что такое удельный объем жидкости
Физические свойства жидкости
К основным физическим свойствам жидкости, которые рассматриваются в гидродинамике, относятся плотность, удельный вес, удельный объем, температурное расширение, сжимаемость и вязкость.
Плотность — это отношение массы вещества к его объему:
На плотность жидкости влияют температура и давление. Значения плотности некоторых жидкостей приведены ниже:
Удельный вес — это отношение веса жидкости к занимаемому объему:
Удельный объем жидкости — объем единицы массы этой жидкости:
Температурное расширение — свойство жидкости изменять свой объем при изменении температуры. С ростом температуры объем жидкости увеличивается и наоборот. Различные жидкости при увеличении температуры на одну и ту же величину увеличиваются в объеме по разному. Поэтому свойство жидкости увеличиваться в объеме с увеличением температуры характеризуется коэффициентом температурного расширения Bт, который показывает изменение единицы объема данной жидкости при изменении ее температуры на 1 К.
Увеличение объема при нагревании рассчитывается по уравнению:
дельта V= Bт*V0*дельта Т
где V0 начальный объем жидкости; дельта Т— изменение температуры.
В расчетах ДВС коэффициент температурного расширения считают постоянным, хотя на самом деле он зависит от условий нагревания или охлаждения, давления и начальной температуры.
Сжимаемость — свойство жидкости изменять объем при изменении давления.
дельта V = Bр*V0*дельта р,
где дельта V— изменение объема; дельта р — изменение давления; Вр — коэффициент объемного сжатия.
Коэффициент объемного сжатия показывает изменение единицы объема жидкости при изменении давления на 1 Па. Он зависит от условий сжатия, температуры и начального давления. При расчетах эта зависимость не учитывается.
Коэффициент объемного сжатия для воды равен 5 * 10^-4 1/Па, для нефтепродуктов — 7*10^-4 1/Па, для ртути — 0,3*10^-4 1/Па.
Ввиду незначительных величин жидкости считаются несжимаемыми.
Вязкость — свойство жидкости оказывать сопротивление перемещению одной ее части относительно другой.
Рис. Схема изменения скорости жидкости, заключенной между неподвижной (1) и подвижной (2) пластинами
Если плоскость 2, находящаяся на расстоянии б от плоскости 1, под действием силы F перемещается со скоростью V0, то слои жидкости, находящиеся между плоскостями, перемещаются с разными скоростями. При этом максимальная скорость V0 в точках контакта с плоскостью 2, минимальная (вплоть до нуля) в точках контакта с плоскостью 1.
Если слои жидкости при движении не перемешиваются, то скорость в потоке изменяется по линейному закону, и отношение V0/б представляет собой градиент скорости.
При скольжении слоев жидкости между ними возникают силы внутреннего трения, которые сопротивляются движению. На преодоление этих сил и расходуется внешняя сила F:
где n — динамический коэффициент вязкости или динамическая вязкость; S — площадь трения (жидкости о пластину).
Динамическая вязкость учитывает свойства жидкости, от которых зависит ее внутреннее трение. В технике и в частности в гидравлике часто используется кинематическая вязкость v, которая равна отношению динамической вязкости жидкости к ее плотности:
Для упрощения решения гидродинамических задач считают, что рассматриваемые жидкости не обладают температурным расширением, сжимаемостью и вязкостью. Такие жидкости в отличие от реальных называются идеальными.
Физические свойства жидкости
Что такое ГИДРОДИНАМИКА
Гидродинамика, являясь одним из разделов гидравлики, рассматривает законы движения жидкости в трубах и каналах, через отверстия и насадки, а также закономерности обтекания жидкостью твердых тел.
Гидродинамика используется при расчете смазочных систем и систем охлаждения двигателей, карбюраторов, систем подачи и впрыска топлива.
Законы гидродинамики могут быть использованы и при исследовании движения газов, если их скорость значительно ниже скорости звука.
Физические свойства жидкости
К основным физическим свойствам жидкости, которые рассматривая в гидродинамике, относятся плотность, удельный вес, удельный объем, температурное расширение, сжимаемость и вязкость.
Плотность— это отношение массы вещества к его объему:
.
На плотность жидкости влияют температура и давление. Значения плотности некоторых жидкостей приведены в табл. 1.
Таблица 1. Значения плотности некоторых жидкостей
Жидкость | ρ, кг/м 3 | Жидкость | ρ, кг/м 3 |
Вода | МГ-22-А | ||
Антифриз | ТМ-5-18 | ||
Бензин | Нефть | ||
Керосин | Ацетон | ||
Дизельное топливо | Спирт | ||
Масло МГ-15-Б | Глицерин |
Удельный вес — это отношение веса жидкости к занимаемому объему:
.
Удельный объем жидкости — объем единицы массы этой жидкости:
Температурное расширение — свойство жидкости изменять свой объем при изменении температуры. С ростом температуры объем жидкости увеличивается и наоборот. Различные жидкости при увеличении температуры на одну и ту же величину увеличиваются в объеме по разному. Поэтому свойство жидкости увеличиваться в объеме с увеличением температуры характеризуется коэффициентом температурного расширения βт, который показывает изменение единицы объема данной жидкости при изменении ее температуры на 1 К (табл. 2).
Увеличение объема при нагревании рассчитывается по уравнению
где V0 – начальный объем жидкости;
∆T – изменение температуры.
В расчетах ДВС коэффициент температурного расширения считают постоянным, хотя на самом деле он зависит от условий нагревания или охлаждения, давления и начальной температуры.
Жидкость | βт |
Вода | |
Антифриз | |
Нефть | |
Ртуть | 1,8 |
Сжимаемость — свойство жидкости изменять объем при изменении давления.
где ∆V — изменение объема;
∆р — изменение давления;
βp — коэффициент объемного сжатия.
Коэффициент объемного сжатия показывает изменение единицы объема жидкости при изменении давления на 1 Па. Он зависит от условий сжатия, температуры и начального давления. При расчетах эта зависимость не учитывается.
Ввиду незначительных величин βp жидкости считаются несжимаемыми.
Вязкость— свойство жидкости оказывать сопротивление перемещению одной ее части относительно другой.
Если плоскость 2 (рис. 1), находящаяся на расстоянии δ от плоскости 1, под действием силы F перемещается со скоростью V0, то слои жидкости, находящиеся между плоскостями, перемещаются с разными скоростями. При этом максимальная скорость V0 в точках контакта с плоскостью 2, минимальная (вплоть до нуля) в точках контакта с плоскостью 1.
Рис. 1. Схема изменения скорости жидкости, заключенной между неподвижной (1) и подвижной (2) пластинами
Если слои жидкости при движении не перемешиваются, то скорость в потоке изменяется по линейному закону, и отношение V0/δ представляет собой градиент скорости.
При скольжении слоев жидкости между ними возникают силы внутреннего трения, которые сопротивляются движению. На преодоление этих сил и расходуется внешняя сила F:
где η — динамический коэффициент вязкости или динамическая вязкость;
S — площадь трения (жидкости о пластину).
Динамическая вязкость учитывает свойства жидкости, от которых зависит ее внутреннее трение. В технике и в частности в гидравлике часто используется кинематическая вязкость ν, которая равна отношению динамической вязкости жидкости к ее плотности:
Для упрощения решения гидродинамических задач считают, что рассматриваемые жидкости не обладают температурным расширением, сжимаемостью и вязкостью. Такие жидкости в отличие от реальных называются идеальными.
Дата добавления: 2017-02-13 ; просмотров: 3568 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Что такое удельный объем жидкости
Жидкости. В природе различают четыре вида состояния вещества: твердое, жидкое, газообразное и плазменное. Основное отличие жидкостей от твердых тел заключается в их текучести, т.е. способности легко принимать форму сосуда, в который жидкость поместили, при этом объем жидкости не изменяется. Газ тоже обладает текучестью, но при этом занимает любой предоставленный ему объем. В сосудах жидкость образует свободную поверхность, а газ аналогичной поверхностью не обладает. Однако с точки зрения механики и жидкость, и газ подчиняются одним и тем же закономерностям в случае, если сжимаемостью газа можно пренебречь. Поэтому в гидравлике под термином «жидкость» понимаются и собственно жидкости (которые часто называют капельными жидкостями), и газы (газообразные жидкости).
Основные свойства жидкости (при рассмотрении задач механики жидкости) — это плотность, способность изменять свой объем при нагревании (охлаждении) и изменениях давления, вязкость жидкости. Рассмотрим каждое из свойств жидкости подробнее.
Плотность жидкости. Плотностью жидкости ρ называется ее масса, заключенная в единице объема:
где m — масса жидкости; W — объем жидкости.
Так как вода является наиболее распространенной в природе жидкостью, в качестве примера количественного значения параметра, определяющего то или иное свойство жидкости, будем приводить значение рассматриваемого параметра для воды.
Удельный вес. Удельный вес γ — это вес жидкости, приходящийся на единицу объема:
где G — вес жидкости в объеме W.
Плотность и удельный вес связаны между собой соотношением
где g — ускорение свободного падения (g=9,81 м/с 2 ).
Температурное расширение. Это свойство жидкости характеризуется изменением объема при изменении температуры, которое определяется температурным коэффициентом объемного расширения жидкости βt:
Знак Δ означает разницу между начальной величиной и конечной величиной. То есть ΔW=Wконечный-Wначальный |
для воды,при t=20 °С βt = 0,00015 [1/°С].
Сжимаемость. Это свойство жидкости менять свой объем при изменении давления, которое характеризуется коэффициентом объемного сжатия βp :
Величина, обратная коэффициенту объемного сжатия, называется модулем упругости жидкости Е и определяется по формуле:
для воды E=2×10 9 Па.
Вязкость жидкости — свойство жидкостей оказывать сопротивление сдвигу. Это свойство проявляется только при движении жидкостей. Вязкость характеризует степень текучести жидкости. Наряду с легко подвижными жидкостями (вода, спирт, воздух и др.) существуют очень вязкие жидкости (глицерин, машинные масла и др.).
Вязкость жидкости характеризуется динамической вязкостью μ.
И. Ньютон выдвинул гипотезу о силе трения F, возникающей между двумя слоями жидкости на поверхности их раздела площадью ω, согласно которой сила внутреннего трения в жидкости не зависит от давления, прямо пропорциональна площади соприкосновения слоев ω и быстроте изменения скорости в направлении, перпендикулярном направлению движения слоев, и зависит от рода жидкости.
Пусть жидкость течет по плоскому дну параллельными ему слоями
Вследствие тормозящего влияния дна слои жидкости будут двигаться с разными скоростями. Скорости слоев Показаны стрелками. Рассмотрим два слоя жидкости, середины которых расположены на расстоянии Δу друг от друга. Слой А движется со скоростью u, а слой В со скоростью u + Δu.
На площадке ω вследствие вязкости возникает сила сопротивления F. Согласно гипотезе Ньютона эта сила
коэффициент пропорциональности μ, в этой формуле и является динамической вязкостью, отношение Δu/Δy называется градиентом скорости.
Таким образом, динамическая вязкость является силой трения, приходящейся на единицу площади соприкосновения слоев жидкости при градиенте скорости, равном единице.
Размерность μ — Па • с.
Гипотеза И. Ньютона, представленная в формуле, экспериментально подтверждена и математически оформлена в дифференциальном виде
основоположником гидравлической теории смазки Н.П. Петровым и в настоящее время носит название закона внутреннего трения Ньютона.
В гидравлических расчетах часто удобнее пользоваться другой величиной, характеризующей вязкость жидкости, — ν:
Эта величина называется кинематической вязкостью. Размерность v — м 2 /с
Название «кинематическая вязкость» не несет особого физического смысла, так как название было предложено потому, что размерность v похожа на размерность скорости.
Вязкость жидкости зависит как от температуры, так и от давления. Кинематическая вязкость капельных жидкостей уменьшается с увеличением температуры, а вот вязкость газов, наоборот, возрастает с увеличением температуры. Кинематическая вязкость жидкостей при давлениях, встречающихся в большинстве случаев на практике, мало зависит от давления, а вязкость газов с возрастанием давления уменьшается.
Вязкость жидкости измеряют с помощью вискозиметров различных конструкций.
Жидкости, для которых справедлив закон внутреннего тяготения Ньютона, называют ньютоновскими. Существуют жидкости, которые не подчиняются закономерности формулам, к ним относятся растворы полимеров, гидросмеси из цемента, глины, мела и др. Такие жидкости относятся к неньютоновским.
Я кстати уже нашел формулы которые нужны сантехникам и инженерам, опишу их в других статьях. Пишите коментарии, я обязательно отвечу на ваши вопросы и постараюсь подкорректировать статьи под вашы нужды.
Основы гидравлики
Что такое жидкость?
Поскольку гидравлика изучает законы равновесия и движения жидкости, необходимо определиться – что же такое жидкость и какими свойствами она обладает.
Согласно наиболее широко принятому определению, жидкостью называют агрегатное состояние вещества, сочетающее в себе признаки как твердого, так и газообразного состояния, т. е. являющееся некоторой переходной формой от твердого состояния вещества к газообразному. При этом жидкость обладает определенным рядом свойств, не присущих другим агрегатным состояниям.
Это сплошная среда, способная легко изменять свою форму под действием даже небольших силовых факторов.
Физические свойства жидкостей
Жидкости характеризуются следующими основными физическими свойствами: плотностью, удельным весом, удельным объемом, сжимаемостью, вязкостью.
Плотностью (или удельной массой) ρ (кг/м 3 ) любого вещества называют массу этого вещества, заключенную в единице объема. Это определение в полной мере относится и к жидкостям:
Удельным весом γ (Н/м 3 ) называют вес единицы объема жидкости:
Удельным объемом v (м 3 /кг) жидкости называют объем, занимаемый единицей массы жидкости:
Температурный коэффициент объемного расширения показывает, на какую часть от первоначального состояния изменяется первоначальный объем жидкости при изменении температуры на 1˚K.
Очевидно, что плотность жидкости тоже зависит от ее температуры:
Пример решения задачи :
Решение: по приведенной выше формуле получаем:
Сжимаемость (объемная сжимаемость, объемная упругость) – это способность жидкости изменять объем при сжатии, т. е. действием на нее давления. Объемная сжимаемость показывает, на какую величину изменится первоначальный объем жидкости при изменении оказываемого на нее давления на 1 Па.
Величину, обратную объемной сжимаемости, называют модулем объемного сжатия (Па) :
Объемная сжимаемость не является постоянной характеристикой, она зависит от температуры жидкости и оказываемого на нее давления. Однако при давлениях, наиболее часто применяемых на практике в механизмах и устройствах, объемная сжимаемость жидкостей очень мала, и в обычных гидравлических расчетах ей пренебрегают, учитывая лишь в особых случаях, например, при расчетах некоторых гидроприводов, гидроавтоматики и явлениях гидроудара.
С упругими свойствами капельных жидкостей связаны, также, представления о сопротивлении жидкостей растяжению, т. е. деформации, обратной сжатию. Теоретически в капельных жидкостях могут возникать значительные напряжения растяжения, но в реальных жидкостях при наличии в них даже весьма незначительных примесей (твёрдые частицы, газы) уменьшает величину сопротивления жидкости растяжению практически до нуля.
По этой причине можно считать, что в капельных жидкостях напряжения растяжению невозможны.
Вязкостью называют свойство жидкости оказывать сопротивление относительному движению (сдвигу) слоев жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, которые не проявляются в покоящейся жидкости.
Силы трения возникают из-за сцепления между молекулами и всегда действуют по касательной к плоскости относительного перемещения слоев жидкости. По этой причине в подвижных жидкостях возникают касательные напряжения τ (Па) :
Динамическая вязкость характеризует касательное напряжение, создаваемое силами внутреннего трения между слоями жидкости, отстоящими по нормали на расстояние 1 м при относительной скорости 1 м/с.
Динамическая вязкость показывает, какую работу на единицу объемного расхода жидкости надо совершить для преодоления сил внутреннего трения.
Единицей динамической вязкости является Па×с:
Вязкость капельных жидкостей зависит от многих факторов: температуры, внешнего давления, количества растворенного в жидкости газа. Вязкость многих масел уменьшается при многократном дросселировании через тонкие отверстия и щели различных элементов гидросистем.
Поверхностное натяжение жидкости
Когда мы говорим о жидкости как о сплошной среде, это вовсе не означает, что эта среда бесконечна и безгранична. Жидкое тело всегда имеет границы, это либо твёрдые стенки каналов, либо границы раздела с газообразной средой, либо это граница раздела между различными несмешивающимися жидкостями. Такие границы можно с полным правом называть естественными границами.
В некоторых случаях границы могут выделяться условно внутри самой движущейся жидкости.
На естественных границах в пограничном слое жидкости между молекулами самой жидкости и молекулами окружающей жидкость среды существуют силы притяжения, которые, в общем случае, могут оказаться не равными.
Жидкость в трубке малого диаметра (капилляре) будет подниматься, если жидкость по отношению к стенке капилляра будет смачивающей жидкостью, и наоборот, будет опускаться, если жидкость для стенки капилляра окажется не смачивающей.
Силы поверхностного натяжения малы и проявляются при малых объёмах жидкости. Величина напряжений на границе раздела зависит от температуры жидкости; при увеличении температуры внутренняя энергия молекул возрастает, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверхностного натяжения.
Растворимость газов в капельных жидкостях
Физические свойства жидкости Теория
К основным физическим свойствам жидкости, которые рассматриваются в гидродинамике, относятся плотность, удельный вес, удельный объем, температурное расширение, сжимаемость и вязкость.
Плотность — это отношение массы вещества к его объему:
На плотность жидкости влияют температура и давление. Значения плотности некоторых жидкостей приведены ниже:
Удельный вес — это отношение веса жидкости к занимаемому объему:
Удельный объем жидкости — объем единицы массы этой жидкости:
Температурное расширение — свойство жидкости изменять свой объем при изменении температуры. С ростом температуры объем жидкости увеличивается и наоборот. Различные жидкости при увеличении температуры на одну и ту же величину увеличиваются в объеме по разному. Поэтому свойство жидкости увеличиваться в объеме с увеличением температуры характеризуется коэффициентом температурного расширения Bт, который показывает изменение единицы объема данной жидкости при изменении ее температуры на 1 К.
Увеличение объема при нагревании рассчитывается по уравнению:
дельта V= Bт*V0*дельта Т
где V0 начальный объем жидкости; дельта Т— изменение температуры.
В расчетах ДВС коэффициент температурного расширения считают постоянным, хотя на самом деле он зависит от условий нагревания или охлаждения, давления и начальной температуры.
Сжимаемость — свойство жидкости изменять объем при изменении давления.
дельта V = Bр*V0*дельта р,
где дельта V— изменение объема; дельта р — изменение давления; Вр — коэффициент объемного сжатия.
Коэффициент объемного сжатия показывает изменение единицы объема жидкости при изменении давления на 1 Па. Он зависит от условий сжатия, температуры и начального давления. При расчетах эта зависимость не учитывается.
Коэффициент объемного сжатия для воды равен 5 * 10^-4 1/Па, для нефтепродуктов — 7*10^-4 1/Па, для ртути — 0,3*10^-4 1/Па.
Ввиду незначительных величин жидкости считаются несжимаемыми.
Вязкость — свойство жидкости оказывать сопротивление перемещению одной ее части относительно другой.
Рис. Схема изменения скорости жидкости, заключенной между неподвижной (1) и подвижной (2) пластинами
Если плоскость 2, находящаяся на расстоянии б от плоскости 1, под действием силы F перемещается со скоростью V0, то слои жидкости, находящиеся между плоскостями, перемещаются с разными скоростями. При этом максимальная скорость V0 в точках контакта с плоскостью 2, минимальная (вплоть до нуля) в точках контакта с плоскостью 1.
Если слои жидкости при движении не перемешиваются, то скорость в потоке изменяется по линейному закону, и отношение V0/б представляет собой градиент скорости.
При скольжении слоев жидкости между ними возникают силы внутреннего трения, которые сопротивляются движению. На преодоление этих сил и расходуется внешняя сила F:
где n — динамический коэффициент вязкости или динамическая вязкость; S — площадь трения (жидкости о пластину).
Динамическая вязкость учитывает свойства жидкости, от которых зависит ее внутреннее трение. В технике и в частности в гидравлике часто используется кинематическая вязкость v, которая равна отношению динамической вязкости жидкости к ее плотности:
Плотность и удельный вес жидкостей
В единицах Си плотность выражается в килограммах на 1 кубический метр (кг / м3). Например, при температуре 20°С средняя плотность жидкости Р составляет кг / м3. Вода 998 Дизельное топливо. 850. Керосина 820 Масло 900 Меркурий 13,550 Вес единичного объема жидкости называется ее удельным весом. Удельный вес выражается в Ньютон / кубический метр (Н / м3). Удельный вес однородной жидкости y = 4 * > ад Где O-вес целевого объема Жидкость организма.
Изменения плотности и удельного веса жидкости при изменении температуры и давления незначительны, и в большинстве случаев их не учитывают. Людмила Фирмаль
Однако необходимо учитывать тот факт, что значения параметров, содержащиеся в приведенных выше и многих других гидродинамических зависимостях, варьируются в пределах 0,5% от поверхности Земли, а точность гидравлических расчетов обычно составляет 3-5%. Это позволяет получить среднее значение ускорения силы тяжести (9,81 м / с2) во всех случаях, поэтому нельзя учитывать фактические колебания этой величины при определении удельного веса.
Отношение 5 плотностей (удельного веса) 2 жидкостей называется относительной плотностью (относительным удельным весом) и определяется как отношение массы (веса) рассматриваемой жидкости при определенной температуре (°С) и массы (массы) дистиллированной воды при 4°С и равных объемах при атмосферном давлении. В качестве примера мы показываем относительную плотность (относительный удельный вес) значение 20°для той же жидкости, что и раньше (84°для той же жидкости).
Плотность капельных жидкостей и газов зависит от температуры и давления. Людмила Фирмаль
Ссылки
Смотреть что такое «Плотность вещества» в других словарях:
плотность вещества — medžiagos tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos kiekis vienetiniame tūryje. Matavimo vienetas: mol/m³. atitikmenys: angl. density of matter vok. Dichte der Materie, f; Materialdichte, f rus. плотность… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
плотность вещества — medžiagos tankis statusas T sritis fizika atitikmenys: angl. density of matter vok. Dichte der Materie, f rus. плотность вещества, f pranc. densité de la matière, f … Fizikos terminų žodynas
плотность вещества — medžiagos tankis statusas T sritis Energetika apibrėžtis Vienetinio tūrio medžiagos kiekis. Vienetas – mol/m³. atitikmenys: angl. density of matter vok. Dichte der Materie, f; Materiedichte, f rus. плотность вещества, f pranc. densité de la… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas
Объемная плотность вещества (материала) — 2.12. Объемная плотность вещества (материала) величина, определяемая отношением массы вещества материала к занимаемому им объему, т.е. равная массе вещества (материала, содержащегося в единице объема). Источник … Словарь-справочник терминов нормативно-технической документации
Удельный объем: определение, формулы, примеры — 2021
Удельный объем определяется как количество кубических метров, занимаемых одним килограммом вещества. Это отношение объема материала к его массе, которое равно обратной величине его плотности. Другими словами, удельный объем обратно пропорционален плотности. Удельный объем может быть рассчитан или измерен для любого состояния вещества, но он чаще всего используется в расчетах с участием газов.
Стандартная единица измерения удельного объема — кубометр на килограмм (м 3 / кг), хотя это может быть выражено в миллилитрах на грамм (мл / г) или кубических футах на фунт (футах) 3 /фунт).
Как называется величина обратная плотности
Удельный объём — Размерность LM−3 Единицы измерения СИ м³/кг СГС … Википедия
УДЕЛЬНЫЙ ОБЪЁМ — (см. ОБЪЁМ УДЕЛЬНЫЙ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. УДЕЛЬНЫЙ ОБЪЁМ … Физическая энциклопедия
УДЕЛЬНЫЙ ОБЪЁМ — физ. величина (обозначение и), равная отношению объёма, занимаемого веществом, к его (см.). Для однородного вещества удельный объём величина, обратная (см.). В СИ удельный объём выражается в м3 кг … Большая политехническая энциклопедия
удельный объём — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN specific volumesp vols.v … Справочник технического переводчика
удельный объём — savitasis tūris statusas T sritis fizika atitikmenys: angl. specific volume vok. spezifisches Volumen, n rus. удельный объём, m pranc. volume massique, m; volume spécifique, m … Fizikos terminų žodynas
УДЕЛЬНЫЙ ОБЪЁМ — объём, занимаемый единицей массы в ва; величина, обратная плотности. Единица СИ м3/кг … Естествознание. Энциклопедический словарь
удельный объём — объём, занимаемый единицей массы вещества; величина, обратная плотности. * * * УДЕЛЬНЫЙ ОБЪЕМ УДЕЛЬНЫЙ ОБЪЕМ, объем, занимаемый единицей массы вещества; величина, обратная плотности … Энциклопедический словарь
Удельный объём — см. Объём удельный … Большая советская энциклопедия
удельный объём насыщенного пара — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN saturated steam specific volumevg … Справочник технического переводчика
удельный объём насыщенной воды — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN saturated water specific volumeVf … Справочник технического переводчика
Формула удельного объема
Для расчета удельного объема (ν) используются три общие формулы:
Второе уравнение обычно применяется к жидкостям и твердым веществам, потому что они относительно несжимаемы. Уравнение может использоваться при работе с газами, но плотность газа (и его удельный объем) может резко измениться с небольшим увеличением или снижением температуры.
Плотности некоторых газов
Плотность газов и паров (0° С, 101325 Па), кг/м³
Азот | 1,250 | Кислород | 1,429 |
Аммиак | 0,771 | Криптон | 3,743 |
Аргон | 1,784 | Ксенон | 5,851 |
Водород | 0,090 | Метан | 0,717 |
Водяной пар (100° С) | 0,598 | Неон | 0,900 |
Воздух | 1,293 | Углекислый газ | 1,977 |
Хлор | 3,214 | Гелий | 0,178 |
Этилен | 1,260 |
Таблица общих значений удельного объема
Инженеры и ученые обычно ссылаются на таблицы конкретных значений объема. Эти репрезентативные значения относятся к стандартной температуре и давлению (STP), которые представляют собой температуру 0 ° C (273,15 К, 32 ° F) и давление 1 атм.
вещество | плотность | Удельный объем |
(Кг / м 3 ) | (м 3 /кг) | |
Воздух | 1.225 | 0.78 |
лед | 916.7 | 0.00109 |
Вода (жидкость) | 1000 | 0.00100 |
Соленая вода | 1030 | 0.00097 |
Меркурий | 13546 | 0.00007 |
R-22 * | 3.66 | 0.273 |
аммоний | 0.769 | 1.30 |
Углекислый газ | 1.977 | 0.506 |
хлор | 2.994 | 0.334 |
водород | 0.0899 | 11.12 |
метан | 0.717 | 1.39 |
азот | 1.25 | 0.799 |
Пар* | 0.804 | 1.24 |
Вещества, отмеченные звездочкой (*), не указаны в STP.
Поскольку материалы не всегда находятся в стандартных условиях, существуют также таблицы для материалов, в которых указаны конкретные значения объема в диапазоне температур и давлений. Вы можете найти подробные таблицы для воздуха и пара.
Плотности и удельные объёмы некоторых веществ[ | ]
В таблице приведены плотности и удельные объёмы для некоторых веществ. Значения указаны для стандартных температуре и давлении: 0°С (273,15 К) и 1 атм (101,325 кПа или 760 мм рт. ст.).
Название вещества | Плотность, (кг/м3) | Удельный объём, (м3/кг) | Название вещества | Плотность, (кг/м3) | Удельный объём, (м3/кг) |
Воздух | 1.225 | 0,816 | Двуокись углерода | 1,977 | 0,506 |
Водяной лёд | 916,7 | 0,00109 | Хлор | 2,994 | 0,334 |
Жидкая вода | 1000 | 0,00100 | Водород | 0,0899 | 11,12 |
Морская вода | 1030 | 0,00097 | Метан | 0,717 | 1,39 |
Ртуть | 13546 | 0,00007 | Азот | 1,25 | 0,799 |
Фреон R-22* | 3,66 | 0,273 | Водяной пар* | 0,804 | 1,24 |
Аммиак | 0,769 | 1,30 | |||
* — значения указаны для нестандартных температуры и давления |
Использование определенного объема
Удельный объем чаще всего используется в инженерных и термодинамических расчетах для физики и химии. Он используется для прогнозирования поведения газов при изменении условий.
Рассмотрим воздухонепроницаемую камеру, содержащую заданное количество молекул:
Зависимость плотности от температуры
Как правило, при уменьшении температуры плотность увеличивается, но есть вещества, чья плотность ведет себя иначе, например, вода, бронза и чугун.
При фазовых переходах, изменении агрегатного состояния плотность вещества меняется скачкообразно.
Самую большую плотность во Вселенной имеют черные дыры (ρ
10 11 кг/м³). Самую низкую плотность имеет межгалактическая среда (ρ
В астрономии большое значение имеет средняя плотность небесных тел, по ней можно приблизительно определить состав этого тела.
Удельный объем и удельный вес
Если известны конкретные объемы двух веществ, эта информация может использоваться для расчета и сравнения их плотностей.
Сравнение плотности дает удельные значения плотности. Одно из применений удельного веса состоит в том, чтобы предсказать, будет ли вещество плавать или тонуть при помещении на другое вещество.