Что транспортирует активный транспорт

Активный транспорт, из которого он состоит, первичный и вторичный транспорт

активный транспорт это тип клеточного транспорта, через который растворенные молекулы движутся через клеточную мембрану, из области, где концентрация растворенных веществ ниже, в область, где концентрация их выше.

Естественно, что молекулы движутся со стороны, где они наиболее сконцентрированы, в сторону, где они менее сконцентрированы; это то, что происходит спонтанно, без применения какой-либо энергии в процессе. В этом случае говорят, что молекулы движутся в пользу градиента концентрации.

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

Напротив, в активном транспорте частицы движутся против градиента концентрации и, следовательно, потребляют энергию от клетки. Эта энергия обычно поступает из аденозинтрифосфата (АТФ).

Иногда растворенные молекулы имеют более высокую концентрацию внутри клетки, чем снаружи, но если организм нуждается в них, эти молекулы транспортируются внутрь некоторыми транспортными белками, которые находятся в клеточной мембране..

Что такое активный транспорт??

Чтобы понять, из чего состоит активный транспорт, необходимо понять, что происходит с обеих сторон мембраны, через которую происходит транспорт..

Когда вещество находится в разных концентрациях на противоположных сторонах мембраны, говорят, что существует градиент концентрации. Поскольку атомы и молекулы могут иметь электрический заряд, то также могут образовываться электрические градиенты между отсеками с обеих сторон мембраны..

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

Существует различие в электрическом потенциале каждый раз, когда происходит чистое разделение зарядов в пространстве. Фактически, живые клетки часто имеют то, что называется мембранным потенциалом, который представляет собой разницу в электрическом потенциале (напряжении) на мембране, что вызвано неравномерным распределением зарядов..

Градиенты распространены в биологических мембранах, поэтому для перемещения определенных молекул против этих градиентов часто требуются затраты энергии..

Энергия используется для передачи этих соединений через белки, которые вставляются в мембрану и функционируют как транспортеры.

Если белки вставляют молекулы против градиента концентрации, это активный транспорт. Если транспорт этих молекул не требует энергии, транспорт считается пассивным. В зависимости от того, откуда берется энергия, активный транспорт может быть первичным или вторичным.

Основной активный транспорт

Одним из наиболее важных примеров в биологии, иллюстрирующих этот механизм первичного активного транспорта, является натрий-калиевый насос, который находится в клетках животных и чья функция важна для этих клеток..

Вторичный активный транспорт

Энергия, используемая вторичным активным транспортом, исходит из градиентов, генерируемых первичным активным транспортом, и может использоваться для транспортировки других молекул против их градиентов концентрации..

Например, при увеличении концентрации ионов натрия во внеклеточном пространстве из-за работы натриево-калиевого насоса создается разность концентраций этого иона с обеих сторон мембраны с помощью электрохимического градиента..

В этих условиях ионы натрия имеют тенденцию двигаться в пользу своего градиента концентрации и возвращаться во внутрь клетки через транспортерные белки.

Co-перегружатели

Эту энергию электрохимического градиента натрия можно использовать для переноса других веществ против их градиентов. То, что происходит, является общим транспортом и осуществляется транспортными белками, называемыми ко-транспортерами (потому что они транспортируют два элемента одновременно).

Примером важного котранспортера является белок обмена натрия и глюкозы, который транспортирует катионы натрия в пользу своего градиента и, в свою очередь, использует эту энергию для проникновения молекул глюкозы против своего градиента. Это механизм, по которому глюкоза проникает в живые клетки..

В предыдущем примере белок ко-транспортер перемещает два элемента в одном направлении (внутрь клетки). Когда оба элемента движутся в одном направлении, белок, который их транспортирует, называется простым.

Тем не менее, ко-транспортеры могут также мобилизовать соединения в противоположных направлениях; в этом случае белок-носитель называется антипортером, хотя они также известны как обменники или контртранспортеры.

Примером антипортера является натриевый и кальциевый обменник, который выполняет один из наиболее важных клеточных процессов для удаления кальция из клеток. При этом используется энергия электрохимического градиента натрия для мобилизации кальция вне клетки: один катион кальция выходит на каждые три катиона натрия, которые входят.

Разница между экзоцитозом и активным транспортом

Экзоцитоз является еще одним важным механизмом клеточного транспорта. Его функция заключается в удалении остаточного материала из клетки во внеклеточную жидкость. При экзоцитозе транспорт опосредуется везикулами.

Основное различие между экзоцитозом и активным транспортом заключается в том, что при экзозитозе транспортируемая частица оборачивается структурой, окруженной мембраной (везикулой), которая сливается с клеточной мембраной, высвобождая свое содержимое наружу..

При активной транспортировке транспортируемые элементы можно перемещать в обоих направлениях внутрь или наружу. Напротив, экзоцитоз только переносит свое содержимое наружу.

Наконец, активный транспорт включает белки как средство транспорта, а не мембранные структуры, как при экзоцитозе..

Источник

Активный и пассивный транспорт через мембрану

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

Ты уже шаришь какое строение у биологических мембран, так что можно переходить к тому, как вся эта система работает. И начнем мы с транспорта веществ через мембрану. Довольно важная тема, без нее мы не поймем, как формируется потенциал действия, как в клетку попадают энергетические субстраты и вода. Так что присаживаемся поудобнее и поехали!

Виды транспорта через мембрану

Начнем с небольшой классификации. Транспорт можно разделить на пассивный и активный (никаких шуток про геев мне тут), такое разделение основано на затратах энергии. При пассивном транспорте — затрат энергии нет, а при активном транспорте — есть. Это может быть энергия заключенная в АТФ, либо энергия градиента концентрации. Не пугаемся, дальше все будем разбирать подробнее. Еще есть особенный транспорт — экзоцитоз и эндоцитоз (транспортируются макромолекулы), их скорее можно отнести к активному транспорту, но мы рассмотрим их отдельно.

Пассивный транспорт через мембрану

Здесь всего два вида — простая диффузия и облегченная диффузия. В чем отличие? При облегченной диффузии для молекулы, которая будет проходить через мембрану нужен проводник — белок переносчик. Для простой диффузии же переносчик не требуется, она и сама справляется.

Диффузия

Она идет по градиенту концентрации — если на одной стороне мембраны вещества много, то оно будет стремиться перейти на другую сторону. На самом деле диффузия зависит не только от градиента концентрации — еще на нее влияет заряд мембраны и частиц, которые пытаются пройти через мембрану, и давление.

Вспоминаем, что основа мембраны — это амфифильные липиды. Если вещество растворимо в липидах, то оно без проблем перейдет на другую сторону. Лучше всего растворимы в липидах неполярные и незаряженные молекулы (CO2,O2, стероидные гормоны). Но через мембрану могут проходить полярные молекулы и незаряженные (тонированные), но здесь все решает размер. Вода пройдет через мембрану, а вот глюкоза — нет. Вода хоть и проходит через мембрану, но хуже чем неполярные и незаряженные молекулы, поэтому для нее есть специальные поры (аквапорины). Кстати, возможно аквапорины еще нужны потому, что вода в растворе переходит в ион гидроксония.

А вот совсем не могут пройти заряженные и полярные молекулы — ионы натрия, калия, гидроксония. Поэтому простую диффузию разделим еще на два варианта:

1) Диффузия жирорастворимых веществ. Молекула растворима в мембране, то есть она неполярная и незаряженная. Она спокойно проходит через мембрану. Избранные молекулы проходят так — O2, CO2, стероидные и тиреоидные гормоны.

Отличие каналов и пор

Отличие каналов и пор в том, что первые открыты не всегда, а вторые постоянно. У натриевых и калиевых каналов есть шляпка (или ворота), которая открывается двумя способами — в зависимости от типа клетки. Первый способ — изменение электрического заряда мембраны (или ее потенциала). Потеря отрицательного заряда клеткой ведет к открытию натриевых каналов — это важно для потенциала действия. Второй способ — действие химического вещества. Есть ацетилхолиновые каналы, которые открываются под действием(угадайте сами чего)… Так нервные клетки передают сигнал о сокращении мышцам.

Представьте два входа в клуб и один отдельный выход из него. Перед каждым входом стоит фейсер, но в первом нет двери — там просто дверной проем, а у второго и третьего дверь есть и для нее нужен ключик. Первый вход — это пора, молекула воды подходит к нему и фейсер пропускает ее, но иногда в толпе воды может затеряться другая молекула, например, мочевина. Фейсер по ошибке пропускает ее, ну а что — за всеми не углядишь, и она попадает внутрь клетки. Ко второму входу подходит ион натрия, фейсер его пропускает, но войти он не может пока дверь не откроют ключом — изменением потенциала или ацетилхолином. У выхода из клуба тоже стоит фейсер, вот такой вот странный клуб, к нему подходит ион калия и ждет пока дверь откроется таким же ключом. Фейсеры — это часть канала или поры, которая отвечает за узнавание ионов и молекул, а дверь или проем — это сам канал. Ну вы поняли.

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

Почему клеткам просто не забить: убрать фейсеров и держать двери постоянно открытыми? Смотрите — внутри клетки много калия, но мало натрия. В межклеточном веществе наоборот, очень много натрия и мало калия. А это значит, что калий стремится сбежать из клетки, а натрий войти в клетку.

Во-первых, такая разница ионов создает заряд внутри клетки — отрицательный, если бы каналы были постоянно открыты, то такой разницы бы не существовало, клетка стала бы незаряженной. Что не очень хорошо, так как она не сможет создать потенциал действия. Во-вторых, натрий это любимчик воды и если в клетке его будет много, то будет много и воды. Клетка просто лопнет от такой тусовки.

Облегченная диффузия

Здесь молекуле, которая идет тоже по градиенту концентрации, необходим переносчик. Все это из-за того, что молекула слишком большая для перехода через мембрану самостоятельно. Переносчик — это интегральный белок, который пронизывает мембрану, у него тоже есть фейсер (только здесь это участок связывания). При взаимодействии молекулы с переносчиком — он изменяет свою структуру (конформационные изменения белка) и переносит молекулу в клетку, а затем возвращается обратно.

Такой механизм характерен для переносчиков глюкозы — ГЛЮТов в жировой и мышечной ткани. Однако ГЛЮТы не всегда находятся на поверхности клетки, а только после еды — повышенный уровень глюкозы в крови вызывает секрецию инсулина из Б-клеток островков Лангерганса. Инсулин действует на жировую и мышечную ткань и взывает к ГЛЮТам, которые встраиваются в мембрану. Ой, как-то на автомате получилось. Еще таким способом транспортируются аминокислоты.

Смотрите, еще один прикол. Эти переносчики могут работать в обе стороны, все зависит от градиента концентрации глюкозы. Если ее будет слишком много в клетке, то они могут выкидывать ее в кровь. Прикольненько?

Если интересно, что быстрее: диффузия или облегченная диффузия, то вот график. Видим, что вначале быстрее облегченная диффузия, а потом обычная. Почему? Просто белки могут связать только одну молекулу, когда молекул глюкозы становится очень много, то все переносчики связаны с ней. Наступает насыщение переносчиков, и они не могут быстрее работать. Диффузия же не зависит от переносчиков, но она немного медленнее.

Пассивный транспорт все, поэтому давайте суммируем все и добавим в нашу начальную схему.

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

Активный транспорт

Здесь для переноса вещества через мембрану необходимо приложить энергию. Но зачем, а главное почему? Потому что такой транспорт идет против градиента концентрации, а без прикладывания энергии молекулу или ион просто не вытолкнуть. Разделяется на два варианта: первично-активный транспорт и вторично-активный транспорт, отличие между ними поймете чуть ниже.

Первично-активный транспорт

Здесь для того, чтобы перенести молекулы/ионы вещества на другую сторону мембраны используется энергия молекул АТФ. Классический вариант — натрий-калиевый насос. Этот насос представляет из себя белок, а именно фермент — АТФазу (помните, что «не все белки — ферменты, но все ферменты — белки» — десятая заповедь от кафедры биохимии). Занимается тем, что переносит ионы натрия из клетки, а ионы калия внутрь клетки. То есть работает против градиента концентрации, ведь натрия очень много вне клетки, а калия наоборот мало.

У насоса есть участки связывания — два для калия и три для натрия. Состоит из двух субъединиц — альфа и бета, альфа это и есть переносчик, а бета похоже якорит его в мембране. На один цикл: переноса трех ионов натрия из клетки и двух ионов калия внутрь клетки, требуется одна молекула АТФ. Как видим, этот насос создает разницу потенциалов, так как в обмен на три заряженных иона внутрь клетки поступает только два — этому пареньку мы обязаны за отрицательный заряд внутри клетки. Действует такой насос во всех клетках, он не дает клетке лопнуть из-за избытка натрия (вспоминаем про воду).

Кроме такого насоса есть еще несколько — Ca ++ и H + — АТФазы. Избыток кальция вредит клетке, так как он может запустить апоптоз. Водородный насос действует в париетальных клетках желудка и дистальном отделе канальца нефрона — в первом случае он создает кислую среду в желудке для функционирования пепсина. Да и вообще, из внешней среды поступает много всякой заразы, которой неприятно встречаться с кислотой. Во втором случае насос перемещает ионы водорода в просвет канальца. Полезная штука, а то прикинь — позанимался спортом и умер от ацидоза, не круто.

Вторично-активный транспорт

Тут одна молекула идет по градиенту концентрации и энергия, которая создается ей, используется для переноса другой молекулы. Представляете, сколько всего ионов натрия во внеклеточной жидкости? Вот и я не представляю, но очень много, а в клетке же наоборот его очень мало. Такая разница создает просто огромную энергию, которая идет на работу белка переносчика. Этот белок переносчик, как вы уже поняли — интегральный белок и имеет два участка связывания. Эти участки могут находиться на одной стороне белка или на разных. Поэтому такой транспорт можно разделить на два варианта:

1) Молекула, которая идет против градиента концентрации, переносится в одну сторону с молекулой, которая идет по градиенту концентрации. Это называется котранспорт (или симпорт). Так переносятся молекулы глюкозы и аминокислот из кишечника и канальцев нефрона. Натрий идет по градиенту концентрации внутрь клетки и захватывает с собой глюкозу или аминокислоты. Тут ты можешь сказать : «Чет странно, ведь в кишке много глюкозы после еды, почему она идет против градиента?». И да, это верно, в кишечнике много глюкозы. Но клеток очень много, а глюкоза растянута по всей поверхности кишки. Вот и получается, что в кишке ее много, но возле каждой клетки маловато. Такая же тема с аминокислотами.

2) Молекула идет против градиента концентрации, но не в одну сторону с переносимым по градиенту концентрации веществом — контртранспорт (или антипорт). Так происходит транспорт ионов водорода в проксимальных канальцах нефрона: водород попадает в просвет канальца, а натрий внутрь клетки.

Ну что сведем все это опять в нашу табличку?

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт Если не очень хорошо видно, то в конце есть файл со всеми схемами. Извиняйте.

Все что мы разбирали до этого относится к небольшим по размерам молекулам, а что делать с большими? Для этого есть две легенды, о которых ниже.

Экзоцитоз и эндоцитоз

Начнем с экзоцитоза и сделаем это на каком-нибудь примере. Пусть это будут пищеварительные ферменты в поджелудочной железе. Синтезировала значит клетка липазу, но она ведь внутри клетки — это значит проку от нее мало. Нужно ее как-то переместить в проток поджелудочной железы, хорошо было бы использовать белок переносчик. А тут проблемка. Липаза слишком большая — ее не засунуть в белок переносчик. Но ничего — у клетки есть выход.

Все ферменты, белки плазмы, пептидные гормоны и так далее, синтезируются в упаковке — пузырьке (по строению он амфифильный). Оно и правильно, представьте — липаза попадает в цитоплазму клетки и просто переваривает ее. Эти пузырьки направляются к мембране, сливаются с ней и попадают в кровь, межклеточное вещество или проток поджелудочной железы. В общем куда им надо, туда они и попадают.

Теперь эндоцитоз. Все тоже самое только наоборот — это мое лучшее объяснение… Ладно, шутки кончились. На клеточной мембране есть определенный участок с рецепторами — окаймленная ямка. На рецепторах накапливаются макромолекулы, а потом ямка погружается в клетку и охватывает их, образуя пузырек. Этот пузырек направляется к лизосоме, где из него образуются мономеры. Эти мономеры клетка использует по своему усмотрению. Посмотрите картинку и все поймете, базарю.

Таким способом идет фагоцитоз лейкоцитами, а еще так в клетку попадают липопротеиды низкой плотности — это переносчики холестерина и жирных кислот.

Транспорт через несколько слоев клеток

Буквально пару слов. Разберем на примере кишки — там несколько слоев (три, ну ладно — четыре, если с подслизистой). Через все должна пройти глюкоза, но как? Это похоже на эстафету: сначала из кишечника вторично-активным транспортом глюкоза попадает в клетку, потом в следующую клетку уже по облегченной диффузии. Так она доходит до крови, а дальше уже идет по своим делам. Всё!

Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.

Источник

Активный транспорт

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Электрохими́ческий градиéнт, или градиéнт электрохимического потенциáла, — совокупность градиента концентрации и мембранного потенциала, которая определяет направление движения ионов через мембрану. Состоит из двух составляющих: химического градиента (градиента концентрации), или разницы в концентрациях растворённого вещества по обе стороны мембраны, и электрического градиента (мембранного потенциала), или разницы зарядов, расположенных на противоположных сторонах мембраны. Градиент возникает вследствие.

Статья посвящена Н+/К+-АТФазе слизистой оболочки желудка.Водоро́дно-ка́лиевая аденозинтрифосфата́за (другие названия: Н+/К+-АТФа́за, Н+/K+-аденозинтрифосфата́за, ка́лий-водоро́дная аденозинтрифосфата́за) — фермент класса гидролаз (КФ 3.6.3.10). В гастроэнтерологии и фармацевтике, ориентированной на органы пищеварения, вместо водородно-калиевая аденозинтрифосфатаза обычно используют синонимы: прото́нная по́мпа, прото́нный насо́с, прото́новый насо́с, или прото́новая по́мпа (особенно часто в словосочетаниях.

Принцип компартментализации клеток эукариот постулирует, что биохимические процессы в клетке локализованы в определённых отсеках, покрытых оболочкой из бислоя липидов. Большинство органоидов в эукариотической клетке являются компартментами — митохондрии, хлоропласты, пероксисомы, лизосомы, эндоплазматический ретикулум, ядро клетки и аппарат Гольджи. Внутри ряда компартментов (в том числе ядра) выделяются также субкомпартменты, различающиеся по форме и функциям.

Источник

Активный транспорт – полное руководство

Определение

Активный транспорт – это процесс передачи веществ в клетки, из клеток и между ними с использованием энергии. В некоторых случаях движение веществ может осуществляться пассивным транспортом, который не использует энергию. Однако ячейке часто требуется транспортировать материалы против градиента их концентрации. В этих случаях требуется активный транспорт.

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

Например, один тип активного транспортного канала в клеточной мембране будет связываться с молекулой, которую предполагается транспортировать, такой как ион натрия, и удерживать ее до тех пор, пока молекула АТФ не придет и не свяжется с белком. Энергия, запасенная в АТФ, позволяет каналу менять форму, выплевывая ион натрия на противоположную сторону клеточной мембраны. Этот тип активного транспорта напрямую использует ATP и называется «основным» активным транспортом.

Другим видом активного транспорта является «вторичный» активный транспорт. В этом типе активного транспорта белковый насос не использует саму АТФ, но клетка должна использовать АТФ, чтобы поддерживать его функционирование. Это будет объяснено более подробно в разделе о насосах Symport ниже.

Наконец, активный транспорт может осуществляться с помощью процессов, называемых эндоцитозом и экзоцитозом. При экзоцитозе клетка перемещает что-то вне себя в больших количествах, оборачивая ее в мембрану, называемую везикулой, и «выплевывая» везикулу. При эндоцитозе клетка «что-то ест», оборачивая и переформируя свою мембрану вокруг вещества или предмета.

Каждый тип активного транспорта объясняется более подробно ниже.

Типы активного транспорта

Антипорт Насосы

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

Одним из важных типов антипортовых насосов является натриево-калиевый насос, который более подробно обсуждается в разделе «Примеры активного транспорта».

Symport Pumps

В насосах Symport используются диффузионные градиенты для перемещения веществ. Диффузионные градиенты – это различия в концентрации, которые заставляют вещества естественным образом перемещаться из областей с высокой и низкой концентрацией.

В случае симпортного насоса вещество, которое «хочет» переместиться из области высокой концентрации в низкую концентрацию вниз по градиенту концентрации, используется для «переноса» другого вещества против градиента концентрации.

Один из примеров симпорт-насоса – белка транспорта натрия-глюкозы – обсуждается ниже в разделе «Примеры активного транспорта».

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

При эндоцитозе клетка использует белки в своей мембране, чтобы сложить мембрану в форме кармана. Этот карман формируется вокруг содержимого, которое нужно взять в камеру. Карман растет до тех пор, пока не сжимается, переформируя клеточную мембрану вокруг него и захватывая карман и его содержимое внутри клетки. Эти мембранные карманы, которые несут материалы внутри или между клетками, называются «пузырьками».

Складывание клеточной мембраны осуществляется по механизму, аналогичному антипортовому транспорту ионов калия и натрия. Молекулы АТФ связываются с белками в клеточной мембране, заставляя их менять свою форму. Конформационные изменения многих белков вместе изменяют форму клеточной мембраны до образования пузырька.

При опосредованном рецептором эндоцитозе клеточный рецептор может распознавать конкретную молекулу, которую клетка «хочет» принять, и образовывать везикулу вокруг области, где она распознает молекулу. При других типах эндоцитоза клетка полагается на другие сигналы для распознавания и поглощения определенной молекулы.

экзоцитоз

Экзоцитоз является противоположностью эндоцитоза. При экзоцитозе клетка создает везикулу, заключающую что-то внутри клетки, с целью ее перемещения за пределы клетки через мембрану. Это чаще всего происходит, когда клетка хочет «экспортировать» важный продукт, такой как клетки, которые синтезируют и экспортируют ферменты и гормоны, которые необходимы по всему организму.

В эукариотических клетках белковые продукты образуются в эндоплазматической сети. Они часто упаковываются эндоплазматическим ретикулумом в пузырьки и отправляются в аппарат Гольджи.

Аппарат Гольджи можно представить как сотовое «почтовое отделение». Он получает пакеты из эндоплазматического ретикулума, обрабатывает их и «обращается» к ним, добавляя молекулы, которые будут распознаваться рецепторами на мембране клетки, предназначенной для приема продукта.

Затем аппарат Гольджи упаковывает готовые «адресованные» продукты в собственные пузырьки. Эти везикулы движутся к клеточной мембране, стыкуются и сливаются с ней, позволяя мембране везикулы становиться частью клеточной мембраны. Содержимое пузырька затем проливается во внеклеточное пространство.

Что транспортирует активный транспорт. Смотреть фото Что транспортирует активный транспорт. Смотреть картинку Что транспортирует активный транспорт. Картинка про Что транспортирует активный транспорт. Фото Что транспортирует активный транспорт

Именно этот градиент позволяет нашим нервным клеткам срабатывать, вызывая сокращения мышц, ощущения и даже мысли. Даже наша сердечная мышца полагается на эти ионные градиенты, чтобы сжиматься!

Способность натриево-калиевого насоса транспортировать калий в клетки при транспортировке натрия из клеток настолько важна, что, по некоторым оценкам, мы тратим 20-25% всей энергии, которую мы получаем от пищи, просто выполняя эту единственную задачу! В нейронах подавляющее большинство энергии клетки используется для питания натриево-калиевых насосов.

Это может звучать как много энергии, но это важная и монументальная задача; именно этот насос позволяет нам двигаться, думать, качать кровь по всему телу и воспринимать мир вокруг нас.

Натрий-глюкоза транспортный белок

Известным примером симпортного насоса является белок транспорта натрия-глюкозы. Этот белок связывается с двумя ионами натрия, которые «хотят» проникнуть в клетку, и одной молекулой глюкозы, которая «хочет» оставаться вне клетки. Это важный метод транспорт сахара в организме, необходимом для обеспечения энергии для клеточного дыхания.

Естественная диффузия ионов натрия внутри клетки облегчает движение глюкозы в клетку. Глюкоза может быть перенесена в клетку с натрием без транспортного белка, расходующего АТФ. Однако АТФ должен использоваться натриево-калиевым насосом в другом месте клетки, чтобы поддерживать градиент натрия на месте. Без градиента натрия транспорт натрия-глюкозы не мог функционировать.

Белые кровяные клетки, уничтожающие патогены

важный пример Эндоцитоз – это процесс, посредством которого лейкоциты «питаются» патогенами. Когда белые кровяные клетки распознают инородный объект внутри тела, такой как бактерия, они складывают клеточную мембрану вокруг него, чтобы перенести его в цитоплазму.

Затем они объединяют пузырь, содержащий захватчик, с лизосомой – пузырьком, содержащим сильные химические вещества и ферменты, которые могут разрушаться и переваривать органическое вещество. По сути, они создали сотовый «желудок», чтобы «переварить» захватчика!

В чем разница между активным транспортом и пассивным транспортом?

Активный транспорт перемещает вещества из области более низкой концентрации в более высокую концентрацию, то есть против градиента концентрации. Существует потребность в энергии для этого процесса, так как он не происходит естественным образом в отсутствие активных сил.

Напротив, пассивный транспорт происходит естественным образом, поскольку вещества движутся вниз по градиенту концентрации в отсутствие энергии. Следовательно, основное различие между активным и пассивным транспортом – это потребность в энергии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *