что такое твердая вода
Сможет ли “Твердая вода”, созданная учеными ВГУ решить проблему засухи?
Приветствуем вас на страницах блога iCover! Дефицит водных ресурсов, провоцирующий засухи – проблема многих стран и регионов планеты. В свою очередь, недостаточная орошаемость почвы – один из ключевых факторов, самым непосредственным образом отражающихся на ее плодородии, качестве и объеме собираемых урожаев. А при полном отсутствии возможностей полноценного и регулярного водоснабжения и полива многие территории с потенциально плодоносными почвами становятся нежизнеспособными.
Кардинально изменить ситуацию предложили ученые факультета химии Воронежского государственного университета. Вместо жидкой воды они предложили использовать специальный водоемкий гранулированный сорбент, который можно вносить в почву вместе с удобрениями. По мере высыхания почвы гранулы начинают отдавать воду в почву до нужного уровня насыщения. Внедрение технологии ”Твердая вода”, по убеждению авторов разработки, позволит вдвое сократить затраты на орошение и объем воды, достаточный для выращивания сельскохозяйственных культур.
Исследования проводятся под руководством ученых Воронежского государственного университета кафедры аналитической химии (под руководством профессора В. Селеменева) и кафедры общей и неорганической химии (под руководством профессора В. Семенова). Инициатор и руководитель проекта – ректор ВУЗа –Д. Ендовицкий.
Идея предложенная воронежскими специалистами имеет свою историю. Первым предложил подобную технологию, названную тогда “Solid Rain” был мексиканский ученый Серхио Веласко. При всей своей эффективности стоимость такого решения оказывалась очень высока, что определило нецелесообразность ее практического применения. Проанализировав ограничения этой и других существующих технологий ученые предложили использовать собственные методики, которые позволили получить недорогой продукт, способный решить проблему эффективного орошения на качественно новом уровне.
Как это работает
Препарат представляет собой компактные, небольшие по размеру гранулы, килограмм которых способен аккумулировать до 500 литров воды. При этом объем самих гранул увеличивается в 100 раз. Действие сорбента основано на свойствах воды. Попадая в матрицу полимера, вода образует связи с ее стенками, приобретая структур льда и закрепляясь в сорбенте. Именно это качество легло в основу названия продукта ”Твердая вода”. При понижении уровня влажности почвы вокруг гранул ниже определенного уровня связи с матрицей рвутся и структура жидкости меняется, что позволяет ей высвобождаться в почву.
Для начала орошения поле ”засевается” сорбентом и обильно поливается водой. После этого сорбент начинает работать в автоматическом режиме, обеспечивая требуемый для растений уровень влажности. При опускании уровня ниже порогового значения гранулы отдают в почву недостающее количество воды. При дожде они, напротив, добирают воду до максимума своих возможностей. По свидетельству ученых однократного заполнения полимера водой может быть вполне достаточно для обеспечения почвы достаточным количеством влаги в течение всего вегетационного периода. Колоссальный плюс в том, что гранулы, предложенные учеными не вымываются из почвы, что позволяет эффективно использовать их в нужном режиме от 5 до 10 лет подряд.
“Количество сорбента, вносимого в почву определяется типом выращиваемых на ней растений и их потребностями в воде” – объяснил профессор Владимир Селеменев.
Преимущество отечественной разработки
Не менее существенное преимущество – способность сорбента накапливать из почвы не только воду, но и водорастворимые удобрения и микроэлементы, что позволяет эффективно насыщать корневую систему растений питательными веществами. При этом заболачиваемость и засаливание почвы – частые спутники традиционного полива, при внесении гранул сводятся к минимуму.
Одна из инноваций, привнесенная учеными Воронежского университета – способность их сорбента не распадаться зимой. Это позволяет исключить сезонное удаление “твердой воды” из почвы, что для многих российских регионов с суровым климатом приобретает особое значение.
Ключевое преимущество технологии ”твердая вода” – ее экономическая эффективность, значительно превышающая эффективность капельного полива. Ученые подсчитали, что применение сорбента позволяет снизить объем потребляемой влаги, достаточной для оптимального увлажнения почвы, в сравнении с объемом, расходуемым при традиционным поливом на 50%. Способствует снижению экономических затрат и тот факт, что средства защиты растений и водорастворимые удобрения не вымываются из почвы.
Полевые испытания прототипа были проведены на опытных участках ВГАУ им. императора Петра I под руководством профессора Алексея Лукина.
“Твердая вода”, по мнению ученых, — незаменимое средство при выращивании сельскохозяйственных культур в засушливых регионах. Такими регионами, к примеру, могут стать юг Воронежской области, Волгоградская и Астраханская области и др. Если прогнозы ученых оправдаются, то ценность разработки, вполне возможно, сможет выйти за рамки, как перечисленных регионов, так и страны в целом.
Уважаемые читатели, мы всегда с удовольствием встречаем и ждем вас на страницах нашего блога. Мы готовы и дальше делиться с вами самыми свежими новостями, обзорными статьями и другими публикациями и постараемся сделать все возможное для того, чтобы проведенное с нами время было для вас полезным. И, конечно, не забывайте подписываться на наши рубрики.
Доброе утро
Твердая вода. Доброе утро. Фрагмент выпуска от 10.12.2015
Код для встраивания видео
Настройки
Плеер автоматически запустится (при технической возможности), если находится в поле видимости на странице
Размер плеера будет автоматически подстроен под размеры блока на странице. Соотношение сторон — 16×9
Плеер будет проигрывать видео в плейлисте после проигрывания выбранного видео
Воронежские ученые разработали специальный сорбент, контролирующий влагу в почве — твердую воду. Больше посевы не будут гибнуть от засухи. Название «твердая вода» — неслучайно. Благодаря своей структуре гранулы способны накапливать жидкость, превращая ее в лед. Достаточно весной засыпать поле сорбентом и полить. Гранулы впитают в себя воду и увеличатся в несколько раз. А когда влажность снизится, начнут отдавать воду в почву. Использовать гранулы можно от пяти до десяти лет. Они не вымываются из почвы, выдерживают любые температуры и самое главное — не наносят вред почве.
Владимир Селеменев, заведующий кафедрой аналитической химии ВГУ: «Мы получаем сорбент из природных мономеров, они не будут загрязнять почву, а зарубежные аналоги берут синтетические мономеры, которые могут оказывать плохое воздействие на экологию и изменять структуры почвы».
Похожую технологию орошения разрабатывать начали несколько десятилетий назад мексиканские ученые. Но их производство оказалось очень дорогим и нерентабельным. Цена гранул воронежских ученых в два раза ниже зарубежных аналогов. К тому же их использование должно сократить издержки на полив. Первые испытания сорбента пройдут уже этой весной. А в массовое производство его планируют запустить в ближайшие три года.
Воронежские химики разработали «твердую воду» для борьбы с засухой
Воронежские химики разработали «твердую воду» для борьбы с засухой
Ученые Воронежского госуниверситета (ВГУ) создали полимер, способный впитывать влагу и отдавать ее растениям в сухой земле. Почва, засеянная гранулами такого полимера, реже нуждается в поливе. Химики назвали сорбент «твердой водой», по аналогии с мексиканской разработкой Solid Rain, сообщила пресс-служба ВГУ в понедельник, 16 ноября.
Килограмм вещества способен впитать 500 литров воды, при этом гранулы полимера увеличиваются в 100 раз. Жидкость попадает в сорбент и принимает структуру льда. Когда влажность вокруг гранулы снижается – структура жидкости меняется, и вода попадает в почву.
Полевые испытания сорбента прошли на опытных участках Воронежского аграрного университета (ВГАУ) под руководством профессора кафедры микробиологии и биохимии ВГУ Алексея Лукина.
Поле «засеяли» гранулами сорбента и обильно полили водой, рассказал завкафедрой аналитической химии профессор Владимир Селеменев.
– Полимер начинает работать в автоматическом режиме, поддерживая необходимый для растения уровень влажности. Когда уровень падает, гранулы отдают воду в почву, а при дожде вновь впитывают ее и набухают. Одного заполнения полимера водой может хватить на весь вегетационный период. Гранулы не вымываются из почвы, срок их действия составит от пяти до десяти лет. Количество сорбента и воды зависит от типа почвы и растений, – процитировала пресс-служба ВГУ профессора Владимира Селеменева.
Стоимость воронежской «твердой воды» ниже зарубежных аналогов благодаря новой технологии получения сорбента. Килограмм полимера стоит 10-12 долларов, стоимость аналога начинается от 20 долларов.
Воронежского государственного университета, инициатором проекта выступил ректор вуза Дмитрий Ендовицкий. Непосредственно синтезом новых сорбентов занимается профессор кафедры химии высокомолекулярных соединений и коллоидов Вячеслав Кузнецов. Полевые испытания препарата были проведены на опытных участках ВГАУ им. императора Петра I под руководством профессора Алексея Лукина. Разработка российских ученых поглощает жидкость вместе с микроэлементами и водорастворимыми удобрениями. Так растения получат из сорбента питательные вещества.
Воронежская «твердая вода» исключает заболачивание и засоление почвы, выдерживает холодные зимы, добавили в пресс-службе вуза.
Над проектом «твердой воды» работали ученые кафедр аналитической химии (заведующий – профессор Владимир Селеменев) и общей и неорганической химии (заведующий – профессор Виктор Семенов) ВГУ. Инициатор проекта – ректор вуза Дмитрий Ендовицкий.
Технологию планируют использовать в засушливых районах на юге Воронежской области, вт Волгоградской и Астраханской областях, а также Джанкойском районе Республики Крым, над которым шефствует Воронежская область.
Технологию Solid Rain первым предложил мексиканский ученый Серхио Веласко. Но производство сорбента оказалось слишком дорогим. В июне 2014 года воронежские ученые испытали зарубежный полимер и приступили к созданию усовершенствованного аналога.
Твердая вода (лёд как минерал)
Твердая вода (лёд как минерал)
А теперь о минерале, с которым мы имеем дело каждый день и много раз. Речь идет о воде. Мы так привыкли к ней – в виде струи дождя или струйки, льющейся из крана, озера, реки, моря, что нам кажется: так было всегда. Сто лет назад было открыто, что вода состоит из двух летучих газов. Удивительное открытие сделал Лавуазье, французский физик. Но мы Знаем и другое: вода может становиться твердой. Что такое твердая вода? Это лёд.
В морозное утро окно наше часто покрывается фантастически красивым узором из белых веток, листочков, и тут же за окном, словно вырезанные ножничками, тонкие серебристо–белые снежинки летят и ложатся на сугробы. Чудесны эти шестиугольные звездочки с острыми краями! А с крыши свесились сосульки, большие и маленькие – замерзшие струи воды. Вот она – твердая вода, или один из важнейших и удивительнейших, но пока мало изученных минералов – лёд.
Снежинки, узоры на окне – кристаллики этого минерала. Правда, перед нами не до конца сформированные кристаллы. Время их кристаллизации не тысячи лет, как других минералов, а мгновение, поэтому подобные образования называют кристаллическими скелетами. Лед на замерзшей реке состоит именно из таких кристаллических скелетов.
Твердая вода – минерал временный. Периодический. Есть области, где этот минерал – большая редкость. Например, в Тегеране, столице Ирана, делают специальные бассейны из глины, окруженные высокими стенками. Они защищают воду от солнца. Если случаются заморозки, на воде сверху образуется тонкий ледок. Его бережно собирают и отводят в специальные подземные помещения, где засыпают плотным слоем глины.
А вот на севере и в полярных областях такого минерала сколько угодно. На островах Северного Ледовитого океана среди пластов глины, песка и наносов находятся слои льда, словно это еще одна обычная горная порода. Пластины прекрасного озёрного льда здесь применяют вместо стекла, вставляя его в окна. Об этом писал исследователь и путешественник В. Стефенсон, рассказывая о жизни эскимосов на реке Медной в полярной Канаде.
Иногда лед встречается в образованиях, происхождение которых трудно понять и разгадать. Например, после ясных морозных ночей в Заполярье можно увидеть тонкие блестящие на солнце стебельки льда. На концах их – песчинки и небольшие гальки. Вырастая, они подняли их с поверхности земли. Сначала можно даже не заметить сами стебельки под шляпками галек и песка, но если подойти поближе и вглядеться – откроется целый луг прозрачных ледяных стеблей.
Длина этих ледяных кристалликов может быть от 2 до 10, а то и до 15 сантиметров. А там, где места защищены от ветра, стебельки могут быть особенно крупными – толщиной до 0,5 миллиметров. Стебельки льда часто соединяются друг с другом по два и три и сообща поднимают гальку. Такая форма кристаллизации льда встречается и в некоторых других местах, кроме Заполярья: на Амуре, в Самарской области, в высокогорных областях Альп. Заросли тонких ледяных игл, накрытых сверху галечником и песчаником, можно увидеть на шведских болотах.
В Японии их называют «симобасира» (бруски инея). Эти мелкие иголочки льда совершают большую общую работу – постепенно перемещают гальку. Утром они поднимают камешки на своих головках, а потом, когда взойдет солнце, стебельки льда слегка изгибаются навстречу ему, и галька падает чуть дальше того места, где ее поднял лед. Так происходит день за днем сортировка почвы: кристаллики поднимают более крупные зернистые составные части почвы и передвигают их по глинистой поверхности площадок к востоку.
Ученые пытались разгадать, почему образуются эти ледяные стебельки. Есть много предположений, но точного научного ответа нет до сегодняшнего дня.
Лед как кристаллический минерал Земли можно наблюдать в знаменитой Кунгурской ледяной пещере на Урале. Когда–то подземная река образовала здесь причудливые лабиринты. У самого входа в. пещеру находятся удивительные залы, один из которых носит название «бриллиантового». Настоящих бриллиантов здесь нет, но изумительные ледяные цветы, украшающие этот зал, сияют, как настоящие бриллианты. Это огромные кристаллы – большие пластинки, величиной с ладонь. Целые • гирлянды свешиваются и покрывают стены пещеры. При свете фонаря или лампы все эти филигранной работы кристаллы сверкают, как великолепные драгоценные камни.
Долгое время самым древним письмом считалось шумерское – клинописное, возникшее еще за 2,5 тысячи лет до нашей эры. Но вот в юго–западной части Сирии ученые обнаружили глиняные таблички с письменами, которым 5,5 тысяч лет. На глиняных табличках писались книги. Целая библиотека ассирийского царя Ашшурбанипала состояла из таких книг. Пластинка из увлажненной глины была первой тетрадью человека. На ней писали заостренным гусиным пером или тростниковой палочкой египтяне, жители древнего царства Урарту, финикийцы и другие народы. Наскальные рисунки, которым 20 и более тысяч лет, сделаны глиняными красками. И такая наскальная живопись стала прообразом будущих фресок.
Минералы, из которых состоит глина, – самые малые представители минерального царства. Часто они имеют размеры меньше одного микромикрона. Это соли кремневых кислот со слизистой структурой. В кристаллической решетке глинистых минералов атомы могут размещаться по двум типам. Каждый глинистый минерал состоит из различного сочетания кристаллических сеток, и от этого зависит, какой именно минерал возникает, – каолинит, гидрослюда или еще какой–либо вид.
Глина! Вот уж невидаль! – скажете вы. А между тем, это одно из полезнейших природных веществ. Это был первый помощник человека. Множество бытовых предметов изготовлялось из нее. И дом, и все, что в нем, – почти все состояло из глины. Даже свое происхождение многие народы связывали с глиной. В ней видели дар божественных сил.
Один из главных глинистых минералов – каолинит. Из него состоит каолин (белая глина), из которого был получен первый фарфор. Было время, когда за фарфоровую чашку платили столько золота, что оно не помещалось в эту чашку. Вот истинная цена глины.
С давних времен глина вместе с песком и соломой использовалась в качестве строительного материала – саманного кирпича.
И в наше время саман не вышел из моды. В Америке, например, его сейчас стали вновь широко использовать. Саман хорошо пропускает воздух, в жаркий день в таком помещении прохладно.
Самым древним и величественным сооружением, построенным из глины, является глиняный комплекс Тель–эль–Обейде в Месопотамии. Он построен за 3 тысячи лет до нашей эры. Глиняным был и Вавилон. Знамениты на весь мир были изделия из яркой разноцветной обоженной глины, которые изготовлялись в Самарканде. А мозаика из глины, не тускнеющая своими красками, и до сих пор украшает самаркандский храм Бибн–Ханым.
В главе о съедобных камнях мы рассказывали о том, что многие народы едят глину и очень любят это своеобразное лакомство. Но глйна используется еще и как лечащее вещество, потому что глинистые минералы обладают хорошими сорбционными свойствами. Они очищают организм от накапливающихся в нем вредных веществ, помогают регулировать ионное равновесие в пищеварительном тракте. Глина в то же время – лучший наполнитель для пилюль, смягчающий действие резких лекарств.
Способность глины поглощать своей поверхностью различные соединения используют при очистке нефтепродуктов, различных масел. Это ценное свойство минерала подметили еще в древности. Например, в Индии использовали способность глины вбирать в себя ароматические вещества при изготовлении парфюмерных средств. Делали это так. В жаркое время года, когда цветут тропические травы и цветы, а воздух полон аромата, жители раскладывали на земле глиняные диски. Перед началом сезона дождей диски собирали и складывали в специальный аппарат для дистилляции. Ароматные вещества, выделяясь из глины, соединялись с сандаловым маслом, а затем растворялись в спирте. Так получали земляные духи. Их производят и сейчас в штате Уттар–Прадеш.
С глинами самым тесным образом связана жизнь на Земле. Американские ученые даже выдвинули гипотезу, согласно которой зарождению жизни способствовала глина. Прежде всего было установлено, что глинистые минералы обладают способностью не только накапливать, но и передавать энергию. Энергия высвобождается в ходе радиоактивного распада и других процессов. Значит, глина вполне может являться той «фабрикой», которая производит сырье, нужное для образования сложных молекул. Вполне возможно, что из таких молекул миллиарды лет назад возникли наиболее простые живые микроорганизмы.
Английский ученый Г. Керн Смит предполагает, что глины прибрежной полосы древних океанов представляют собой идеальную среду для протекания в ней различных химических процессов. И те неорганические соединения, которые образовались из глины, служили строительным материалом для молекул живых организмов. Что же, может быть, библейское предание о том, что человек был создан из глины, имеет смысл.
Читайте также
Почему вода в глубоководном озере кажется голубой, а чистая вода из крана – бесцветной?
Почему вода в глубоководном озере кажется голубой, а чистая вода из крана – бесцветной? Солнечный свет, который мы иногда называем белым, содержит в себе все длины волн оптического диапазона – так называемые спектральные цвета – от инфракрасного до ультрафиолетового.
Что такое минерал?
Что такое минерал? Минерал — это вещество, которое входит в состав земной коры и имеет неорганическую основу.Иногда нефть, уголь и известняк называют минералами, но так как они произошли от растений и животных, живших на Земле очень давно, то их нельзя отнести к
Какая часть тела самая твердая?
Какая часть тела самая твердая? (Спрашивает Эйми Фрэнсис, Лонкестон-Саут, Тасмания, Австралия)Зубы. А если точнее – зубная эмаль. Зубы состоят из трех различных твердых тканей – дентина, цемента и эмали. Непосредственно под эмалью находится дентин. Благодаря высокому
Минерал
Минерал Минерал (от mina – подземный ход, штольня). – Это название дают однородным твердым или жидким неорганическим произведениям природы, определенного химического состава, входящим в состав твердой оболочки земли, а также и других небесных тел. Огромное большинство М.
Что такое минерал
Что такое минерал Теперь, когда мы так тесно и по–дружески познакомились с различными камнями – драгоценными, полудрагоценными, поделочными и другими представителями царства минералов, давайте определимся, что же такое минерал. Еще в IV веке до нашей эры древнегреческий
Почему вода в глубоководном озере кажется голубой, а чистая вода из крана – бесцветной?
Почему вода в глубоководном озере кажется голубой, а чистая вода из крана – бесцветной? Солнечный свет, который мы иногда называем белым, содержит в себе все длины волн оптического диапазона – так называемые спектральные цвета – от инфракрасного до ультрафиолетового.
«Твёрдая вода» воронежских учёных попала в топ-10 лучших российских изобретений
Также в список попали жидкий янтарь, мороженое для похудения, бесконечная флешка и другие изобретения
Читать все комментарии
Войдите, чтобы добавить в закладки
Созданная воронежскими учеными «твердая вода» вошла в топ-10 лучших российских изобретений за последнее десятилетие по версии информационно-аналитического интернет-портала «Ньюинформ». В список включили научные открытия, которые могут применяться в различных областях и сферах.
«Твердая вода» расположилась на 4-м месте. Ученые Воронежского государственного университета разработали препарат для борьбы аграриев с засухой в 2015 году. «Твердая вода» редставляет собой небольшие по размеру гранулы, один килограмм которых способен поглощать в себя около 500 литров воды, при этом сами гранулы увеличиваются примерно в 100 раз.
Действие сорбента основано на свойствах воды. Специальный сорбент можно вносить в почву вместо обычного полива на землях с засушливым климатом. При использовании препарата в сельскохозяйственном деле можно сэкономить немалые деньги.
О самых любопытных, на наш взгляд, изобретения и разработки воронежских ученых за последние 10 лет вы можете узнать из нашего подробного материала.
Если вы хотите, чтобы ваши сообщения публиковались на «МОЁ! Online» без предварительной модерации, пожалуйста, зарегистрируйтесь или войдите
= 1 комментарий в режиме инкогнито
Использование режима инкогнито не даёт права нарушать правила общения на сайте!
Сетевое издание, зарегистрировано 30.12.2014 г. Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор)
Свидетельство о регистрации ЭЛ № ФС77-60431 от 30.12.2014 г.
Учредитель: ООО «Издательский дом «Свободная пресса»
Главный редактор редакции «МОЁ!»-«МОЁ! Online» — Ирина Викторовна Булгакова
Редактор отдела новостей «МОЁ! Online» — Полина Александровна Листопад
Адрес редакции: 394049 г. Воронеж, ул. Л.Рябцевой, 54
Телефоны редакции: (473) 267-94-00, 264-93-98
Мнения авторов статей, опубликованных на портале «МОЁ! Online», материалов, размещённых в разделах «Мнения», «Народные новости», а также комментариев пользователей к материалам сайта могут не совпадать с позицией редакции газеты «МОЁ!» и портала «МОЁ! Online».
Есть интересная новость?
Звоните: (473) 267-94-00, 264-93-98. Пишите: web@kpv.ru, moe@kpv.ru
По вопросам размещения рекламы на сайте обращайтесь:
или по телефону в Воронеже: (473) 267-94-13, 267-94-11, 267-94-08, 267-94-07, 267-94-06, 267-94-05
Подписка на новости: RSS
Наш партнёр:
Альянс руководителей
региональных СМИ России
Данные погоды предоставляются сервисом
Все права защищены ООО ИД «СВОБОДНАЯ ПРЕССА» 2007–2021. Любые материалы, размещенные на портале «МОЁ! Online» сотрудниками редакции, нештатными авторами и читателями, являются объектами авторского права. Права ООО ИД «СВОБОДНАЯ ПРЕССА» на указанные материалы охраняются законодательством о правах на результаты интеллектуальной деятельности. Полное или частичное использование материалов, размещенных на портале «МОЁ! Online», допускается только с письменного согласия редакции с указанием ссылки на источник. Все вопросы можно задать по адресу web@kpv.ru. В рубрике «От первого лица» публикуются сообщения в рамках контрактов об информационном сотрудничестве между редакцией «МОЁ! Online» и органами власти. Материалы рубрик «Новости партнёров» и «Будь в курсе» публикуются в рамках договоров (соглашений, контрактов) об информационном сотрудничестве и (или) размещаются на правах рекламы. Партнёрский материал — это статья, подготовленная редакцией совместно с партнёром-рекламодателем, который заинтересован в теме материала, участвует в его создании и оплачивает размещение.