прочность бетона и вода, а так же зачем нужны пластификаторы.
Для начала один график, отображающий зависимость прочности бетона от соотношения воды и цемента по массе.
На нём хорошо видно, как сильно падает прочность от избытка воды. То есть если смесь песка с цементом в пропорции 3:1 и 0,4 воды имеет прочность М-400, то тоже самое с 1 частью воды имеет прочность М-100, падение в четыре раза!
Физика процесса очень проста, у лишней воды которая избыточна для реакции с цементом есть ровно два пути.
1. Потихоньку испариться оставляя вместо себя пустоты, что снижает прочность.
2. Остаться на месте, и в случае замерзания разрушить вокруг себя цементный камень. Что тоже снижает прочность.
Это кстати самая частая проблема при изготовлении самодельного бетона. Ведь обычный полужидкий бетон это как раз 1:1 и есть.
1:0,4 это полусухой бетон выглядит приблизительно так, но только с щебнем.
Конечно никакой речи о заливке его в опалубку или траншею и речи быть не может.
Способов решения тут ровно три.
1. Плюнуть на всё и заливать получившийся М75 (B5) или того хуже бетон.
2. Сыпать много больше цемента. (перерасход до двух раз)
Тротуарная плитка изготавливаемая методом вибропресования имеет водоцементное соотношение 1:0,25 это идеальное соотношение где вода вступает в 100% реакцию с цементом и получается самая высокая прочность и морозостойкость.
Присадки-пластификаторы – Как я писал выше основная задача таких присадок экономить цемент. То есть делать жетон «жидким» при водоцементном соотношении 1:0,4.
Принцип их действия очень хорошо может проиллюстрировать обычное мытьё рук. Помойте руки с мылом и без него. И почувствуйте разницу насколько по разному скользят руки. Пластификаторы делают тоже самое, только не с руками а заполнителем.
Прочность бетона «1» это марочная прочность бетона, на самом деле набор прочности продолжается и далее но очень медленно и через пару лет бетон становится в 1,2-1,5 раза прочнее марки.
Он разоблачает такой забавный миф о том что бетону надо дать набрать прочность в течении 28 дней, для дальнейшей работы.
Дать конечно надо, для фундамента достаточно 1 дня летом, для перекрытий 1 недели. (0,7 прочности).
Поскольку уже через день М200 бетон набирает 0,3 прочности и становится М-75. Что уже по прочности почти кирпич. И значительно прочнее любых блоков.
Вода и бетон – плюсы и минусы
Вода, необходимая для получения и формирования бетонной структуры, оказывает впоследствии разрушительное действие на строительные сооружения.
Агрессивное воздействие воды на бетон – факт очевидный, ибо материал имеет капиллярно-пористую структуру. Проникающая в сооружения снизу грунтовая вода, мигрируя по капиллярам, увлажняет стены, провоцируя процессы замораживания-размораживания и последующую деструкцию материала. Кроме того, грунтовая вода содержит примеси растворимых солей: хлоридов, сульфатов и гидрокарбонатов щелочных и щелочноземельных металлов. Кристаллизуясь и гидратируясь в порах, соли многократно увеличиваются в объеме, что ведет в итоге к разрушению материала несущих элементов, отслоению штукатурки и краски, способствует деформации отделочных покрытий, короблению обоев и т.д.
Вода действует и сверху, со стороны атмосферных осадков. Это воздействие помимо механических разрушений вследствие замораживания, имеет еще и химические последствия. Строго говоря, дождевая вода – это раствор. Дождевые потоки захватывают из атмосферы большое количество газообразных производственных выбросов, таких как оксиды углерода, серы, азота и фосфора, таких как аммиак, хлор и хлористый водород. Эти газы, растворяясь частично в воде, превращают дождь в кислотный раствор, разрушающе действующий на бетон, мрамор, известняк и другие материалы. При этом увеличивается количество пор, капилляров и микротрещин, являющихся все новыми очагами агрессии, и степень разрушения материала существенно возрастает. Кроме того, содержание в воздухе кислотных оксидов серы и азота, а также хлористого водорода способно вызвать смещение такого экологического параметра атмосферы как углекислотное равновесие. При этом существенно повышается содержание в воздухе свободной углекислоты, называемой в таком случае «агрессивной». Агрессивным углекислый газ является по отношению кминеральным строительным материалам (извести, мрамору и бетону), поскольку превращает нерастворимый кальцит СаСО3 в водорастворимый гидрокарбонат кальция Са(НСО3)2, обуславливающий появление дефектов.
Говоря о сырых помещениях, подразумевают чаще всего помещения заглубленные. Это подвалы жилых и производственных зданий, это объекты ГО, это специализированные пространства для насосных станций, водоочистных сооружений и пр.
Повышенная влажность в таких местах вызывается рядом причин, например, просачиванием грунтовых и поверхностных вод, проникновением атмосферных осадков и, наконец, конденсацией теплого воздуха на холодных стенах при перепадах температур.
В условиях повышенной влажности начинается отсыревание отделочных и несущих элементов. Наличие влаги вместо воздуха в капиллярно пористой системе строительных материалов приводит к резкому изменению их теплозащитных свойств – материалы становятся теплопроводными и перестают удерживать тепло. Влага и холод в помещениях приводят к деформации и отслоению штукатурного и отделочного слоев за счет нарушений адгезионного контакта и изменения физических свойств основы и покрытий.
Причинами ослабления адгезионного слоя при отделочных работах в условиях повышенной влажности являются:
Рассмотрим эти причины с указанием основных способов их устранения.
Колонии грибковой плесени в помещениях образуются чаще всего в плохо вентилируемых местах: за шкафами, под подоконниками, в углах и на торцевых стенах, в ванных комнатах. В подвалах, где разность температур внутри и снаружи неизбежно приводит к появлению конденсата, плесень распространяется практически повсеместно. Размножаясь и выделяя в воздух миллионы невидимых спор, грибок представляет опасность не только для конструкции, но и, прежде всего, для здоровья людей, вдыхающих этот воздух.
Водорастворимые хлориды натрия и кальция встречаются на нижней части фасадов, омываемых талыми водами, в которых велика концентрация этих солей, используемых в качестве антиобледенителей. Нитраты (селитры) попадают в грунтовые воды от смыва дождями избытка сельскохозяйственных удобрений, из фекальных вод, а также в результате действия на почву кислых атмосферных осадков, содержащих оксиды азота из выбросов промышленных предприятий и ТЭЦ.
Притягивая влагу, эти соли создают постоянный и высокий уровень влажности бетона, не обусловленный прямым поступлением воды со стороны атмосферы и грунтов.
Антагонистичные материалы. На практике нередки примеры использования случайных сухих смесей или материалов от разных производителей со своими «ноу хау», специфическими добавками и свойствами. Совместное использование таких материалов может привести порой к эффекту отторжения. Наиболее типичным примером является непрофессиональное применение в одном «пироге» композиций на основе цемента и гипсовых материалов, образующих в контактном слое продукт химического взаимодействия – эттрингит, называемый также «цементной бациллой». В условиях влажной среды эта сложная соль, притягивающая на одну молекулу до 30 молекул воды, создает мощное объемное и кристаллизационное давление, ослабляющее адгезию в контактном слое. Совместное использование цементных и гипсовых композиций возможно лишь при наличии промежуточного контакта – грунтовочного слоя, исключающего их взаимодействие.
Нередки случаи отторжения отделочных слоев при использовании пенетрирующей гидроизоляции. Пенетраты, как правило, покрывают поверхность бетона белым налетом карбоната кальция, снижающим адгезию. Поэтому перед оштукатуриванием необходима механическая, а порой и химическая очистка до зернистой структуры бетона..
Наличие гидрофобизаторов в отделочных покрытиях (штукатурки, шпаклевки) может создать проблемы при последующем окрашивании, например, дисперсионными красками, ибо при этом также ослабевает адгезионный контакт.
Поэтому в выборе ремонтно-восстановительных материалов целесообразно использование системы продуктов одного производителя, дифференцированных в соответствии с ремонтными требованиями: грунтовок, сухих ремонтных, смесей, шпаклевок, финишной отделки и т.п.
Использование паронепроницаемых материалов наносит существенный вред, как покрытию, так и несущей основе. Паронепроницаемый слой гидроизоляции, штукатурки или краски способствует конденсации паров на границе раздела. При этом отсыревают и стены, и отделка; сооружение не «дышит», что влечет за собой быстрое размножение плесени, отслоение покрытий, потерю несущих свойств.
Стандартная цементно-песчаная композиция обладает слабой паропроницаемостью, и это следует учитывать при проведении, штукатурных и отделочных работ. Современные технологии предполагают использование паропроницаемых покрытий, как минеральных, так и органических (водные дисперсии полимеров).
Большой практический интерес представляет использование специальных легких пористых санирующих штукатурок на известково-цементных вяжущих. Санирующие штукатурки на суперлегких заполнителях, модифицированные порообразующими и гидрофобизующими добавками, весьма эффективны в условиях влажной и засоленной поверхности. Образуя определенный процент гидрофобизованных воздушных пор, такие штукатурки способствуют осушению влажных стен, равномерному распределению выступающих солей в поровом пространстве, что обеспечивает перманентный транспорт водяных паров и тем самым длительный срок эксплуатации.
Санирующие штукатурки на легких заполнителях с высоким содержанием гидрофобизованных воздушных пор характеризуются коэффициентом µ, не превышающим значений 12 – 15.
Недостаточность клеящих свойств или слабая адгезия покрытия к основе может быть обусловлена двумя факторами: плохой подготовкой поверхности (соли, плесень, ослабление несущих свойств) и недостаточной адгезионной способностью наносимого материала. В последнем случае повысить клеящую способность можно добавлением в воду затворения специальных клеевых составов, или созданием на обрабатываемой поверхности адгезионных центров, например, с помощью полуобрызга цементно-песчаным раствором с добавлением в воду затворения клеевых водных композиций, например водной дисперсии синтетического каучука.
Итак, с чего начинать обработку стен в сыром помещении? Если это бетонные блоки или кирпичная кладка, то начинать следует с с расчистки швов и заполнения их свежим раствором до выравнивания поверхности. Затем с помощью специальных биоцидов удаляется плесень, флюатированием преобразуются соли. После флюатирования поверхность следует очистить металлическими щетками.
Если несущая основа требует ремонта – каверны, сколы, трещины и прочие дефекты, то ремонт осуществляется специальными трещиностойкими ремонтными растворами с использованием адгезионных составов, исключающих образование холодных швов.
Аналогичные ремонтные растворы применяются и для обустройства галтелей в подвалах при последующем проведении гидроизоляционных работ.
Вопрос о гидроизоляции решается индивидуально. Если такой необходимости нет по причине:
то можно приступать к штукатурным и отделочным работам, используя пористые штукатурные составы и паропроницаемую краску или плиточные покрытия с применением влагостойкого клея.
Большинство сооружений нуждается, однако, в качественной гидроизоляционной защите.
Современные способы гидроизоляции
Идея проникающей гидроизоляции (пенетрирования) родилась в Дании в начале 50-х годов, и фирмой VANDEX был получен первый одноименный материал. Впоследствии на базе этой разработки появились в разных странах пенетрирующие системы под названиями XYPEX (США, Канада), THORO, PENETRON (США), DRIZORO (Италия) и др. Позже начались российские исследования, в результате которых на рынок вышли материалы ГИДРОТЭКС, АКВАТРОН, КАЛЬМАТРОН, КОРАЛЛ, ЛАХТА и т.д.
Механизм проникающей гидроизоляции цементсодержащих материалов сводится к химической реакции активных реагентов (пенетратов) со свободной известью (гидроксидом кальция) и капиллярной водой в бетоне. Свободная известь присутствует в цементном камне практически всегда, поскольку является продуктом гидратации, а впоследствии и гидролиза (химического взаимодействия с водой и влагой) составляющих цементного камня: силикатов и алюминатов кальция. Образующийся водорастворимый гидроксид кальция, вымываясь водой, создает дополнительную сеть капилляров и пор – потенциальных коррозионных центров. В качестве компонентов пенетрирующих добавок могут быть использованы активный кремнезем, активный оксид алюминия, карбонаты щелочных металлов, сульфоалюминаты кальция и другие соединения, способные под действием воды связывать свободную известь в труднорастворимые гидросиликаты, гидроалюминаты и гидросульфоалюминаты кальция, кольматирующие капиллярно-пористую структуру бетона. Связывание ионов кальция ведет к смещению химического равновесия в системе, в результате чего имеет место миграция ионов кальция из цементного камня. Ионы кальция реагируют с активными добавками пенетратов, образуя на поверхности бетона высолы карбонатов и гидросиликатов кальция. При этом важно сохранить необходимую щелочность бетонной смеси, поскольку связывание свободной извести понижает рН-фактор, что может привести к преждевременной коррозии арматуры в железобетонных конструкциях.
Указанные моменты приводят к необходимости тщательного подбора как качественного, так и количественного состава активных химических добавок в пенетрирующих материалах, что и отличает их по ряду свойств.
Наряду с вышеназванными зарубежными материалами производства США, Канады, Швейцарии и Италии, представленными и на российском рынке, широкое распространение в Европе и США получил пенетрирующий материал AQUAFIN-IC (Германия). Оптимально подобранный состав активных добавок, дешевая сырьевая база позволили получить минеральный гидроизоляционный материал проникающего действия. Сохраняя общие принципы действия пенетратов, AQUAFIN-IC обладает рядом преимуществ. Это быстрый набор прочности, оптимальная щелочность бетонной смеси и меньшее количество высолов на поверхности материала.
Преимуществом таких материалов является и тот факт, что перспектива объемной гидроизоляции бетона допускает возможные механические повреждения поверхности (царапины, сколы и др.) не нарушая гидроизоляционных свойств материала в целом.
Экологическая безопасность пенетратов создает широкие предпосылки их применения, прежде всего, в области питьевого и хозяйственного водоснабжения.
Следует отметить, однако, ряд существенных моментов, сдерживающих применение проникающей гидроизоляции, главным из которых является недостаток или отсутствие свободной извести.Если:
проникающая гидроизоляция неэффективна или малоэффективна.
Вызывает вопросы энергичная реклама различных видов пенетратов с обещаниями гидроизоляции любого сооружения, любого типа поверхности и большой глубины проникновения. Эффективность проникающей гидроизоляции зависит от большого числа различных факторов: природы и состояния поверхности, и существенно – от динамики сооружения.
Идея связывания излишней свободной извести в бетоне с целью получения более плотных, водостойких и химически стойких структур реализована в настоящее время в России и за рубежом путем создания соответствующих комплексных добавок в бетонную смесь. Такие добавки включают пластифицирующие компоненты и комбинации активного кремнезема, зол уноса, пуццолановых вяжущих, которые реагируют со свободной известью и уменьшают ее концентрацию в бетоне за счет образования труднорастворимых гидросиликатов и / или гидроалюминатов кальция.
При выборе поверхностной гидроизоляционной системы на первый план выдвигаются такие требования как:
Тонкослойные гидроизоляционные обмазочные системы на основе цемента в отличие от рулонной битумной гидроизоляции имеют такой уровень адгезии к минеральной основе, что составляют вместе с ней практически одно целое. С этой точки зрения они являются наиболее надежными в условиях наружного (отрицательного) давления воды.
Для статических условий (подвалы небольших домов, резервуары) можно использовать жесткую обмазочную гидроизоляцию (сухая смесь затворяется водой) после отверждения образует жесткое тонкослойное покрытие.
Полимерминеральная обмазочная гидроизоляция (сухая смесь затворяется не водой, а специальной водной дисперсией латекса) после твердения очень эластична (резинобетон), устойчива в условиях знакопеременных температур и динамических нагрузок. Такая гидроизоляция эффективно работает в крупных жилых и производственных подвалах, подземных гаражах, бассейнах, эксплуатируемой кровле, заглубленных помещениях с вибронагрузками и при наружной защите фундаментов.
При наличии в заглубленных помещениях «фильтрующей» поверхности стен, через которую регулярно просачивается вода, необходима ступенчатая обработка поверхности с применением последовательно материалов: фиксирующего цемента для мгновенной остановки водопритока, композиции на основе жидкого стекла для связывания свободной извести и затем обмазочной цементной гидроизоляции.
Гидроизолированная поверхность отделывается штукатуркой или плиткой в зависимости от назначения сооружения.
Наружные поверхности заглубленной части строения целесообразно защищать обмазочными полимербитумными системами, обладающими высоким уровнем эластичности. Способность перекрывать трещины сохраняется у этих композиций и в условиях отрицательных температур.
Объемная (отсечная) гидроизоляция – один из наиболее эффективных способов защиты от грунтовой влаги – основана на инъекциях химически активных жидкостей, образующих после твердения водонепроницаемый заслон.
Такими системами являются, например, силикаты щелочных металлов, которые реагируют с известью, связывая ее в труднорастворимые кальциевые гидросиликаты
K2SiO3 + Ca(ОН)2 = CaSiO3 + 2K+ + 2ОН-
Если для отсечной гидроизоляции используются кремнийорганические соединения, самопроизвольно твердеющие на воздухе, то соответственно наличие свободной извести в материале не является обязательным. Кремнийорганические составы, особенно на полисилоксановой основе, достаточно быстро отверждаются, образуя тонкие водонепроницаемые, но паропроницаемые пленки, гидрофобизующие стенки капилляров (пример 4 на схеме). В разбавленных водных эмульсиях микрочастицы полисилоксана могут достигать размеров 40 – 70 нм, что позволяет им заполнять и очень тонкие капилляры.
Присутствие свободной извести и в этом случае может сыграть положительную роль, поскольку способствует выделению труднорастворимых алкилсиликатов кальция. При этом имеет место синэнергетический эффект сужения диаметра и гидрофобизации стенок капилляров (пример 5 на схеме).
Легкие (плотность около единицы), низковязкие кремнийорганические эмульсии для отсечной гидроизоляции могут быть использованы как для кирпичных, так и для бетонных сооружений.
1.Заполненные водой капилляры
2.Закупорка или кольматация капилляров
3.Сужение диаметра капилляров
4.Гидрофобизация стенок капилляров
5.Сужение диаметра и гидрофобизация стенок
Профессионально выполненная защита от воды жилых и производственных помещений сохраняет здоровье и продлевает срок службы сооружения.
Плотность и удельный (объемный) вес бетона: классификация, как увеличить показатели
Строители используют бетонные смеси при ремонтных, реконструкционных работах и возведении разных объектов. Существует немало технологий, применяемых в производстве бетона. Этим объясняется ассортимент материалов, представленных на современном рынке. Выбор продукции зависит от монтажа, дальнейших условий эксплуатации бетонного изделия. В зависимости от этих особенностей определяется и плотность бетона, необходимая для определенных строительных работ.
При приготовлении бетонной смеси используют воду, однако в некоторых случаях ее заменяют другими компонентами. К примеру, так изготавливают асфальтобетон. Таким образом, материал становится более прочным и плотным. Для улучшения характеристик асфальтобетона применяются специальные добавки. Изменение соотношения компонентов способствует увеличению качества стройматериала.
Классификация бетона по плотности
Плотность бетона (ГОСТ 12730.1-78) – масса/объем, измеряется в кг/м3.
Бетонам свойственны различные классификации, основной из них считается определение плотности. Бетоны обладают разной плотностью. Их классификация учитывает заполнитель смеси, пористость, вес. Применение того или иного вида зависит от назначения строительного объекта. Специалисты различают пять типов материалов:
Электронный измеритель плотности бетона.
Особо легкие. К данному виду принято относить пено-, газобетоны. Зачастую необходимость в таком бетоне возникает при теплоизоляции либо кладке стен домов, перекрытий. В таких бетонах плотность составляет менее 5000 кг/м3. Для заполнения бетонной смеси чаще применяется перлит.
Вернуться к оглавлению
От чего зависит?
Плотность строительного материала зависит от наполнителя и использование дополнительных инструментов, таких как вибратор.
Среди факторов, влияющих на плотность на сжатие, выделяют такие:
Таблица соотношений класса материала по плотности:
Марки стройматериалов
Без достаточного количества заполнителей цемент даст такую усадку, что бетонное изделие покроется трещинами.
У каждого вида бетона есть марка, которая помогает определить характеристики. Она обозначается так: М и несколько цифр, в зависимости от прочности материала (например, 300). Есть еще одна маркировка – В и несколько цифр. Они обозначают максимальную степень давления, которую способна выдержать конкретная марка. М200 – самая популярная марка, относится к особо тяжелым материалам. В состав входит песок, гравий, цементная смесь. Сочетание этих компонентов помогает добиться оптимального качества и плотности. При помощи бетона изготавливают покрытия, балки, плиты для дорог, бордюры, закладывают прочный фундамент для зданий, возводят небольшие строения.
Эта марка стройматериала обладает всеми необходимыми характеристиками. При этом стройматериал можно приобрести по приемлемым ценам. Он подойдет для строительных работ в помещении и под открытым небом, выдерживает сильное давление, температурные режимы. Вышеперечисленные достоинства бетонных смесей делают марку универсальной для использования в странах с умеренным климатом. Специалисты не рекомендуют применять такой вид бетона в странах с более суровыми климатическими условиями. Резкая смена температуры способна привести к возникновению эрозии и трещин.
Вернуться к оглавлению
Характеристика и влияние на качества раствора
Измеряется этот показатель для бетонной смеси в кг/м3 (куб. м) и обозначается буквой D. Не следует путать марку (М) и класс (В) бетона, определяющей которых является прочность на сжатие, измеряемая в кг/см2, с плотностью. Каждому стандартному классу раствора соответствует свой уровень плотности.
Плотность бетона или удельный вес – это соотношение массы материала к его объему. Такая величина всегда меньше или равна 100%. Именно от нее больше всего зависит качество марки готового раствора, поэтому она всегда указывается в инструкции к покупаемой смеси.
Удельный вес связан с прочностью. Чем он выше, тем выше прочность стройматериала.
Пористость
Противоположностью и обратным значением к плотности, которое тоже характеризует прочность бетона, является пористость.
Любая смесь содержит в себе пустоты, они могут быть большими или микроскопическими, меняется только их объем. Технически этот параметр определяется как совокупность пор объекта к его объему. Если сложить показатели плотности и пористости – получим 100% прочности раствора.
Поры возникают в процессе испарения остатков влаги при замесе раствора. Поэтому рекомендуют ознакомиться с разницей характеристик сухих компонентов и замешанных. Это достаточно сложно сделать: для этого нужно хорошо выучить пропорции всех составляющих — то есть наполнителей (щебня, гравия, песка), воды, цемента, добавок.
Основное, что надо знать о пористости и плотности, замешивая раствор − чем больше влаги, тем состав пористее, а изделие менее плотное. Опытные строители хорошо знают пропорции влаги и наполнителей для соответствующих марок материала, они определены практикой и экспериментальным путем.
Как увеличить плотность
Регулировать этот параметр можно, зная следующие особенности:
Как изменить плотность материала?
Иногда специалисты вынуждены уменьшать плотность стройматериала. Чаще всего, это нужно, чтобы уменьшить вес изделий. Этого можно достичь при помощи:
Пенополистирол – заполнитель легких бетонов.
Необходимо помнить, что низкая плотность снижает прочность бетонных изделий. Поэтому перед проведением строительных работ важно учитывать все особенности бетона. В некоторых случаях строителям приходится увеличивать плотность цементного раствора. Такого эффекта можно достичь разными методами:
Существует и ряд других методов, но такие способы чаще всего применяются в промышленности. Кроме того, они обладают особой спецификой применения. К примеру, в некоторых случаях специалисты прибегают к вакуумированию. Данный метод помогает удалить лишнюю жидкость из цементного раствора. Время, затраченное на вакуумирование, будет зависеть от толщины конструкции, количества используемого цемента, температуры и иных факторов.
Как повлиять на объемный вес?
Желаемый вес бетонного раствора на выходе достигается изменением его рецептуры или пропорций компонентов.
Прибавлению веса на 1м3 способствует применение в производстве строительного материала безусадочного или расширяющегося цемента, а также добавление жидкого стекла.
Снижение веса происходит при вводе в состав большего количества воды или легких пористых заполнителей — перлита, керамзита.
Компоненты и технология замешивания
Максимально плотный и, соответственно, прочный бетон создается с помощью тщательно подобранного наполнителя, так как он уменьшает пористость. Основной характеристикой его является фракционность. Плотность смеси имеет прямую зависимость от параметров всех ее составляющих.
Замешивание
Консистенция бетона должна быть похожа на очень густую однородную сметану. В обычных условиях плотность бетонной смеси проверяют следующим способом. Смесь оставляют на некоторое время, чтобы в ней образовались пузырьки воздуха.
Затем набирают раствор лопатой, встряхивают и переворачивают. Если она сразу падает, нужно добавить немного воды или сухого мелкого наполнителя.
Наполнитель
Более всего на плотность бетона влияет наполнитель. Это закономерно, его объем в растворе наиболее значительный. При использовании легких (пористых) наполнителей плотность становится низкой, объемный вес также уменьшается.
Щебень или гравий рекомендуют брать плотностью в 2-3 раза выше, чем прочность расчетной марки бетонной смеси. Это обуславливается тем, что проектное значение (после 28 дней) бетона всегда ниже, чем реальные качества, которые он набирает через полгода или больше, а щебень не имеет свойства со временем набирать в плотности. Таким образом, эти показатели уравновешиваются.
Крупный наполнитель желательно использовать средней фракции − мелкая фракция уменьшает количество пор.
Технология укладки
Способ укладки и обработки материала при его использовании имеет значение. Строители знают, как важно утрамбовать раствор и выпустить скопившиеся внутри пузырьки воздуха. Чем плотнее (жестче) марка бетона, тем раствор прочнее, но требует более тщательного уплотнения и трамбовки.
Для указанных целей применяют:
Трамбовать рекомендуют как минимум до появления на поверхности смеси характерного молочка. В результате обработки вытесняется избыточная влага и воздух, заливка хорошо уплотняется, она становится надежной и прочной.
Еще одним методом избавления раствора от воздуха является вакуумирование. Это новаторский и современный способ. Его применяют для увеличения плотности асфальтобетона при укладке дорожного полотна. Вакуумирование применяют для марок раствора на основе силикатных и шлакосиликатных цементов.
Цементы
Для увеличения плотности тяжелого бетона в кг/м3 часто применяют несколько видов особых цементов. Наиболее распространены такие:
Следует учесть что, чем плотнее раствор, тем он тяжелее и его сложнее укладывать. Проблемы с укладкой в этих случаях решаются применением пластификаторов. Они также улучшают и другие свойства. Есть добавки, способствующие вытеснению воздуха и уплотнению бетона.
Недостаток цемента уменьшает плотность бетона. Его всегда берут на 2-3 класса выше, чем заданный класс бетона. Например, для бетонной смеси М150 нужен цемент М400.
Расчет и определение
Удельная плотность сухого цемента в промышленных условиях определяется прибором Ле-Шателье. Но для оценки прочности будущего бетона или другого раствора нужно знать значение насыпной плотности, т.к. от него зависит, насколько пористой получится конструкция. В строительных расчетах чаще всего применяются усредненные показатели. Для свежего материала используют значения 1200-1300 кг/м³, слежавшегося — 1500-1600 кг/м³.
Но иногда для замешивания прочного раствора необходимо знать точное значение этого параметра. Сделать правильный расчет насыпной плотности можно и самостоятельно.
Для этого потребуется:
мерная емкость объемом 1 л; воронка; весы.
Сначала следует взвесить пустую емкость. Обозначают эту массу как M1. Затем в мерную посуду через воронку аккуратно засыпают цемент, убирают его излишки и взвешивают ее снова. При этом емкость с содержимым не встряхивают, материал нельзя перемешивать или утрамбовывать.
Массу заполненного сосуда обозначают как M2. Искомую величину определяют по формуле: P = (M1 — M2)/V. Значение массы при подсчетах должно быть выражено в килограммах, объема — кубических метрах.
Для получения наиболее корректных данных измерения и вычисления проводят дважды, а окончательный результат выводят как среднеарифметическую величину. Использование этого способа расчета насыпной плотности дает результат с погрешностью до 0,01 кг/м³, что позволяет достичь требуемой прочности возводимой конструкции и избежать существенных ошибок при строительстве.