Что тяжелее аргон или кислород
Разновидности газовых смесей для сварки полуавтоматом. Классификация, различия и области применения
Выбор необходимой смеси будет зависеть от вида свариваемых материалов.
Какие газовые смеси используются для сварки полуавтоматом
Полуавтоматом чаще всего работают:
Работа с другими материалами затруднена тем, что нет соответствующей присадочной проволоки, поставляемой в стандартных катушках. Создают смеси в соответствии с ТУ 2114-002-45905715-2011.
В качестве составных газов применяют:
Допускается использование готовых смесей, однако, содержание компонентов в полученной смеси должно соответствовать техническим регламентам.
Краткое описание газов, применяемых при создании смесей
Аргон — бесцветный газ без запаха и вкуса, негорюч и нетоксичен. Однако любая смесь Ar с иными газами может вытеснить кислород из помещения, что способно привести к удушью работников, если доля кислорода упадёт ниже 19% от общего объема. Аргон тяжелее воздушной смеси и способен скапливаться в плохо проветриваемых помещениях у пола.
Азот — газ бесцветный и негорючий. Без запаха и вкуса, нетоксичен. Однако скопление газообразной смеси азота может вызвать кислородную недостаточность и даже удушье при уменьшении концентрации кислорода менее 19% от объёма.
Углекислота — газ без цвета, не воспламеняется и нетоксичен, отличается специфическим кисловатым вкусом. Максимально допустимая концентрация соединения в воздухе рабочей зоны 9 г/м3 (что равно 0,5% объёма). Если концентрация становится больше 5%, то двуокись углерода может оказать вредное влияние на физическое состояние работников. Углекислота в полтора раза тяжелее воздушной смеси и способна скапливаться в непроветриваемых помещениях у пола, в ямах. При снижении концентрации кислорода в воздухе ниже 19% наступает кислородное голодание, удушье.
Гелий — бесцветный газ, не имеет вкуса и запаха, нетоксичен и негорюч, легче смеси воздуха, поэтому накапливается вверху цехов.
Кислород — бесцветный негорючий газ без запаха и вкуса, хотя сам не является токсичным и взрывоопасным, однако, будучи сильным окислителем, значительно повышает предрасположенность иных материалов к горению. Если кислород накапливается в воздухе цехов, это может стать причиной возникновения возгораний и впоследствии — пожаров. Важно, что объемная доля газа в рабочих (производственных) зонах не должна быть более 23%.
Аргон, углекислота и кислород
Углекислый газ (5-20%) и аргон (80-95%) используют для создания неразъёмных соединений из сталей: конструкционных легированных и углеродистых. Плюсы: перенос осуществляется струйно или капельно. Дуга при этом горит стабильно. Если применять смесь с добавлением кислорода (2%), уменьшив содержание углекислого газа до 6%, то сварщику будет легче справиться с тонкими сплавами.
Аргон и гелий
Сочетание гелия (70%) и аргона (30%) позволит работать с любыми толстыми сплавами:
При этом увеличится скорость сварки за счёт исключения операции по предварительному подогреву деталей. Количество дефектов — пористость швов, трещины — будет сведено к минимуму.
Минусом следует считать высокую стоимость таких смесей из-за высокого содержания редкого гелия. Поэтому используют подобные пропорции при сварке особо ответственных конструкций — при создании изделий для космоса или ВПК.
Аргон плюс гелий (по 50%) — смесь считается универсальной инертной. Благодаря этому, можно работать с большинством сплавов — как с цветными, так и чёрными. Состав из 70% аргона и 30% гелия по сравнению с чистым аргоном лучше охлаждает зону сварки, применяется для соединения деталей средней толщины, если нужно получение швов с минимумом дефектов. Смесь из 60% аргона, 38% гелия и 2% углекислоты используют для сварки легированных и конструкционных углеродистых сплавов. Дуга при этом получается стабильной, уменьшается количество брызг.
Аргон и водород
Применяют на производстве при работе с аустенитными (жаропрочными) сплавами. Смесь позволяет улучшить характеристики полученного шва, добиться большей эластичности. Часто применяют при работе во время создания космической и авиатехники. Процент содержания химических элементов зависит от марки сталей.
От чего зависит расход газа при сварке
Установку силы обдува сварочной ванны следует устанавливать, учитывая:
Также придётся принять во внимание условия в цехе или на площадке. При наличии сквозняков, открытого ветра следует либо защищать рабочее место ширмами, либо увеличивать расход газовой смеси.
Диаметр проволоки, мм | Сила сварочного тока, А | Средний расход, л/мин |
0,8-1 | 60-160 | 7-8 |
1-1,2 | 100-250 | 9-12 |
1,2 | 250-320 | 12-15 |
Для уменьшения расхода газа во время работы следует тщательно проверять соединения шлангов, исправность редукторов, элементов горелки и сварочного полуавтомата.
Аргон – самый ленивый газ
Содержание
На данный момент известны изотопы аргона с массовыми числами от 29 до 54, но в в земной атмосфере он представлен тремя стабильными изотопами:
История открытия aргона
Аргон был открыт Джоном Уильямом Стреттом (John Strutt) и Сэром Уильямом Рамзаем (Sir William Ramsay) при исследовании азота, полученного из воздуха химическим путем. Несовпадение плотности этого газа при различных способах получения натолкнуло этих ученых на идею о присутствии в воздухе какого-то тяжелого инертного газа, который и был выделен ими в 1894 г. и назван argon, что с греческого переводится как «ленивый», «медлительный», «неактивный».
Способы получения аргона
Аргон получают как побочный продукт, при производстве кислорода и азота из воздуха методом низкотемпературной ректификации (см. получение аргона)
Применение аргона
Наиболее часто аргон применяют:
Применение аргона в сварке
Аргон применяют в качестве защитной среды при сварке активных и редких металлов (титана, циркония и ниобия) и сплавов на их основе, алюминиевых и магниевых сплавов, а также хромоникелевых коррозионностойких жаропрочных сплавов, легированных сталей различных марок.
Аргон, являясь более тяжелым, чем воздух, своей струей лучше защищает металл при сварке в нижнем положении. Растекаясь по поверхности свариваемого изделия, он защищает достаточно длительно довольно широкую и протяженную зону как расплавленного, так и нагретого при сварке металла.
Применение аргона позволяет повысить температуру сварочной дуги, что улучшает проплавление сварного шва, увеличивая производительность сварки в целом. При этом проплавление приобретает «кинжальную» форму, что дает возможность выполнять однопроходную сварку в щелевую разделку металла больших толщин. При сварке в среде аргона (как и иных инертных газов) минимизируется выгорание активных легирующих элементов, что позволяет использовать более дешевые сварочные проволоки.
При TIG сварке аргон служит защитой не только для сварочной ванны от вредного воздействия воздуха, а также инертной защитой конца электрода.
Для дуговой сварки в целом аргон применяется гораздо чаще, чем гелий, однако при сварке листового алюминия толщиной менее 6 мм аргон рекомендуют смешивать с гелием, чтобы обеспечить нужную теплопроводность. В некоторых случаях аргонно-гелиевые смеси используют для зажигания дуги, после чего сварка происходит в присутствии гелия. Этот метод применяется для сварки толстолистового алюминия вольфрамовым электродом при постоянном токе.
Вредность и опасность аргона
Аргон не оказывает опасного воздействия на окружающую среду, но относится к асфиксантам (удушающий газ). Поскольку газообразный аргон тяжелее воздуха он может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается содержание кислорода в воздухе, что вызывает кислородную недостаточность и удушье. Поэтому можно сделать вывод, что в больших количествах аргон вреден для организма человека.
Жидкий аргон – низкокипящая жидкость, которая может вызвать обморожение кожи и поражение слизистой оболочки глаз человека.
Хранение и транспортировка аргона
Газообразный и жидкий аргон поставляется по ГОСТ 10157. Хранят и транспортируют газообразный аргон в баллонах по ГОСТ 949 под давлением 15МПа.
Стальные баллоны должны соответствовать ГОСТ 949. Баллон окрашивается в серый цвет с зеленой полосой и зеленой надписью «АРГОН ЧИСТЫЙ».
Возможна транспортировка аргона в жидком виде в специальных цистернах или сосудах Дьюара с последующей его газификацией.
Характеристики аргона
Характеристики Ar представлены в таблицах ниже:
Разница между аргоном и кислородом
Содержание:
Что такое аргон?
Что такое кислород?
Кислород можно рассматривать как один из самых распространенных элементов на земле. В нашей атмосфере присутствует около 21% свободного элементарного кислорода. Кроме того, он сочетается с другими соединениями, такими как вода и минералы. Даже наше человеческое тело работает, используя кислород, и он содержит 65% кислорода по массе. Кислород в природе встречается в виде двухатомных газообразных молекул O2 (грамм). Это бесцветный газ без вкуса и запаха, обладающий уникальными химическими и физическими свойствами. Плотность кислорода больше, чем у воздуха, и он очень плохо растворяется в воде.
В чем разница между аргоном и кислородом?
Свойства:
Свойство | Аргон | Кислород |
Атомный номер | 18 | 8 |
Электронная конфигурация | 1s² 2s² 2p 6 3s² 3p⁶ | 1s² 2s² 2p⁴ |
Точка кипения | –185,9 ° C (–302,6 ° F) | -182 ° С (-297 ° F) |
Температура плавления | -189 ° С (-308 ° F) | -218 ° C (-361 ° F) |
Тяжесть:
Аргон:Аргон в 1,4 раза тяжелее воздуха; он не пропускает воздух, как кислород, и может вызвать удушье, попадая в нижние части легких.
Кислород:Кислород также плотнее воздуха, но это легкий газ, который пригоден для дыхания.
Использует:
Аргон:Аргон является инертным газом даже при высоких температурах, и по этой причине он используется в некоторых критических промышленных процессах, таких как производство высококачественной нержавеющей стали и получение кристаллов кремния без примесей для полупроводников. Он широко используется в качестве инертного газа-наполнителя в лампах накаливания. Он остается инертным, даже когда колба нагревается до высоких температур.
Кислород:Кислород широко используется в металлургической промышленности вместе с ацетиленом и другими топливными газами для резки, сварки, плавления, закалки, зачистки и очистки металлов. Газообразный кислород или воздух, обогащенный кислородом, используют в производстве стали и чугуна, в процессе химической очистки и нагрева для удаления углерода, а также в реакции окисления.
Нефтяная промышленность также широко использует кислород в качестве сырья для реакции с углеводородом с образованием химических веществ, таких как альдегиды и спирты.
Инертные и активные защитные газы, их смеси
Инертные
Не вступают в химическое взаимодействие с металлами и практически не растворяются в металлах
В газе высшего сорта содержится 99,993 % аргона, не более 0,006 % азота и не более 0,0007 % кислорода. Рекомендуется для сварки ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов.
В газе первого сорта содержится 99,98 % аргона, до 0,01 % азота и не более 0,002 % кислорода. Рекомендуется для сварки стали и чистого алюминия.
Гелий применяют при сварке химически чистых и активных материалов, а также сплавов на основе алюминия и магния.
Активные
Защищают зону сварки от воздуха, но сами растворяются в жидком металле либо вступают с ним в химическое взаимодействие
В углекислом газе сваривают чугун, низко- и среднеуглеродистые, низколегированные конструкционные коррозионностойкие стали.
Газовые смеси
Служат для улучшения процесса сварки и качества сварного шва
Смесь аргона и гелия. Оптимальный состав: 50% + 50% или 40% аргона и 60% гелия. Пригоден для сварки алюминиевых и титановых сплавов.
Смесь аргона и кислорода при содержании кислорода 1-5% стабилизирует процесс сварки, увеличивает жидко текучесть сварочной ванны, перенос электродного металла становится мелкокапельным. Смесь рекомендуется для сварки углеродистых и нержавеющих сталей.
Смесь углекислого газа и кислорода. Оптимальный состав: 60-80% углекислого газа и 20-40% кислорода. Повышает окислительные свойства защитной среды и температуру жидкого металла. При этой смеси используют электродные проволоки с повышенным содержанием раскислителей, например Св-08Г2СЦ. Шов формируется несколько лучше, чем при сварке в чистом углекислом газе. Смесь применяют для сварки углеродистых, легированных и некоторых высоколегированных конструкционных сталей.
Техническая информация
Аргон
Опасность аргона.
Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе. Аргон — третий по содержанию после азота и кислорода компонент воздуха. Аргон — самый распространённый инертный газ в земной атмосфере (в1 м? воздуха содержится 9,34л аргона). Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа.
Аргон – инертный газ с атомной массой 39,9, в обычных условиях – бесцветный, без запаха и вкуса, примерно в 1,38 раза тяжелее воздуха. Аргон считается наиболее доступным и сравнительно дешевым среди инертных газов.
Аргон занимает третье место по содержанию в воздухе (после азота и кислорода), на него приходятся примерно 1,3% массы и 0,9% объема атмосферы Земли.
В промышленности, основной способ получения аргона – метод низкотемпературной ректификации воздуха с получением кислорода и азота и попутным извлечением аргона. Также аргон получают в качестве побочного продукта при получении аммиака.
Газообразный аргон хранится и транспортируется в стальных баллонах (по ГОСТ 949-73). Баллон с чистым аргоном окрашен в серый цвет, с надписью «Аргон чистый» зеленого цвета.
Согласно ГОСТ 10157-79 газообразный и жидкий аргон поставляется двух видов: высшего сорта (с объемной долей аргона не менее 99,993%, объемной долей водяных паров не более 0,0009%) и первого сорта (с объемной долей аргона не менее 99,987%, объемной долей водяных паров не более 0,001%).
Меры безопасности при обращении с аргоном:
• дистанционный контроль содержания кислорода в воздухе ручными или автоматическими приборами; объем кислорода в воздухе должен составлять не меньше 19%;
• при работе с жидким аргоном, способным вызвать обморожение кожи и поражение слизистой оболочки глаз, необходимо использовать защитные очки и спецодежду;
• при работе в атмосфере аргона необходимо использовать шланговый противогаз или изолирующий кислородный прибор.
Применение аргона при сварке
Аргон используется в качестве инертного защитного газа при дуговой сварке, в том числе в качестве основы защитной газовой смеси (с кислородом, углекислым газом). Является основной защитной средой при сварке алюминия, титана, редких и активных металлов.
Аргон также применяется при плазменной сварке в качестве плазмообразующего газа, при лазерной сварке в качестве плазмоподавляющего и защитного газа.
В зависимости от требуемых объемов потребления аргона могут использоваться несколько схем его обеспечения. При объеме потребления до 10 000 м3/г аргон обычно доставляют в баллонах. При объеме потребления свыше 10 000 м3/г аргон целесообразно перевозить в жидком виде в специальных емкостях железнодорожным или автомобильным транспортом. При транспортировке по железной дороге применяются специализированные цистерны 8Г-513 или 15-558. На автомобильном транспорте наиболее часто устанавливаются универсальные газовые емкости типа ЦТК объемом от 0,5 до 10 м3. В этих емкостях также могут транспортироваться кислород и азот.
При централизованном снабжении схемы обеспечения сварочных постов аргоном могут быть следующими:
• непосредственно от транспортной емкости через перекачивающий насос и стационарный газификатор в сеть (см. рисунок ниже);
• от транспортной емкости в стационарную емкость с дальнейшей газификацией и подачей в сеть;
• заполнение баллонов от транспортной газификационной установки.
Сварка нержавейки
Сварка нержавейки – это трудоемкий, но в, то же время, методичный и скрупулезный процесс, требующий от исполнителя четкого следования инструкциям по сварке. Прежде всего, необходимо защитить зону сварки от неблагоприятного воздействия атмосферного воздуха. Это обеспечит надежную сварку нержавеющих сталей. Само качество сварных соединений будет зависеть от проведенной процедуры подготовки нержавеющей проволоки и кромок деталей. Оксидная пленка, которая образуется после горячей обработки, удаляется механическим путем. Сварка нержавейки может осуществляться вольфрамовым электродом при условии постоянного источника тока.
Особенностью сварки нержавейки является содержание в ней хрома, который при высокой температуре образует карбид хрома, нарушающий структуру стали и повышающий в несколько раз ее хрупкость. Именно по этой причине сварка любых типов нержавеющей стали производится в среде инертных газов (гелия, углекислоты, аргона или смесей) или специальных флюсов, защищающих все хромированные химические элементы, которые входят в состав нержавеющей стали.
Способы сварки нержавеющей стали:
На данный момент существует два основных способа сварки нержавейки:
— электродуговая сварка нержавейки вольфрамовым электродом (неплавящимся или плавящимся). Это самый распространенный способ, который применяется не только промышленными предприятиями, но и частными лицами. В процессе сварки происходит повышение стабильности дуги, и уменьшение частоты образования пор при помощи смеси аргона с углекислым газом или кислородом. Сварка вольфрамовым неплавящимся электродом производится с применением постоянного тока прямой полярности, а плавящегося – током с обратной полярностью. Если в нержавеющей стали имеется доля содержащегося алюминия, то ее варят переменным током с целью разрушения окислительной пленки. При проведении ручной дуговой сварки нержавейки вольфрамовым электродом диаметром до двух миллиметров и присадочной проволокой диаметром не более двух миллиметров, сварочный ток будет составлять 60— 80 А для металла в двух миллиметровую толщину. Если толщина составляет четыре миллиметра — то величина сварочного тока не будет превышать 130 А.
— газовая аргоновая сварка нержавейки с использованием инертных газов и их смесей. Она представляет собой гибрид электрической и газовой сварки. От электросварки она позаимствовала электрическую дугу, а от газовой — идентичный метод работы сварщика. Неплавящийся вольфрамовый электрод является сердцем аргоновой горелки. Вольфрам – это металл, который достаточно проблематично поддается плавке. Вокруг электрода образуется керамическое сопло, и из него во время сварки выдувается инертный газ аргон. Если пытаться сваривать деталь без использования аргона — алюминий начнет попросту трещать, гореть и покрываться коркой. Аргон, в свою очередь, препятствует этому процессу и защищает место сварки от попадания воздуха.
Процесс сварки происходит следующим образом: на свариваемые детали подается «масса», как при классической электросварке. Сварщик берет в левую руку присадочную проволоку, а в правую – горелку. Если производится сварка алюминия то, присадочная проволока должна быть изготовлена из идентичного материала (сплавов алюминия «АК» или «АМГ»). Хотя, в девяноста процентах случаев достаточно взять обычный алюминиевый электротехнический провод нужной толщины. На горелке включается кнопка, и производится подача газа. Между деталью и кончиком неплавящегося электрода возникает электрическая дуга. Она и играет роль главного инструмента – осуществляет плавление детали и присадочной проволоки.
Особенности сварочного процесса нержавейки
При сварке нержавейки используются специальные электроды с покрытием из защитно-легирующего состава, у которых стержень самого электрода сделан из высоколегированной специальной стали. Благодаря такому составу при смешивании металла с металлом и расплавлении электродов свариваемых деталей будет поддерживаться постоянный химический состав шва, который по структуре практически не будет отличаться от нержавеющей стали, из которой произведена деталь.
Сварка производится без колебательных движений горелки, углом вперед на короткой дуге. Угол между присадочным материалом и электродом должен составлять не более 90°, и подача присадочной проволоки должна осуществляться непрерывно. После окончания процесса сваривания или обрыва дуги газ должен подаваться непрерывно до тех пор температура металла не опустится до 400°С.
Также кроме специальных электродов, применяемых для сварки, большой популярностью пользуется проволока из нержавейки, изготовленная тем же производителем, что и сталь, при этом для защиты от кислорода места сварки применяются специальные флюсы на основе оксидов или фторидные флюсы. Также на место сварки может подаваться гелий, аргон или смесь других инертных газов. Кроме того для равномерной подачи проволоки и заваривания часто применяются специальные полуавтоматические сварочные установки, в которых автоматический механизм может осуществлять подачу проволоки непрерывно.
Кислород
Кислород — самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.
Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.
История открытия кислорода.
Впервые кислород был получен 1 августа 1774 года при химических опытах английского химика Джозефа Пристли, который проводил лабораторные работы над оксидом ртути, направляя солнечные лучи с помощью линзы на это соединение. При разложении оксида ртути, Джозефу Пристли удалось выделить простое вещество, которому он дал название «дифлогистированный воздух». В 1775 году Антуан Лавуазье исследовал открытие Джозефа Пристли и установил, что полученный при химической реакции газ, является составным элементом атмосферного воздуха, кислот и многих других веществ. Полученный Джозефом Пристли газ был назван Кислородом. Название «Кислород» произошло от латинского «Oxygenium». Ещё до Пристли, в 1771 году, исследования кислорода проводил шведский химик Карл Шееле. Своему открытию Карл Шееле дал название «огненный воздух», описание которого он изложил в книге. Поскольку публикация книги Шееле произошла позже открытия Пристли, открытие кислорода присвоено именно Джозефу Пристли. В истории открытия кислорода важную роль сыграли опубликованные ранее работы по окислению и разложению ртути, которые проводил французский химик Пьер Байен. Окончательную точку в истории открытия кислорода и итог определения названия открытия поставил французский химик Антуан Лавуазье, оперируя ранее полученными результатами Пристли и Шееле.
Антуан Лавуазье назвал полученный газ «Oxygene». После введения Ломоносовым М. В. слова «кислота» появилось название на русском языке «кислород» (от греч. зн. «рождающий кислоту»).
Получение кислорода.
Получение кислорода происходит двумя способами: промышленным и лабораторным.
Промышленный способ получения кислорода заключается в криогенной ректификации и в применении специальных мембранных кислородных установок.
В лабораториях используют технический кислород (произведённый промышленным путём), который доставляют в металлических кислородных баллонах под давлением 14,7 МПа (150 кгс/см²). В лабораториях получение кислорода ведётся путём нагревания перманганата калия KMnO4, но количество получаемого кислорода не велико. Ещё одним из лабораторных способов получения кислорода является реакция каталитического разложения пероксида водорода, при которой катализатором будет диоксид марганца. При каталитическом разложении хлората калия, также выделяется кислород. Лабораторными способами получения кислорода также являются реакция разложения оксида ртути и электролиз водного щелочного раствора.
Физические свойства кислорода.
Кислород может иметь газообразный, жидкий или твёрдый вид. При нормальных условиях окружающей среды, кислород будет бесцветным газом «парамагнетиком», не имеющим запаха и вкуса. Молекулярная масса кислорода равна 15,9994 г/моль, а масса 1 литра газообразного кислорода равна 1,429 грамма. Следует обратить внимание на то, что кислород слабо растворим в воде или спирте, но обладает высокой растворимостью в расплавленном серебре.
При повышении температуры газообразного кислорода, происходит его обратимый распад на атомы: +2000 C° — 0,03%; +4000 C° — 59%, а при температуре +6000 C° — уже 99,5%.
Оранжевые кристаллы образуются при давлении в интервале 6-8 ГПа. При давлении 10-96 ГПа, цвет кристаллов будет в диапазоне от тёмно-красного оттенка до чёрного цвета. При давлении, превышающем 96 ГПа – кристаллы твёрдого кислорода приобретают металлический блеск и при низких температурах обретают свойство сверхпроводимости.
Химические свойства кислорода.
Применение кислорода.
Кислород применяется в разных областях человеческой деятельности:
Металлургия. Кислород применяется, при производстве стали и при выработке некоторых цветных металлов.
Сварка и резка металлов. При газосварочных работах и резке металлов может использоваться кислород в баллонах.
Ракетное топливо. В ракетном топливе жидкий кислород применяется в качестве мощного окислителя.
Медицина. В медицине кислород используется в металлических кислородных баллонах. Кислород используется в медицинской аппаратуре искусственного дыхания.
Пищевая промышленность. Кислород является зарегистрированной пищевой добавкой E948 и применяется в качестве упаковочного газа.
Химическая промышленность. Кислород – это мощный реактив-окислитель!
Токсические производные кислорода.
Реактивные формы кислорода (в том числе озон) являются очень токсичными для живых организмов продуктами, которые получаются при активировании или частичном восстановлении кислорода.
Углекислота
Углекислый газ CO2 (углекислота, двуокись углерода, диоксид углерода, угольный ангидрид) в зависимости от давления и температуры может находиться в газообразном, жидком или твердом состоянии.
В газообразном состоянии диоксид углерода представляет собой бесцветный газ с немного кисловатым вкусом и запахом. В атмосфере Земли содержится около 0,04% углекислого газа. При нормальных условиях его плотность составляет 1,98 г/л – примерно в 1,5 раза больше плотности воздуха.
Жидкий диоксид углерода (углекислота) представляет собой бесцветную жидкость без запаха. При комнатной температуре она существует только при давлении свыше 5850 кПа. Плотность жидкой углекислоты сильно зависит от температуры. Например, при температуре ниже +11°С жидкая углекислота тяжелее воды, при температуре выше +11°С – легче. В результате испарения 1 кг жидкой углекислоты при нормальных условиях образуется примерно 509 л газа.
В промышленности наиболее распространены 3 способа получения углекислого газа:
Согласно ГОСТ 8050-85 газообразная и жидкая углекислота поставляется трех видов: высшего, первого и второго сортов. Для сварки рекомендуется использовать углекислоту высшего и первого сорта. Применение углекислоты второго сорта для сварки допускается, однако желательно наличие осушителей газа.
Меры безопасности при работе с углекислым газом:
Углекислота не токсична и не взрывоопасна, однако при ее концентрациях в воздухе свыше 5% (92г/м3) снижается доля кислорода, что может привести к кислородной недостаточности и удушью. Поэтому следует опасаться ее скапливания в плохо проветриваемых помещениях. Для регистрации концентрации углекислоты в воздухе производственных помещений применяются газоанализаторы – стационарные автоматические или переносные.
Осмотр внутренней емкости ранее эксплуатируемой цистерны для хранения и транспортирования жидкой углекислоты необходимо проводить в шланговом противогазе. Цистерну необходимо отогреть до температуры окружающей среды, а внутреннюю емкость продуть воздухом или провентилировать. Противогаз разрешается не использовать только после того, как объемная доля углекислоты внутри оборудования станет ниже 0,5%.
Применение углекислого газа при сварке:
Углекислый газ применяется в качестве активного защитного газа при дуговой сварке (обычно при полуавтоматической сварке) плавящимся электродом (проволокой), в том числе в составе газовой смеси (с кислородом, аргоном).
Снабжение сварочных постов углекислым газом может осуществляться следующими способами:
Автономная станция по производству углекислоты – отдельный специализированный цех предприятия, производящий диоксид углерода для собственных нужд и поставки другим организациям. Углекислый газ подается к сварочным постам по газопроводам, проложенным в сварочных цехах.
При небольших объемах потребления углекислого газа или невозможности проведения трубопроводов к сварочным постам для снабжения углекислым газом используются баллоны. В стандартный черный баллон емкостью 40 л заливают 25 кг жидкой углекислоты, которая обычно хранится при давлении 5–6 МПа. В результате испарения 25 кг жидкой углекислоты образуется примерно 12 600 л газа.
Для отбора газа из баллона он должен оснащаться редуктором, подогревателем газа и осушителем газа. При выходе углекислого газа из баллона в результате его расширения происходит адиабатическое охлаждение газа. При высокой скорости расхода газа (более 18 л/мин) это может привести к замерзанию содержащихся в газе паров воды и закупорке редуктора. В связи с этим между редуктором и вентилем баллона желательно размещать подогреватель газа. При прохождении газа по змеевику он подогревается электрическим нагревательным элементом, включенным в сеть с напряжением 24 или 36В.
Для извлечения влаги из углекислого газа применяется осушитель газа. Он представляет собой корпус, заполненный материалом (обычно силикагелем, медным купоросом или алюмогелем), хорошо впитывающим влагу. Осушители бывают высокого давления, устанавливаемые до редуктора, и низкого давления, устанавливаемые после редуктора.