Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ ΠΈ Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΒ­Ρ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² любой Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ΅ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ зависят Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ Π΅Π΅ полоТСния Π² ΠΏΠΎΡ‚ΠΎΠΊΠ΅, Ρ‚. Π΅. ΡΠ²Π»ΡΡŽΡ‚ΡΡ функциями Π΅Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ двиТСния ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ истСчСниС Тидкости ΠΈΠ· отвСрстия Ρ€Π΅Π·Π΅Ρ€Π²ΡƒΠ°Ρ€Π° ΠΏΡ€ΠΈ постоянном Π½Π°ΠΏΠΎΡ€Π΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΡ‚ΠΎΠΊ Π²ΠΎΠ΄Ρ‹ Π² ΠΊΠ°Π½Π°Π»Π΅ ΠΏΡ€ΠΈ Π½Π΅Β­ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΌ Π΅Π³ΠΎ сСчСнии ΠΈ постоянной Π³Π»ΡƒΠ±ΠΈΠ½Π΅.

ΠΠ΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΒ­Ρ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈΠ·ΠΌΠ΅Β­Π½ΡΡŽΡ‚ΡΡ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚. Π΅. ΡΠ²Π»ΡΡŽΡ‚ΡΡ функциями Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½ΠΎ ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ двиТСния слуТит истСчСнии Тидкости ΠΈΠ· отвСрстия Ρ€Π΅Π·Π΅Ρ€Π²ΡƒΠ°Ρ€Π° ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Β­Π½ΠΎΠΌ Π½Π°ΠΏΠΎΡ€Π΅. Π’ этом случаС Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ сСчСния струи, Π²Ρ‹Ρ‚Π΅Β­ΠΊΠ°ΡŽΡ‰Π΅ΠΉ ΠΈΠ· отвСрстия, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Линия Ρ‚ΠΎΠΊΠ°. Π’ Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… 1, 2, 3 ΠΈ Ρ‚. Π΄. ΠΏΠΎΡ‚ΠΎΠΊΠ°, взятых Π½Π° расстоя­нии Ξ”S Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π°, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ u1, u2, u3, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ скоростСй двиТСния частиц Тидкости Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 1.18). ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π»ΠΎΠΌΠ°Π½ΡƒΡŽ линию 1β€”2β€” 3ΠΈ Ρ‚. Π΄. Если ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ ΠΎΡ‚Β­Ρ€Π΅Π·ΠΊΠΎΠ² Ξ”S, Ρ‚ΠΎ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π΅ ломаная линия станСт ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Рис. 1.18. БхСматичСскоС ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ Ρ‚ΠΎΠΊΠ° Π² ΠΏΠΎΡ‚ΠΎΠΊΠ΅

Π­Ρ‚Π° кривая, называСмая Π»ΠΈΠ½ΠΈΠ΅ΠΉ Ρ‚ΠΎΠΊΠ°, характСризуСтся Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π²ΠΎ всСх Π΅Π΅ Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скоростСй Π±ΡƒΒ­Π΄ΡƒΡ‚ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊ Π½Π΅ΠΉ.

ЭлСмСнтарная струнка. Если Π² двиТущСйся Тидкости Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ бСсконСчно ΠΌΠ°Π»Ρ‹ΠΉ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚ΡƒΡ€ ΠΈ Ρ‡Π΅Ρ€Π΅Π· всС Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ провСсти Π»ΠΈΠ½ΠΈΠΈ Ρ‚ΠΎΠΊΠ°, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΌΡƒ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, получится ΠΊΠ°ΠΊ Π±Ρ‹ трубчатая нСпроницаСмая ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ, называСмая Ρ‚Ρ€ΡƒΠ±ΠΊΠΎΠΉ Ρ‚ΠΎΠΊΠ°.

Масса Тидкости, двиТущСйся Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ Ρ‚ΠΎΠΊΠ°, ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΡƒΡŽ струйку.

ΠŸΠΎΡ‚ΠΎΠΊ. Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ элСмСнтарных струСк, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ собой Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΡƒΡŽ массу частиц, двиТущихся Π½ΠΎ ΠΊΠ°ΠΊΠΎΠΌΡƒ-Π»ΠΈΠ±ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ, ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΠΏΠΎΡ‚ΠΎΠΊ Тидкости. ΠŸΠΎΡ‚ΠΎΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Β­Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ»ΠΈ частично ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΌΠΈ стСнками, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π² Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π΅ ΠΈΠ»ΠΈ ΠΊΠ°Π½Π°Π»Π΅, ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ свободным, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ струя, выходящая ΠΈΠ· сопла Π³ΠΈΠ΄Ρ€ΠΎΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€Π°.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Рис. 1.19. Условия ΠΏΠ»Π°Π²Π½ΠΎ ΠΈΠ·Β­ΠΌΠ΅Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ двиТСния

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Β­Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΆΠΈΠ²Ρ‹Π΅ сСчСния ΠΈ срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π½Π΅ ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΠΎ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Π΅. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ дви­ТСния слуТит Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Π² цилиндричСской Ρ‚Ρ€ΡƒΠ±Π΅ ΠΈΠ»ΠΈ Π² ΠΊΠ°Π½Π°Β­Π»Π΅ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ сСчСния ΠΈ постоянной Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹.

НСравномСрным Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тид­кости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΆΠΈΠ²Ρ‹Π΅ сСчСния ΠΈ срСдниС скорости ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΈΠ·Β­ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΠΎ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Π΅. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния слуТит Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Π² коничСской Ρ‚Ρ€ΡƒΠ±Π΅, Π² СстСствСнном руслС, Π½Π° ΠΏΠ΅Ρ€Π΅ΠΏΠ°Π΄Π΅.

ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π»ΠΈΠΏΠ½ΠΈ Ρ‚ΠΎΠΊΠ° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой систСму прямых ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ называСтся Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎβ€“ΡΡ‚Ρ€ΡƒΠΉΠ½Ρ‹ΠΌ. ΠŸΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Тидкости Π² СстСствСн­ных руслах ΠΆΠΈΠ²ΠΎΠ΅ сСчСниС ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ измСняСтся вдоль ΠΏΠΎΒ­Ρ‚ΠΎΠΊΠ° ΠΊΠ°ΠΊ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΠ΅, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости являСт­ся ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ. Для облСгчСния изучСния Ρ‚Π°Β­ΠΊΠΎΠ³ΠΎ двиТСния Π² Π³ΠΈΠ΄Ρ€Π°Π²Π»ΠΈΠΊΠ΅ Π²Π²Π΅Π΄Π΅Π½ΠΎ понятиС ΠΏΠ»Π°Π²Π½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅Β­Π³ΠΎΡΡ двиТСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ характСризуСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ свойствами (рис. 1.19):

ПослСднСС свойство просто обосновываСтся. Если Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΏΠ»Π°Π²Π½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ частицу Тидкости ΠΈ ΡΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΒ­Ρ€ΠΎΠ²Π°Ρ‚ΡŒ всС Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π½Π° Π½Π΅Π΅ силы ΠΏΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΆΠΈΠ²ΠΎΠ³ΠΎ сСчСния, Ρ‚ΠΎ вслСдствиС Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ скорости ΠΈ ускорСния ΠΏΠΎΡ‡Ρ‚ΠΈ пСрпСндикуляр­ны ΠΆΠΈΠ²ΠΎΠΌΡƒ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ, силы ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ равновСсия Π½Π΅ Π²ΠΎΠΉΠ΄ΡƒΡ‚; Π² связи с этим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ равновСсия ΠΈ Π·Π°ΠΊΠΎΠ½ распрСдСлСния давлСния Π² плоскости ΠΆΠΈΠ²ΠΎΠ³ΠΎ сСчСния Π½Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ ΠΎΡ‚ Π·Π°ΠΊΠΎΠ½Π° распрСдСлСния давлСния Π² Тидкости, находящСйся Π² ΠΏΠΎΠΊΠΎΠ΅.

Напорным называСтся ΠΏΠΎΡ‚ΠΎΠΊ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½ΠΎ всСму ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Ρƒ ΠΆΠΈΠ²ΠΎΠ³ΠΎ сСчСния ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ соприкасаСтся с Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΌΠΈ стСнками. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π½Π°ΠΏΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ΄Ρ‹ Π² Π²ΠΎΠ΄ΠΎΒ­ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½Ρ‹Ρ… Ρ‚Ρ€ΡƒΠ±Π°Ρ….

Π‘Π΅Π·Π½Π°ΠΏΠΎΡ€Π½Ρ‹ΠΌ называСтся ΠΏΠΎΡ‚ΠΎΠΊ со свободной ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π±Π΅Π·Π½Π°ΠΏΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° слуТит Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ΄Ρ‹ Π² Ρ€Π΅ΠΊΠ°Ρ…, ΠΊΠ°Π½Π°Π»Π°Ρ… ΠΈ ΠΊΠ°Π½Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚Ρ€ΡƒΠ±Π°Ρ….

1. Π’ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅ сплошной срСды ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π΄Π²Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° исслСдования – ΠΌΠ΅Ρ‚ΠΎΠ΄ Π›. Π­ΠΉΠ»Π΅Ρ€Π° ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π›Π°Π³Ρ€Π°Π½ΠΆΠ°.

Π’ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π›.Π­ΠΉΠ»Π΅Ρ€Π° Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ сплошной срСды Π² ΠΎΠ΄Π½ΠΈΡ… ΠΈ Ρ‚Π΅Ρ… ΠΆΠ΅ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… пространства. Π­Ρ‚ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ‡Π°Ρ‰Π΅ всСго ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² Π³ΠΈΠ΄Ρ€ΠΎΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠ΅. Π—Π΄Π΅ΡΡŒ Π΄Π°Π½Π½Ρ‹Π΅ расчСта Π»Π΅Π³ΠΊΠΎ ΡΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ экспСримСнтов, Ρ‚.ΠΊ. всС Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΈ (давлСния, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, скорости ΠΈ Ρ‚.ΠΏ.) ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… (Ρ‚Ρ€ΡƒΠ±, Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠ²ΠΎΠ΄ΠΎΠ² ΠΈ Ρ‚.ΠΏ.).

Π’ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π›Π°Π³Ρ€Π°Π½ΠΆΠ° Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ (ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°) Π² ΠΎΠ΄Π½ΠΈΡ… ΠΈ Ρ‚Π΅Ρ… ΠΆΠ΅ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… срСды. ΠœΠ΅Ρ‚ΠΎΠ΄ Π›Π°Π³Ρ€Π°Π½ΠΆΠ° Π±ΠΎΠ»Π΅Π΅ слоТный. Он ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… исслСдованиях ΠΈ Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ упругости. Π—Π΄Π΅ΡΡŒ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ частиц, Ρ‚.ΠΊ. здСсь Π²Π°ΠΆΠ½ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ‚Π΅Π»Π°. Π—Π΄Π΅ΡΡŒ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ вмСстС с Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π°.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π’ΠΈΠ΄Ρ‹ двиТСния Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ двиТСния Тидкости ΡΠ²Π»ΡΡŽΡ‚ΡΡ: Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ ΠΈ Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ, Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅, Π½Π°ΠΏΠΎΡ€Π½ΠΎΠ΅ ΠΈ Π±Π΅Π·Π½Π°ΠΏΠΎΡ€Π½ΠΎΠ΅, сплошноС ΠΈ прСрывистоС.

Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ называСтся Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ фиксированной Ρ‚ΠΎΡ‡ΠΊΠ΅ пространства, Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости,

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ пространства, Π½ΠΎ ΠΈ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, называСтся Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ ΠΈΠ»ΠΈ нСстационарным

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости,

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ двиТСния ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ истСчСниС Тидкости ΠΈΠ· отвСрстия ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ Π΅Π΅ Π² Ρ€Π΅Π·Π΅Ρ€Π²ΡƒΠ°Ρ€Π΅: с ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ высоты столба Тидкости ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ истСчСния ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ подраздСляСтся Π½Π° Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅.

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ называСтся Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΆΠΈΠ²Ρ‹Π΅ сСчСния вдоль ΠΏΠΎΡ‚ΠΎΠΊΠ° Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ: Π² этом случаС Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости; срСдниС скорости ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅ ΠΏΠΎΡ‚ΠΎΠΊΠ° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ, Ρ‚.Π΅. Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния являСтся: Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Π² цилиндричСской Ρ‚Ρ€ΡƒΠ±Π΅, Π² ΠΊΠ°Π½Π°Π»Π΅ постоянного сСчСния ΠΏΡ€ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… Π³Π»ΡƒΠ±ΠΈΠ½Π°Ρ….

Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ называСтся Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ, ΠΊΠΎΠ³Π΄Π° распрСдСлСниС скоростСй Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹Ρ… сСчСниях Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ; ΠΏΡ€ΠΈ этом срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈ достоянными вдоль ΠΏΠΎΡ‚ΠΎΠΊΠ°. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Π² коничСской Ρ‚Ρ€ΡƒΠ±Π΅ ΠΈΠ»ΠΈ Π² Ρ€Π΅Ρ‡Π½ΠΎΠΌ руслС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡˆΠΈΡ€ΠΈΠ½Ρ‹.

Напорным называСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ Π² Ρ‚Π²Π΅Ρ€Π΄Ρ‹Π΅ стСнки ΠΈ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ свободной повСрхности. НапорноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ происходит вслСдствиС разности Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΠ΄ дСйствиСм силы тяТСсти. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π½Π°ΠΏΠΎΡ€Π½ΠΎΠ³ΠΎ двиТСния являСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Π² Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°Ρ… (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² Π²ΠΎΠ΄ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½Ρ‹Ρ… Ρ‚Ρ€ΡƒΠ±Π°Ρ…).

Π‘Π΅Π·Π½Π°ΠΏΠΎΡ€Π½Ρ‹ΠΌ называСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΠΎΡ‚ΠΎΠΊ ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Π±Π΅Π·Π½Π°ΠΏΠΎΡ€Π½ΠΎΠ³ΠΎ двиТСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ: Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Π² Ρ€Π΅ΠΊΠ°Ρ…, ΠΊΠ°Π½Π°Π»Π°Ρ…, ΠΊΠ°Π½Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ Π΄Ρ€Π΅Π½Π°ΠΆΠ½Ρ‹Ρ… Ρ‚Ρ€ΡƒΠ±Π°Ρ…. Π‘Π΅Π·Π½Π°ΠΏΠΎΡ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ происходит ΠΏΠΎΠ΄ дСйствиСм силы тяТСсти ΠΈ Π·Π° счСт Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости. ΠžΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π° повСрхности Π±Π΅Π·Π½Π°ΠΏΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ атмосфСрноС.

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ Π²ΠΈΠ΄ двиТСния: ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡƒΡŽ ΡΡ‚Ρ€ΡƒΡŽ. Π‘Π²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠΉ струСй называСтся ΠΏΠΎΡ‚ΠΎΠΊ, Π½Π΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π²Π΅Ρ€Π΄Ρ‹ΠΌΠΈ стСнками. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости ΠΈΠ· ΠΏΠΎΠΆΠ°Ρ€Π½ΠΎΠ³ΠΎ брандспойта, Π³ΠΈΠ΄Ρ€ΠΎΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€Π°, Π²ΠΎΠ΄ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡ€Π°Π½Π°, ΠΈΠ· отвСрстия Ρ€Π΅Π·Π΅Ρ€Π²ΡƒΠ°Ρ€Π° ΠΈ Ρ‚. ΠΏ. Π’ этом случаС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости происходит ΠΏΠΎ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ (Ρ‚. Π΅. Π·Π° счСт Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости) ΠΈ ΠΏΠΎΠ΄ дСйствиСм силы тяТСсти.

Для упрощСния Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ², связанных с ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠ° Тидкости, вводится понятиС ΠΎ ΠΏΠ»Π°Π²Π½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅ΠΌΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Тидкости.

Плавно ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰ΠΈΠΌΡΡ называСтся Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Π° струСк Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π° (Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ ΠΈΠ»ΠΈ Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ Π½ΡƒΠ»ΡŽ) ΠΈ ΡƒΠ³ΠΎΠ» расхоТдСния ΠΌΠ΅ΠΆΠ΄Ρƒ струйками вСсьма ΠΌΠ°Π» (Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ ΠΈΠ»ΠΈ Π±Π»ΠΈΠ·ΠΎΠΊ ΠΊ Π½ΡƒΠ»ΡŽ), Ρ‚. Π΅. практичСски ΠΏΠΎΡ‚ΠΎΠΊ Тидкости ΠΌΠ°Π»ΠΎ отличаСтся ΠΎΡ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚Ρ€ΡƒΠΉΠ½ΠΎΠ³ΠΎ. Π­Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΏΠΎΠ»Π½Π΅ оправдываСтся ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… случаСв двиТСния Тидкости Π² ΠΊΠ°Π½Π°Π»Π°Ρ…, Ρ‚Ρ€ΡƒΠ±Π°Ρ… ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… сооруТСниях.

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΏΡ€ΠΈ ΠΏΠ»Π°Π²Π½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅ΠΌΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ:

1. ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹Π΅ сСчСния ΠΏΠΎΡ‚ΠΎΠΊΠ° плоскиС, Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊ оси ΠΏΠΎΡ‚ΠΎΠΊΠ°;

2. распрСдСлСниС гидродинамичСских Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΠΎ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ ΠΏΠΎΡ‚ΠΎΠΊΠ° подчиняСтся Π·Π°ΠΊΠΎΠ½Ρƒ гидростатики, Ρ‚.Π΅. гидродинамичСскиС давлСния ΠΏΠΎ высотС сСчСния Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρƒ прямой. Π­Ρ‚ΠΎ свойство Π»Π΅Π³ΠΊΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ссли Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ частицу Тидкости ΠΈ ΡΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ всС Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π½Π° Π½Π΅Π΅ силы Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΆΠΈΠ²ΠΎΠ³ΠΎ сСчСния. ВслСдствиС Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ скорости ΠΈ ускорСния Π² этом случаС Π±ΡƒΠ΄ΡƒΡ‚ пСрпСндикулярны ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ, силы ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ Π²ΠΎΠΉΠ΄ΡƒΡ‚; поэтому ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ равновСсия ΠΈ Π·Π°ΠΊΠΎΠ½ распрСдСлСния давлСния Π² плоскости ΠΆΠΈΠ²ΠΎΠ³ΠΎ сСчСния Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ ΠΎΡ‚ Ρ‚Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ для Тидкости, находящСйся Π² ΠΏΠΎΠΊΠΎΠ΅;

3. ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ энСргия (Ρ‚. Π΅. ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ энСргия Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ вСса Тидкости) ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ плоскости сравнСния для всСх Ρ‚ΠΎΡ‡Π΅ΠΊ Π΄Π°Π½Π½ΠΎΠ³ΠΎ сСчСния ΠΏΠΎΡ‚ΠΎΠΊΠ° Тидкости Π΅ΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° постоянная.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Если ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ частицы Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° ТСстко связаны ΠΌΠ΅ΠΆΠ΄Ρƒ собой, Ρ‚ΠΎ Π² двиТущСйся ΠΆΠΈΠ΄ΠΊΠΎΠΉ срСдС Ρ‚Π°ΠΊΠΈΠ΅ связи ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости состоит ΠΈΠ· Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ слоТного пСрСмСщСния ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ».

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ссли ΡƒΠ³ΠΎΠ» Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ…, ΠΈΠ»ΠΈ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… частиц Тидкости отличаСтся Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π°, поэтому ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния ΠΈ усрСдняСтся. Π’ ΠΊΡ€ΡƒΠ³Π»ΠΎΠΉ Ρ‚Ρ€ΡƒΠ±Π΅, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π° оси Ρ‚Ρ€ΡƒΠ±Ρ‹ максимальна, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Ρƒ стСнок Ρ‚Ρ€ΡƒΠ±Ρ‹ ΠΎΠ½Π° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Π’Π΅Ρ‡Π΅Π½ΠΈΠ΅ Тидкости ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ ΠΈ Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ. Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ называСтся Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ русла Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ пространства, Π½ΠΎ ΠΈ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, называСтся Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ ΠΈΠ»ΠΈ нСстационарным

Линия Ρ‚ΠΎΠΊΠ° (примСняСтся ΠΏΡ€ΠΈ Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅ΠΌΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ) это кривая, Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ ΠΏΠΎ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Из Π·Π°ΠΊΠΎΠ½Π° сохранСния вСщСства ΠΈ постоянства расхода Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ нСразрывности Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠΉ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ Ρ‚Ρ€ΡƒΠ±Ρƒ с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΆΠΈΠ²Ρ‹ΠΌ сСчСниСм (рис.3.4). Расход Тидкости Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΡƒΠ±Ρƒ Π² любом Π΅Π΅ сСчСнии постоянСн, Ρ‚.Π΅. Q1=Q2= const, ΠΎΡ‚ΠΊΡƒΠ΄Π°

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² Ρ‚Ρ€ΡƒΠ±Π΅ являСтся ΡΠΏΠ»ΠΎΡˆΠ½Ρ‹ΠΌ ΠΈ Π½Π΅Ρ€Π°Π·Ρ€Ρ‹Π²Π½Ρ‹ΠΌ, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ нСразрывности ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π”Π°Π½ΠΈΠΈΠ»Π° Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Π² 1738 Π³., являСтся Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π³ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Оно Π΄Π°Π΅Ρ‚ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ P, срСднСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Ο… ΠΈ ΠΏΡŒΠ΅Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠΉ высотой z Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сСчСниях ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π·Π°ΠΊΠΎΠ½ сохранСния энСргии двиТущСйся Тидкости. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этого уравнСния Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ большой ΠΊΡ€ΡƒΠ³ Π·Π°Π΄Π°Ρ‡.

Рассмотрим Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°, располоТСнный Π² пространствС ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ Ξ² (рис.3.5).

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ Π½Π° рассматриваСмом участкС Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° Π΄Π²Π° сСчСния: сСчСниС 1-1 ΠΈ сСчСниС 2-2. Π’Π²Π΅Ρ€Ρ… ΠΏΠΎ Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Ρƒ ΠΎΡ‚ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ сСчСния ΠΊΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ двиТСтся ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ, расход ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π΅Π½ Q.

ΠšΡ€ΠΎΠΌΠ΅ ΠΏΡŒΠ΅Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ сСчСнии 1-1 ΠΈ 2-2 установлСна Ρ‚Ρ€ΡƒΠ±ΠΊΠ°, Π·Π°Π³Π½ΡƒΡ‚Ρ‹ΠΉ ΠΊΠΎΠ½Π΅Ρ† ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ навстрСчу ΠΏΠΎΡ‚ΠΎΠΊΡƒ Тидкости, которая называСтся Ρ‚Ρ€ΡƒΠ±ΠΊΠ° ΠŸΠΈΡ‚ΠΎ. Π–ΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ Π² Ρ‚Ρ€ΡƒΠ±ΠΊΠ°Ρ… ΠŸΠΈΡ‚ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ поднимаСтся Π½Π° Ρ€Π°Π·Π½Ρ‹Π΅ ΡƒΡ€ΠΎΠ²Π½ΠΈ, Ссли ΠΎΡ‚ΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΈΡ… ΠΎΡ‚ ΠΏΡŒΠ΅Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ.

ΠŸΡŒΠ΅Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ линию ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Если ΠΌΠ΅ΠΆΠ΄Ρƒ сСчСниСм 1-1 ΠΈ 2-2 ΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ нСсколько Ρ‚Π°ΠΊΠΈΡ… ΠΆΠ΅ ΠΏΡŒΠ΅Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ Ρ‡Π΅Ρ€Π΅Π· показания ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ Тидкости Π² Π½ΠΈΡ… провСсти ΠΊΡ€ΠΈΠ²ΡƒΡŽ, Ρ‚ΠΎ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π»ΠΎΠΌΠ°Π½ΡƒΡŽ линию (рис.3.5).

Однако высота ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ Π² Ρ‚Ρ€ΡƒΠ±ΠΊΠ°Ρ… ΠŸΠΈΡ‚ΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ прямой 0-0, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ сравнСния, Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°.

Если Ρ‡Π΅Ρ€Π΅Π· показания ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ Тидкости Π² Ρ‚Ρ€ΡƒΠ±ΠΊΠ°Ρ… ΠŸΠΈΡ‚ΠΎ провСсти линию, Ρ‚ΠΎ ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°, ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚ΡŒ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΏΠΎΠ»Π½ΠΎΠΉ энСргии Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°.

Для Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… сСчСний 1-1 ΠΈ 2-2 ΠΏΠΎΡ‚ΠΎΠΊΠ° идСальной Тидкости ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Π’Π°ΠΊ ΠΊΠ°ΠΊ сСчСния 1-1 ΠΈ 2-2 взяты ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ, Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΈΠ½Π°Ρ‡Π΅:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

ΠΈ ΠΏΡ€ΠΎΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ: сумма Ρ‚Ρ€Π΅Ρ… Ρ‡Π»Π΅Π½ΠΎΠ² уравнСния Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ для любого сСчСния ΠΏΠΎΡ‚ΠΎΠΊΠ° идСальной Тидкости Π΅ΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° постоянная.

Π‘ энСргСтичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Ρ‡Π»Π΅Π½ уравнСния прСдставляСт собой ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ энСргии:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, согласно ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ, полная ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ энСргия идСальной Тидкости Π² любом сСчСнии постоянна.

Π’ этом случаС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ: сумма гСомСтричСской, ΠΏΡŒΠ΅Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ΠΈ скоростной высоты для идСальной Тидкости Π΅ΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° постоянная.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ для ΠΏΠΎΡ‚ΠΎΠΊΠ° Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ Тидкости нСсколько отличаСтся ΠΎΡ‚ уравнСния

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Π”Π΅Π»ΠΎ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ вязкой Тидкости Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ силы трСния, Π½Π° ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ Π·Π°Ρ‚Ρ€Π°Ρ‡ΠΈΠ²Π°Π΅Ρ‚ ΡΠ½Π΅Ρ€Π³ΠΈΡŽ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ полная ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ энСргия Тидкости Π² сСчСнии 1-1 Π±ΡƒΠ΄Π΅Ρ‚ большС ΠΏΠΎΠ»Π½ΠΎΠΉ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ энСргии Π² сСчСнии 2-2 Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ потСрянной энСргии (рис.3.6).

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

ΠŸΠΎΡ‚Π΅Ρ€ΡΠ½Π½Π°Ρ энСргия ΠΈΠ»ΠΈ потСрянный Π½Π°ΠΏΠΎΡ€ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ для Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ Тидкости Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²ΠΈΠ΄:

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Из рис.3.6 Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ двиТСния Тидкости ΠΎΡ‚ сСчСния 1-1 Π΄ΠΎ сСчСния 2-2 потСрянный Π½Π°ΠΏΠΎΡ€ всС врСмя увСличиваСтся (потСрянный Π½Π°ΠΏΠΎΡ€ Π²Ρ‹Π΄Π΅Π»Π΅Π½ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠΎΠΉ). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ энСргии, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ сСчСнии, для Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ сСчСния Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°Ρ‚ΡŒΡΡ ΠΈΠ· Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ…: гСомСтричСской высоты, ΠΏΡŒΠ΅Π·ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠΉ высоты, скоростной высоты ΠΈ потСрянного Π½Π°ΠΏΠΎΡ€Π° ΠΌΠ΅ΠΆΠ΄Ρƒ сСчСниями 1-1 ΠΈ 2-2.

ΠšΡ€ΠΎΠΌΠ΅ этого Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ появились Π΅Ρ‰Π΅ Π΄Π²Π° коэффициСнта Ξ±1 ΠΈ Ξ±2, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ коэффициСнтами ΠšΠΎΡ€ΠΈΠΎΠ»ΠΈΡΠ° ΠΈ зависят ΠΎΡ‚ Ρ€Π΅ΠΆΠΈΠΌΠ° тСчСния Тидкости ( Ξ± = 2 для Π»Π°ΠΌΠΈΠ½Π°Ρ€Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ°, Ξ± = 1 для Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° ).

ΠŸΠΎΡ‚Π΅Ρ€ΡΠ½Π½Π°Ρ высота Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости складываСтся ΠΈΠ· Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΏΠΎΡ‚Π΅Ρ€ΡŒ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… силой трСния ΠΌΠ΅ΠΆΠ΄Ρƒ слоями Тидкости, ΠΈ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… мСстными сопротивлСниями (измСнСниями ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ°)

Для измСрСния скорости Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠ° ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰Π°Ρ Π½Π° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅ уравнСния Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ Ρ‚Ρ€ΡƒΠ±ΠΊΠ° ΠŸΠΈΡ‚ΠΎ (рис.3.7), Π·Π°Π³Π½ΡƒΡ‚Ρ‹ΠΉ ΠΊΠΎΠ½Π΅Ρ† ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ навстрСчу ΠΏΠΎΡ‚ΠΎΠΊΡƒ. ΠŸΡƒΡΡ‚ΡŒ трСбуСтся ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Тидкости Π² ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΏΠΎΡ‚ΠΎΠΊΠ°. ΠŸΠΎΠΌΠ΅ΡΡ‚ΠΈΠ² ΠΊΠΎΠ½Π΅Ρ† Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ Π² ΡƒΠΊΠ°Π·Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ составив ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ для сСчСния 1-1 ΠΈ сСчСния, проходящСго Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ Тидкости Π² Ρ‚Ρ€ΡƒΠ±ΠΊΠ΅ ΠŸΠΈΡ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Для измСрСния расхода Тидкости Π² Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°Ρ… часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ расходомСр Π’Π΅Π½Ρ‚ΡƒΡ€ΠΈ, дСйствиС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ основано Ρ‚Π°ΠΊ ΠΆΠ΅ Π½Π° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅ уравнСния Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ. РасходомСр Π’Π΅Π½Ρ‚ΡƒΡ€ΠΈ состоит ΠΈΠ· Π΄Π²ΡƒΡ… коничСских насадков с цилиндричСской вставкой ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ (рис.3.7). Если Π² сСчСниях I-I ΠΈ II-II ΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΏΡŒΠ΅Π·ΠΎΠΌΠ΅Ρ‚Ρ€Ρ‹, Ρ‚ΠΎ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ Π² Π½ΠΈΡ… Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π²ΠΈΡΠ΅Ρ‚ΡŒ ΠΎΡ‚ расхода Тидкости, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰Π΅ΠΉ ΠΏΠΎ Ρ‚Ρ€ΡƒΠ±Π΅.

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, стоящСС ΠΏΠ΅Ρ€Π΅Π΄ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости, являСтся постоянной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ, носящСй Π½Π°Π·Π²Π°Π½ΠΈΠ΅ постоянной Π²ΠΎΠ΄ΠΎΠΌΠ΅Ρ€Π° Π’Π΅Π½Ρ‚ΡƒΡ€ΠΈ.

Из ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ уравнСния Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ h зависит ΠΎΡ‚ расхода Q. Часто эту Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ строят Π² Π²ΠΈΠ΄Π΅ Ρ‚Π°Ρ€ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ h ΠΎΡ‚ Q, которая ΠΈΠΌΠ΅Π΅Ρ‚ параболичСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π’ΠΈΠ΄Ρ‹ двиТСния Тидкости. ΠΠ΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ ΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости. Π€ΠΎΡ‚ΠΎ Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости

ΠΠ΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ ΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ гидродинамичСских Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ p ΠΈ скоростСй u Π² ΠΏΠΎΡ‚ΠΎΠΊΠ΅ Тидкости Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС распрСдСлСны Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ, ΠΎΠ½ΠΈ ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΎΡ‚ ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΉ, Ρ‚.Π΅. ΡΠ²Π»ΡΡŽΡ‚ΡΡ функциями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (x, y, z).

Помимо Ρ‚ΠΎΠ³ΠΎ гидродинамичСскиС давлСния ΠΈ скорости Π² ΠΎΠ΄Π½ΠΈΡ… ΠΈ Ρ‚Π΅Ρ… ΠΆΠ΅ фиксированных Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΊΠ°ΠΊ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. Π­Ρ‚ΠΈ условия Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ записаны ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π’Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄ двиТСния, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ гидродинамичСскиС давлСния ΠΈ скорости Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΏΠΎΡ‚ΠΎΠΊΠ° Тидкости ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ, называСтся Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠΌΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ двиТСния Тидкости ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ:

— Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ΄Ρ‹ Π² Ρ€Π΅ΠΊΠ΅ Π²ΠΎ врСмя вСсСннСго половодья ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈ ΠΏΠ»ΠΎΡ‚ΠΈΠ½Ρ‹, ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰Π΅Π΅ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ уровня Π²ΠΎΠ΄Ρ‹, ΡˆΠΈΡ€ΠΈΠ½Ρ‹ ΠΏΠΎΡ‚ΠΎΠΊΠ°, скорости тСчСния ΠΈ давлСния Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ сСчСнии ΠΏΠΎΡ‚ΠΎΠΊΠ°;

— истСчСниС Тидкости Ρ‡Π΅Ρ€Π΅Π· отвСрстиС Π² Ρ€Π΅Π·Π΅Ρ€Π²ΡƒΠ°Ρ€Π΅ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ Тидкости Π² Π½Π΅ΠΌ, ΠΊΠΎΠ³Π΄Π° траСктория струи ΠΈ скорости истСчСния Тидкости ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ;

— Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅ΠΊΠ°Ρ‡ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Тидкости Π²ΠΎ Π²ΡΠ°ΡΡ‹Π²Π°ΡŽΡ‰Π΅ΠΌ ΠΈΠ»ΠΈ Π½Π°Π³Π½Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π΅ ΠΏΠΎΡ€ΡˆΠ½Π΅Π²ΠΎΠ³ΠΎ насоса.

ΠΠ΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ являСтся самым ΠΎΠ±Ρ‰ΠΈΠΌ ΠΈ самым слоТным Π²ΠΈΠ΄ΠΎΠΌ двиТСния Тидкости, ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎΡΠ²ΡΡ‰Π°ΡŽΡ‚ΡΡ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ курсы Π³ΠΈΠ΄Ρ€Π°Π²Π»ΠΈΠΊΠΈ.

ΠœΡ‹ Π±ΡƒΠ΄Π΅ΠΌ, Π² основном, Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ вопросы, ΠΊΠ°ΡΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ двиТСния Тидкости, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ скорости ΠΈ гидродинамичСскиС давлСния Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ лишь функциями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΡ€ΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅ΠΌΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

Π­Ρ‚ΠΈ зависимости ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ½ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. ΠŸΡƒΡΡ‚ΡŒ Π² Π΄Π°Π½Π½ΠΎΠΉ фиксированной Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΏΠΎΡ‚ΠΎΠΊΠ° с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ x, y, z Π² ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ t частица Тидкости Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ±Π»Π°Π΄Π°Ρ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ u (с проСкциями Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси ux, uy, uz) ΠΈ ΠΈΡΠΏΡ‹Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ гидродинамичСскоС Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ p. Бпустя Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ врСмя dt рассматриваСмая частица пСрСмСстится Π² ΠΊΠ°ΠΊΡƒΡŽ-Ρ‚ΠΎ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ, ΠΌΠΎΠΆΠ΅Ρ‚ приобрСсти Π΄Ρ€ΡƒΠ³ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ ΠΈΡΠΏΡ‹Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΎΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅. Но вторая частица Тидкости, ΠΏΡ€ΠΈΡˆΠ΅Π΄ΡˆΠ°Ρ Π½Π° смСну ΠΏΠ΅Ρ€Π²ΠΎΠΉ Π² Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠΎΡ‚ΠΎΠΊΠ° с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ x, y, z Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ±Π»Π°Π΄Π°Ρ‚ΡŒ Π² точности Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΈ ΠΈΡΠΏΡ‹Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΆΠ΅ гидродинамичСскоС Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΈ пСрвая частица, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, для ΠΏΠΎΠ»Π½ΠΎΠΉ характСристики установиваСгося двиТСния Тидкости Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΠΌΠ΅Ρ‚ΡŒ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Π’ – 3), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±ΡƒΠ΄ΡƒΡ‡ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² аналитичСской Ρ„ΠΎΡ€ΠΌΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ нСизвСстных Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ p, ux, uy, uz Π² пространствС x, y, z.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ двиТСния Тидкости ΡΠ²Π»ΡΡŽΡ‚ΡΡ:

— Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Тидкости ( Π²ΠΎΠ΄Ρ‹, Π±Π΅Π½Π·ΠΈΠ½Π°, масла ) Π² Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π΅ с постоянной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ тСчСния;

— Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠ΄Ρ‹ Π² ΠΊΠ°Π½Π°Π»Π΅ постоянного сСчСния ΠΏΡ€ΠΈ постоянной Π³Π»ΡƒΠ±ΠΈΠ½Π΅ Π²ΠΎΠ΄Ρ‹ ;

— истСчСниС Тидкости Ρ‡Π΅Ρ€Π΅Π· отвСрстиС Π² Ρ€Π΅Π·Π΅Ρ€Π²ΡƒΠ°Ρ€Π΅ ΠΏΡ€ΠΈ постоянном ΡƒΡ€ΠΎΠ²Π½Π΅ Тидкости.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π“ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°. Π₯Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ измСнСния поля скоростСй.

По Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Ρƒ измСнСния поля скоростСй Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния Тидкости Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠ΅ΡΡ ΠΈ Π½Π΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠΈΠ΅ΡΡ, квазистационарноС.

Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π΅ΡΡ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² любом мСстС ΠΏΠΎΡ‚ΠΎΠΊΠ° Тидкости ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ (ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅) с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€Π΅Ρ‚Π΅Ρ€ΠΏΠ΅Π²Π°ΡŽΡ‚ измСнСния, имССтся Π² Π²ΠΈΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ зависят ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π˜Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° измСняСтся лишь ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ пространства:

ΠΠ΅ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π΅ΡΡ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² любом мСстС ΠΏΠΎΡ‚ΠΎΠΊΠ° Тидкости ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€Π΅Ρ‚Π΅Ρ€ΠΏΠ΅Π²Π°Π΅Ρ‚ измСнСния, Ρ‚. Π΅. выступаСт ΠΊΠ°ΠΊ функция ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

ΠšΠ²Π°Π·ΠΈΡΡ‚Π°Ρ†ΠΈΠΎΠ½Π°Ρ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π΅ΡΡ Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ·ΠΌΠ΅Π½Ρ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ характСристик двиТСния Тидкости Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ сущСствСнной, имССтся Π² Π²ΠΈΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ Π΅Π΅ влияниС Π»Π΅ΠΆΠΈΡ‚ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… допускаСмой точности Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΈ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ.

ΠŸΡ€ΠΈ описании ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ двиТСния Тидкости Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅.

Π Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ принято ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΆΠΈΠ²Ρ‹Π΅ сСчСния вдоль ΠΏΠΎΡ‚ΠΎΠΊΠ° Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹: Π² этом случаС w = const; срСдниС скорости ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅ ΠΏΠΎΡ‚ΠΎΠΊΠ° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹, Ρ‚.Π΅. v = const.

Π£ΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ принято ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ, ΠΊΠΎΠ³Π΄Π° выполняСтся условиС, Ρ‡Ρ‚ΠΎ распрСдСлСниС скоростСй Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹Ρ… сСчСниях Ρ€Π°Π·Π½ΠΎΠ΅; ΠΏΡ€ΠΈ этом срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€Π΅Π±Ρ‹Π²Π°Ρ‚ΡŒ ΠΈ постоянными вдоль ΠΏΠΎΡ‚ΠΎΠΊΠ°.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *