что такое твэл определение
Топливом для ядерного реактора служит ТВЭЛ. Это элемент, в котором непосредственно протекает управляемая цепня реакция. Как устроены «дрова» атомного котла, как они изготавливаются и что происходит с топливом в сердце электростанции?
Известно, что ядра атомов состоят из протонов и нейтронов. Например, в ядре атома урана содержится 92 протона и 143 или 146 нейтронов. Сила отталкивания между положительно заряженными протонами в ядре урана просто громадна, около 100 кгс в одном единственном (!) атоме. Однако разлетаться ядру не дают внутриядерные силы. При попадании в ядро урана свободного нейтрона (только нейтральная частица способна приблизиться к ядру) последнее деформируется и разлетается на две половинки плюс два-три свободных нейтрона.
Эти самые свободные нейтроны атакуют ядра других атомов, и т. д. Таким образом, количество столкновений увеличивается в геометрической прогрессии и в доли секунды вся масса радиоактивного металла распадается. Этот распад сопровождается разлетом на околосветовых скоростях во все стороны осколков, их столкновения с молекулами окружающей среды вызывают нагревание до нескольких миллионов градусов. Это картина обычного ядерного взрыва. ТВЭЛ это явление направляет в мирное русло. Как это происходит?
Таким образом, реакция находится под постоянным контролем автоматики. Распад сопровождается движением в среде теплоносителя осколков ядер урана, которые разогревают его до необходимой температуры.
Как вырабатывается электроэнергия
Дальнейшее устройство атомной электростанции мало чем отличается от обычной тепловой, работающей на газе, мазуте или угле. Разница состоит в том, что в ТЭЦ тепло получается при сжигании ископаемых углеводородов, в АЭС же теплоноситель нагревается ТВЭЛ ядерных реакторов.
Доведенный до температуры в 500–800 °C теплоноситель (в его роли могут выступать перегретая вода, расплавы солей, и даже жидкие металлы) в специальном теплообменнике разогревает воду, превращая ее в сухой пар. Пар вращает турбину, посаженную на один вал с генератором, в котором и вырабатывается электрический ток.
Какие они бывают
Еще одним бонусом использования урановых ТВЭЛов является генерация в них в результате облучения нейтронами ядер урана такого элемента, как плутоний 239, который затем используется как топливо для малогабаритных ядерных реакторов, а так же в качестве оружейного металла.
Где берется топливо для атомных электростанций
Уран добывают во многих странах мира открытым (карьерным) или шахтным способом. Изначально в руде содержится даже не сам уран, а его оксид. Выделение металла из окисла – сложнейшая цепь химических превращений. Далеко не каждая страна мира может позволить себе обзавестись предприятиями по производству ядерного топлива.
Чтобы уран стал высокообогащенным (содержание изотопа 235 повысилось до 20 %) ему предстоит, превратившись в газ, пройти до тысячи ступеней переработки.
Как устроен ТВЭЛ
Изделия из металлического урана лучше приспособлены выдерживать адские условия внутри реактора, но чистый элемент очень дорог в производстве. Намного дешевле диоксид урана, но чтобы он не рассыпался от огромных давления и жара приходится запекать под громадным давлением при температуре более 1000 °C.
ТВС устанавливаются непосредственно в сердце атомного реактора. В одном реакторе их количество может достигать нескольких сотен. По мере распада урана ТВЭЛы теряют свою способность производить тепло, тогда их заменяют. Но один килограмм технического урана, обогащенного до содержания 235 изотопа 4%, за свою жизнь в атомном реакторе успевает произвести столько же энергии, сколько получилось бы при сжигании 300 стандартных двухсотлитровых бочек топочного мазута.
В этой статье указаны элементы с помощью которой осуществляется структура работы АЭС
Описание: Не указано
Справа ТВС, большинство ее трубок — ТВЭЛы. Слева ТВЭЛ, оболочка вскрыта и видны топливные таблетки
ТВЭЛ состоит из топливного сердечника, оболочки и установочных деталей. Несколько ТВЭЛов и крепёжно-установочные элементы объединяются в единую конструкцию, которая называется тепловыделяющая сборка (ТВС). Конструкция и материалы ТВЭЛа определяются конструкцией реактора: гидродинамикой и химическим составом теплоносителя, температурными режимами, требованиями к нейтронному потоку. В большинстве реакторов ТВЭЛ представляет собой герметичную трубку из стали или циркониевых сплавов внешним диаметром около сантиметра и длиной десятки — сотни сантиметров, заполненную таблетками ядерного топлива.
Устройство твэла реактора РБМК: 1 — заглушка; 2 — таблетки диоксида урана; 3 — оболочка из циркония; 4 — пружина; 5 — втулка; 6 — наконечник.
Содержание
Устройство [ ]
Устройство твэла реактора РБМК: 1 — заглушка; 2 — таблетки диоксида урана; 3 — оболочка из циркония; 4 — пружина; 5 — втулка; 6 — наконечник.
Внутри ТВЭЛов происходит выделение тепла за счёт ядерной реакции деления топлива и взаимодействия нейтронов с веществом материалов активной зоны и теплоносителя, которое передаётся теплоносителю. Конструктивно каждый твэл состоит из сердечника и герметичной оболочки.
Помимо делящегося вещества ( 233 U, 235 U, 239 Pu), сердечник может содержать вещество, обеспечивающее воспроизводство ядерного топлива ( 238 U, 232 Th).
Сердечник [ ]
Сердечники бывают металлическими, металлокерамическими или керамическими. Для металлических сердечников используются чистые уран, торий или плутоний, а также их сплавы с алюминием, цирконием, хромом, цинком. Материалом металлокерамических сердечников служат спрессованные смеси порошков урана и алюминия. Для керамических сердечников спекают или сплавляют оксиды или карбиды урана или тория (UO2, ThC2).
В большинстве энергетических реакторов обычно применяют керамические сердечники из диоксида урана (UO2), которые не деформируются в течение рабочего цикла выгорания топлива. Другое важное свойство этого соединения — отсутствие реакции с водой, которая может привести в случае разгерметизации оболочки твэла к попаданию радиоактивных элементов в теплоноситель. Также, к достоинствам диоксида урана можно отнести то, что его плотность близка к плотности самого урана, что обеспечивает нужный поток нейтронов в активной зоне.
Оболочка [ ]
Хорошая герметизация оболочки твэлов необходима для исключения попадания продуктов деления топлива в теплоноситель, что может повлечь распространение радиоактивных элементов в активную зону и первый контур охлаждения реактора. Контроль герметичности оболочек на работающем реакторе производится по уровню этих элементов в первом контуре реактора. Также химическая реакция урана, плутония и их соединений с теплоносителем может повлечь деформацию твэла и другие нежелательные последствия.
Материал оболочки твэлов должен обладать следующими свойствами:
Оболочки твэлов в настоящее время изготавливают из сплавов алюминия, циркония, нержавеющей стали. Сплавы алюминия используются в реакторах с температурой активной зоны менее 250—270 °C, сплавы Zr — в энергетических реакторах при температурах 350—400 °C, а нержавеющая сталь, которая интенсивно поглощает нейтроны, — в реакторах с температурой более 400 °C. Иногда используют и другие материалы, например, графит.
В случае использования керамических сердечников, между ними и оболочкой оставляют небольшой зазор, необходимый для учёта различных коэффициентов теплового расширения материалов, а для улучшения теплообмена оболочку твэла вместе с сердечниками заполняют газом, который хорошо проводит тепло, чаще всего для этих целей используют гелий. В процессе работы твэла исходный зазор (примерно 100 мкм по радиусу) уменьшается, вплоть до полного исчезновения.
Конструктивное исполнение [ ]
Твэл реактора ВВЭР-1000 представляет собой трубку, заполненную таблетками из диоксида урана UO2 и герметично уплотненную. Трубка твэла изготовлена из рекристализованного циркония, легированного 1 % ниобия (сплав Zr1Nb). Плотность сплава 6,55 г/см³, температура плавления 1860 °C. Для сплава Zr1Nb температура 350 °C является своеобразной критической точкой, после которой прочностные свойства сплава ухудшаются, а пластические увеличиваются. Наиболее резко свойства изменяются при температурах 400—500 °C. При температуре выше 1000 °C цирконий взаимодействует с водяным паром, при 1200 °C эта реакция протекает быстро (минуты) (при этом выделяющееся тепло реакции разогревает оболочку до температуры плавления (1860 °C) и образуется водород).
Наружный диаметр трубки твэла 9,1±0,05 мм, толщина 0,65±0,03 мм, внутренний диаметр — 7,72 +0,08 мм.
В трубку с зазором 0,19—0,32 мм на диаметр помещены таблетки диоксида урана высотой 9-12 мм и диаметром 7,57 −0,03 мм. В середине таблеток имеются отверстия диаметром 2,3 мм, а края скруглены фасками. В холодном состоянии общая длина столба таблеток в твэле составляет 3530 мм. Длина трубки твэла составляет 3800 мм, положение столба топливных таблеток зафиксировано разрезными втулками из нержавеющей стали и пружиной, не препятствующими тепловым перемещениям.
При герметизации твэла его внутренняя полость заполняется гелием под давлением 20—25 атм. Внутренний объём твэла (в холодном состоянии 181 см³) на 70 % заполнен таблетками топлива. Длина твэла 3837 мм, масса топлива 0.93-1.52 кг, на нижней концевой пробке имеется поперечное отверстие для крепления к нижней опорной решетке тепловыделяющей сборки.
Герметичность каждого твэла проверяется гелиевым течеискателем. Герметизирующие элементы твэла (трубка и концевые детали) образуют оболочку, а таблетки диоксида урана — топливный сердечник.
Цирконий удачно сочетает ядерные и физические характеристики с механическими свойствами, коррозионностоек в большинстве сред, применяемых в качестве теплоносителей ядерных реакторов и достаточно технологичен.
Таблетки диоксида урана имеют высокую температуру плавления (около 2800 °C), не взаимодействуют с водой и паром даже при высоких температурах, совместимы с материалом оболочки твэла.
Диоксид урана имеет низкую теплопроводность (в 40 раз меньше, чем у стали). Плотность диоксида урана 10,4—10,7 г/см³. При протекании цепной реакции в объёме топливных таблеток равномерно выделяется энергия до 0,45 кВт/см³ (450 кВт/л).
Это тепло отводится из объёма таблеток к поверхности трубок (оболочек), охлаждаемых водой, поэтому наибольшая температура устанавливается на оси симметрии таблеток.
При номинальной мощности реактора температура на оси твэла составляет около 1600 °C, а на поверхности таблеток — около 470 °C. Максимальная температура достигает соответственно 1940 и 900 °C. Перепад температуры на газовом зазоре между таблетками и трубкой (оболочкой) в среднем составляет 100 °C, на оболочке — 23 °C. Температура наружной поверхности трубки твэла составляет около 350 °C. Удельный тепловой поток составляет 0,6 МВт/м², а линейный тепловой поток — 17 кВт/м трубки.
При номинальной мощности давление гелия достигает 80—100 атм, а топливный сердечник твэла удлиняется от нагрева на 30 мм.
Содержание делящегося 235 U в массе топливных таблеток составляет до 5 % в начале кампании и всего лишь 3 % урана может быть израсходовано от этой доли.
Для загрузки в реактор твэлы объединяются в так называемые тепловыделяющие сборки (ТВС), которые в случае твёрдого замедлителя размещают в специальных каналах, по которым протекает теплоноситель. В реакторах с жидким замедлителем сборки размещаются непосредственно в его объёме.
Характеристики [ ]
Основной параметр твэла — глубина выгорания топлива. В современных ВВЭР глубина выгорания достигает 50-60 МВт·сут/кг за 4,5—5 лет (3 кампании по 1,5 года или 5 по году).
Математическая модель тепловыделяющего элемента ядерного реактора
Введение
В ТВЭЛах происходит деление тяжелых ядер урана 235 или плутония 239, сопровождающееся выделением тепловой энергии, которая затем передаётся теплоносителю.
ТВЭЛ должен обеспечить отвод тепла от топлива к теплоносителю и препятствовать распространению радиоактивных продуктов из топлива в теплоноситель.
Поэтому расчёт температурных полей в ТВЭЛах является важной задачей проектирования ядерного реактора.
В данной публикации приведена методика расчета распределения температуры для стержневого осесимметричного твэла, набранного из таблеток оксида урана.
Конструкция осесимметричного ТВЭЛА (схематично)
Ядерное топливо заключено в защитную оболочку из циркониевого сплава – материала, слабо поглощающего тепловые нейтроны.
Между топливным стержнем и оболочкой имеется зазор – тонкая газовая прослойка, заполненная химически нейтральным и высокотеплопроводным гелием [2].
Мощность внутренних источников теплоты в твэлах достигает , а теплонапряженность охлаждаемой поверхности, т.е. плотность теплового потока на поверхности оболочки –
Необходимо обеспечить эффективное охлаждение, чтобы уровень температур был приемлемым для имеющихся материалов.
В наиболее распространенных гражданских реакторах типа ВВЭР охлаждение осуществляется водой под давлением 15 MПа.
Температура насыщения при этом давлении 342ºC, а температура теплоносителя (воды) – примерно 300ºC, т.е. твэлы охлаждаются некипящей, недогретой до температуры насыщения водой. Коэффициент теплоотдачи составляет примерно 30000 Вт/(м 2 ºC).
Для оксида урана, относящегося к типу керамического ядерного топлива, температура может быть очень высокой, поскольку температура плавления UO2 составляет 2800ºC.
Однако, допустимая температура циркониевых оболочек гораздо ниже – около 400ºС. Если этот предел превышен, то в контакте с водой быстро развивается разрушительная коррозия.
При проектировании твэла необходимо проверить, не превышают ли температуры ядерного топлива и защитной оболочки допустимых значений.
Расчет проводится при заданной мощности внутренних источников qv и заданных условиях охлаждения: температуре воды tf и коэффициенте теплоотдачи α.
В конструкции твэла можно выделить две области:
Модель топливного стержня – цилиндр с внутренними источниками тепла
Тепловой баланс для цилиндрического топливного стержня запишем в виде:
Правая часть этого выражения — есть внутреннее тепловыделение в сплошном цилиндре с текущим радиусом r, 0 ≤ r ≤ r1. Левая часть – тепловой поток через поверхность F®.
После подстановки в приведенное соотношение выражения получим уравнение:
. (1)
Согласно (1), линейная плотность теплового потока увеличивается по радиусу твэла благодаря действию внутренних источников теплоты.
С учетом выражения для плотности теплового потока, из уравнения сохранения (1) получается следующее дифференциальное уравнение для температурного поля:
(2)
Переменные в этом уравнении разделяются. Проведем интегрирование на полном интервале:
Вводя величину среднеинтегрального коэффициента теплопроводности, можно записать расчетное соотношение для перепада температуры внутри твэла в следующей компактной форме:
(3)
Теплопроводность UO2 [3]:
(4)
Заметим, что формула (3) дает точное решение дифференциального уравнения (2) в квадратурах. Числовые погрешности могут возникнуть при приближенном вычислении интеграла.
Если принять λ = сonst, то из (3) следует квадратичный закон изменения температуры по радиусу. Чтобы увидеть это, зафиксируйте в Δt ≡ t 0 — t1 величину t0 и рассматривайте t1 как функцию от радиуса r1.
В действительности теплопроводность оксида урана сильно зависит от температуры (4) и эту зависимость необходимо учитывать при практических расчетах.
Задаём мощность тепловыделения qv и температуру поверхности топливного стержня t1. Требуется найти температуру в центре t0 (это максимальное значение температуры в твэле).
Для таких вычислений потребовалось разработать программу на Python:
Итак, чтобы воспользоваться точным решением (3) задачи о разработке математической модели твэла, потребовалось специальное использование модулей Python –fsolve и quad, а также “вложенных” функций.
Заметим, что это самый простой способ решения, если необходимо правильно учесть влияние температурной зависимости коэффициента теплопроводности ядерного топлива.
Расчет теплопередачи через зазор заполненный гелием и циркониевую защитную оболочку
Теплота, выделившаяся в активном стержне, далее передается через газовый зазор и циркониевую оболочку к охлаждающей воде.
Поскольку в этой области внутренних источников тепла нет, величина линейного потока qL сохраняется постоянной, а из (1) следует:
Теплопроводность гелия в газовой прослойке существенно зависит от температуры:
(5)
Учтем, что теплопроводность гелия в газовой прослойке существенно зависит от температуры, в то же время теплопроводность циркониевого сплава можно считать постоянной:
Теплоотдачу на поверхности оболочки опишем уравнением Ньютона Рихмана: преобразованным для линейной плотности теплового потока:
,
где: RL,α называется линейное сопротивление теплоотдачи.
Линейные термические сопротивления гелиевого зазора, оболочки и теплоотдачи на наружной поверхности образуют последовательную цепь сопротивлений, через которые проходит одинаковый (линейный) тепловой поток qL:
(6)
Вычисления будут элементарными, если сопротивления независимы от температуры. Однако, во многих задачах теплопередачи это не так.
Сейчас мы имеем дело с самым простым примером нелинейного сопротивления, вследствие сильной температурной зависимости коэффициента теплопроводности гелия в зазоре.
Более сложными являются задачи с зависящими от температуры сопротивлениями теплоотдачи (как при кипении или конденсации, при свободной конвекции или радиационном теплообмене).
Поскольку проблема является достаточно общей, покажем, как организовать расчеты теплопередачи в таких случаях:
Температура t0 в центре топливного стержня: 2359.2 °С
Температура t1 поверхности топливного стержня из оксида урана: 942.4 °С
Температура t2 внутренней поверхности оболочки из циркония: 408.5 °С
Температура t3 наружной поверхности оболочки из циркония: 352.9 °С
Распределение температуры в твэле
Результаты расчета твэла представлены на графике как распределение температуры по радиусу. Основное внимание при оценке результатов должно быть уделено двум значениям:
Выводы
Средствами свободно распространяемого языка программирования Python с использованием модулей quad, fsole и системы вложенных функций разработана математическая модель для осесимметричного твэла ядерного реактора.
Тепловыделяющий элемент
В большинстве современных энергетических реакторов (ВВЭР, РБМК), твэл представляет собой стержень диаметром 9,1—13,5 мм и длиной несколько метров.
Содержание
Устройство
Внутри твэлов происходит выделение тепла за счёт ядерной реакции деления топлива и взаимодействия нейтронов с веществом материалов активной зоны и теплоносителя, которое передаётся теплоносителю. Конструктивно, каждый твэл состоит из сердечника и герметичной оболочки.
Помимо делящегося вещества ( 233 U, 235 U, 239 Pu), сердечник может содержать вещество, обеспечивающее воспроизводство ядерного топлива ( 238 U, 232 Th).
Сердечник
Сердечники бывают металлическими, металлокерамическими или керамическими. Для металлических сердечников используются чистые уран, торий или плутоний, а также их сплавы с алюминием, цирконием, хромом, цинком. Материалом металлокерамических сердечников служат спрессованные смеси порошков урана и алюминия. Для керамических сердечников спекают или сплавляют оксиды или карбиды урана или тория (UO2, ThC2).
В большинстве энергетических реакторов обычно применяют керамические сердечники из двуокиси урана (UO2), которые не деформируются в течение рабочего цикла выгорания топлива. Другое важное свойство этого соединения — отсутствие реакции с водой, которая может привести в случае разгерметизации оболочки твэла к попаданию радиоактивных элементов в теплоноситель. Также, к достоинствам диоксида урана можно отнести то, что его плотность близка плотности самого урана, что обеспечивает нужный поток нейтронов в активной зоне.
Оболочка
Хорошая герметизация оболочки твэлов необходима для исключения попадания продуктов деления топлива в теплоноситель, что может повлечь распространение радиоактивных элементов за пределы активной зоны. Также, в связи с тем, что уран, плутоний и их соединения крайне химически активны, их химическая реакция с водой может повлечь деформацию твэла и другие нежелательные последствия.
Материал оболочки твэлов должен обладать следующими свойствами:
Оболочки твэлов в настоящее время изготавливают из сплавов алюминия, циркония, нержавеющей стали. Сплавы Al используются в реакторах с температурой активной зоны менее 250—270 °C, сплавы Zr — в энергетических реакторах при температурах 350—400 °C, а нержавеющая сталь, которая интенсивно поглощает нейтроны, — в реакторах с температурой более 400 °C. Иногда используют и другие материалы, например, графит.
В случае использования керамических сердечников, между ними и оболочкой оставляют небольшой зазор, необходимый для учёта различных коэффициентов теплового расширения материалов, а для улучшения теплообмена оболочку твэла вместе с сердечниками заполняют газом, который хорошо проводит тепло, чаще всего для этих целей используют гелий. В процессе работы твэла исходный зазор (примерно 100 мкм по радиусу) уменьшается, вплоть до полного исчезновения.
Конструктивное исполнение
Твэл реактора ВВЭР-1000 представляет собой трубку, заполненную таблетками из двуокиси урана UO2 и герметично уплотненную. Трубка твэла изготовлена из рекристализованного циркония, легированного 1 % ниобия (сплав Н-1). Плотность сплава 6,55 г/см³, температура плавления 1860 °C. Для сплава Н-1 температура 350 °C является своеобразной критической точкой, после которой прочностные свойства сплава ухудшаются, а пластические увеличиваются. Наиболее резко свойства изменяются при температурах 400—500 °C. При температуре выше 1000 °C цирконий взаимодействует с водяным паром, при 1200 °C эта реакция протекает быстро (минуты) (при этом выделяющееся тепло реакции разогревает оболочку до температуры плавления (1860 °C) и образуется водород).
Наружный диаметр трубки твэла 9,1±0,05 мм, толщина 0,65±0,03 мм, внутренний диаметр — 7,72 +0,08 мм.
В трубку с зазором 0,19—0,32 мм на диаметр помещены таблетки двуокиси урана высотой 20 мм и диаметром 7,53 −0,05 мм. В середине таблеток имеются отверстия диаметром 2,3 мм, а края скруглены фасками. В холодном состоянии общая длина столба таблеток в твэле составляет 3530 мм. Длина трубки твэла составляет 3800 мм, положение столба топливных таблеток зафиксировано разрезными втулками из нержавеющей стали и пружиной, не препятствующими тепловым перемещениям.
При герметизации твэла его внутренняя полость заполняется гелием под давлением 20—25 атм. Внутренний объём твэла (в холодном состоянии 181 см³) на 70 % заполнен таблетками топлива. Длина твэла 3837 мм, вес — 21 кг, на нижней концевой пробке имеется поперечное отверстие для крепления к нижней опорной решетке тепловыделяющей сборки.
Герметичность каждого твэла проверяется гелиевым течеискателем. Герметизирующие элементы твэла (трубка и концевые детали) образуют оболочку, а таблетки двуокиси урана — топливный сердечник.
Цирконий удачно сочетает ядерные и физические характеристики с механическими свойствами, коррозионностоек в большинстве сред, применяемых в качестве теплоносителей ядерных реакторов и достаточно технологичен.
Таблетки двуокиси урана имеют высокую температуру плавления (около 2800 °C), не взаимодействуют с водой и паром даже при высоких температурах, совместимы с материалом оболочки твэла.
Двуокись урана имеет низкую теплопроводность (в 40 раз меньше, чем у стали). Плотность двуокиси урана 10,4—10,8 г/см³. При протекании цепной реакции в объёме топливных таблеток равномерно выделяется энергия до 0,45 кВт/см³ (450 кВт/л).
Это тепло отводится из объёма таблеток к поверхности трубок (оболочек), охлаждаемых водой, поэтому наибольшая температура устанавливается на оси симметрии таблеток.
При номинальной мощности реактора температура на оси твэла составляет около 1600 °C, а на поверхности таблеток — около 470 °C. Максимальная температура достигает соответственно 1940 и 900 °C. Перепад температуры на газовом зазоре между таблетками и трубкой (оболочкой) в среднем составляет 100 °C, на оболочке — 23 °C. Температура наружной поверхности трубки твэла составляет около 350 °C. Удельный тепловой поток составляет 0,6 МВт/м², а линейный тепловой поток — 17 кВт/м трубки.
При номинальной мощности давление гелия достигает 80—100 атм, а топливный сердечник твэла удлиняется от нагрева на 30 мм.
Содержание делящегося 235 U в массе топливных таблеток составляет 4,4 % в начале кампании и 0,8—1 % при выгрузке из реактора. Около 5 % продуктов деления урана являются газообразными веществами, увеличивающими давление внутри оболочки твэла на 80 атм в конце кампании в горячем состоянии (давление теплоносителя в активной зоне 160 атм). После охлаждения парциальное давление газообразных продуктов деления в оболочке твэла составляет около 20 атм.
Для загрузки в реактор твэлы объединяются в так называемые тепловыделяющие сборки (ТВС), которые в случае твёрдого замедлителя размещают в специальных каналах, по которым протекает теплоноситель. В реакторах с жидким замедлителем сборки размещаются непосредственно в его объёме.
Характеристики
Основной параметр твэла — глубина выгорания топлива. В современных ВВЭР глубина выгорания достигает 50-60 МВт·сут/кг за 4,5—5 лет (3 кампании по 1,5 года или 5 по году).