что такое ток утечки конденсатора
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Что такое ток утечки конденсатора и как его уменьшить
Ток утечки конденсатора: причины и особенности
Конденсатор является наиболее распространенным компонентом в электронике и используется почти во всех электронных устройствах. Есть много типов конденсаторов, доступных на рынке для различных целей в любой электронной схеме. Они доступны во многих различных значениях емкости от 1 пикофарадного до 1-фарадного конденсатора и суперконденсатора (ионистора). Конденсаторы также имеют различные типы характеристик, такие как рабочее напряжение, рабочая температура, допуск на номинальное значение и ток утечки.
Ток утечки конденсатора является критическим фактором для применения, особенно если он используется в силовой электронике или аудиоэлектронике. Различные типы конденсаторов обеспечивают разные значения тока утечки. Помимо выбора идеального конденсатора с надлежащей утечкой, цепь также должна иметь возможность контролировать ток утечки. Итак, сначала мы должны иметь четкое понимание тока утечки конденсатора.
Ток утечки конденсатора имеет прямую связь с диэлектриком конденсатора. Давайте посмотрим на следующее изображение.
Это изображение представляет собой внутреннюю конструкцию алюминиевого электролитического конденсатора. Алюминиевый электролитический конденсатор состоит из нескольких частей, которые заключены в компактную герметичную упаковку. Эти части: анод, катод, электролит, диэлектрический слой изолятора и т. д.
Диэлектрический изолятор обеспечивает изоляцию проводящей пластины внутри конденсатора. Но поскольку в этом мире нет ничего идеального, изолятор не является идеальным изолятором и имеет допуск на изоляцию. Из-за этого через изолятор будет проходить очень небольшое количество тока. Этот ток называется током утечки.
Такое протекание тока может быть продемонстрировано с помощью схемы простого конденсатора и резистора.
Резистор имеет очень высокое значение сопротивления, которое можно идентифицировать как сопротивление изолятора, а конденсатор используется для воспроизведения фактического конденсатора. Поскольку резистор имеет очень высокое значение сопротивления, ток, протекающий через резистор, очень низкий, как правило, в нескольких наноампер. Сопротивление изоляции зависит от типа диэлектрического изолятора, поскольку различные типы материалов изменяют ток утечки. Низкая диэлектрическая постоянная обеспечивает очень хорошее сопротивление изоляции, что приводит к очень низкому току утечки. Например, конденсаторы полипропиленового, пластикового или тефлонового типа являются примером низкой диэлектрической проницаемости. Но для этих конденсаторов емкость меньше. Увеличение емкости также увеличивает диэлектрическую проницаемость. Электролитические конденсаторы обычно имеют очень высокую емкость, и ток утечки также высок.
От чего зависит ток утечки конденсатора
Ток утечки конденсатора обычно зависит от следующих четырех факторов: диэлектрический слой, температура окружающей среды, температура хранения, приложенное напряжение. Рассмотрим влияние этих факторов на ток утечки.
Конструкция конденсатора требует химического процесса. Диэлектрический материал является основным разделением между проводящими пластинами. Поскольку диэлектрик является главным изолятором, ток утечки имеет с ним большие зависимости. Поэтому, если диэлектрик закаливается в процессе производства, это будет непосредственно способствовать увеличению тока утечки. Иногда в диэлектрических слоях присутствуют примеси, что приводит к слабости слоя. Более слабый диэлектрик уменьшает ток, что также способствует медленному процессу окисления. Не только это, но и неправильное механическое напряжение также способствуют диэлектрической слабости в конденсаторе.
Конденсатор имеет рейтинг рабочей температуры. Максимальная рабочая температура может варьироваться от 85 градусов Цельсия до 125 градусов Цельсия или даже больше. Поскольку конденсатор представляет собой химически составленное устройство, температура имеет прямую связь с химическим процессом внутри конденсатора. Ток утечки обычно увеличивается, когда температура окружающей среды достаточно высока.
Хранение конденсатора в течение длительного времени без напряжения – плохо для конденсатора. Температура хранения также является важным фактором для тока утечки. Когда конденсаторы хранятся, оксидный слой подвергается воздействию материала электролита. Оксидный слой начинает растворяться в материале электролита. Химический процесс отличается для разных типов электролита. Электролит на водной основе нестабилен, тогда как инертный электролит на основе растворителя обеспечивает меньший ток утечки из-за уменьшения окислительного слоя.
Каждый конденсатор имеет номинальное напряжение. Поэтому использование конденсатора выше номинального напряжения – это плохо. Если напряжение увеличивается, ток утечки также увеличивается. Если напряжение на конденсаторе выше номинального напряжения, химическая реакция внутри конденсатора создает газы и разлагает электролит.
Если конденсатор хранится в течение длительного времени, например, в течение многих лет, конденсатор необходимо восстановить в рабочее состояние, обеспечив номинальное напряжение в течение нескольких минут. На этой стадии окислительный слой снова накапливается и восстанавливает конденсатор в функциональной стадии.
Как уменьшить ток утечки конденсатора
Как обсуждалось ранее, конденсатор имеет зависимости от многих факторов. Первый вопрос: как рассчитывается срок службы конденсатора? Ответ заключается в подсчете времени до истечения электролита. Электролит расходуется окислительным слоем. Ток утечки является основным компонентом для измерения степени загрязнения окислительного слоя. Следовательно, уменьшение тока утечки в конденсаторе является основным ключевым компонентом для срока службы конденсатора.
Производство или производственная установка – это первое место в жизненном цикле конденсаторов, где конденсаторы тщательно изготавливаются для обеспечения низкого тока утечки. Необходимо принять меры предосторожности, чтобы диэлектрический слой не был поврежден.
Второй этап – хранение. Конденсаторы должны храниться при надлежащей температуре. Неправильная температура влияет на электролит конденсатора, что еще более ухудшает качество окислительного слоя. Убедитесь, что конденсаторы хранятся при надлежащей температуре окружающей среды, меньше максимальной величины.
На третьем этапе, когда конденсатор припаян на плате, температура пайки является ключевым фактором. Потому что для электролитических конденсаторов температура пайки может стать достаточно высокой, превышающей температуру кипения конденсатора. Температура пайки влияет на диэлектрические слои на свинцовых выводах и ослабляет окислительный слой, что приводит к высокому току утечки. Чтобы преодолеть это, каждый конденсатор поставляется с паспортом, где производитель указывает безопасную температуру пайки и максимальное время выдержки. Нужно быть осторожным с этими оценками для безопасной работы соответствующего конденсатора. Это также применимо к конденсаторам поверхностного монтажа (SMD), пиковая температура пайки оплавлением или волной не должна превышать максимально допустимого значения.
Поскольку напряжение на конденсаторе является важным фактором, напряжение на конденсаторе не должно превышать номинальное напряжение.
Не менее важна балансировка конденсатора в последовательном соединении. Последовательное соединение конденсаторов представляет собой сложную работу по балансировке тока утечки. Это связано с дисбалансом тока утечки, делением напряжения и разделением между конденсаторами. Раздельное напряжение может быть различным для каждого конденсатора, и может быть вероятность того, что напряжение на конкретном конденсаторе может быть больше, чем номинальное напряжение, и конденсатор начнет работать со сбоями.
Чтобы преодолеть эту проблему, два отдельных резистора добавляются параллельно конденсаторам, чтобы уменьшить ток утечки. На рисунке ниже показана методика балансировки, при которой два последовательно соединенных конденсатора уравновешиваются с помощью высококачественных резисторов.
Используя метод балансировки, можно регулировать разницу напряжения, которая влияет на ток утечки.
Как проверить конденсатор мультиметром
По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.
Типичные неисправности конденсаторов:
Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.
Внешний осмотр
Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:
Измерение емкости конденсатора мультиметром и специальными приборами
Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.
С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.
Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.
К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.
Проверка на короткое замыкание
Способ №1: определение КЗ в режиме прозвонки
Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.
В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).
Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.
Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки
Если нет мультиметра (и даже старой советской «цешки» нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.
Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).
Если же светодиод горит постоянно, конденсатор 100% неисправен.
Способ №3: проверка конденсатора лампочкой на 220В
Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.).
Способ №3 очень наглядно продемонстрирован в этом видео:
Проверка на отсутствие внутреннего обрыва
Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).
Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса 🙂
Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.
Как это сделать? Есть три способа.
Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки
Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.
Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:
Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!
Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва
Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.
Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.
По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.
С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).
Вот видео для наглядности:
Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва
Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.
Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).
Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.
Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.
Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.
Определение рабочего напряжения конденсатора
Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.
Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.
Способ №1: определение рабочего напряжения через напряжения пробоя
Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.
Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.
Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).
За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое. Вы можете иметь свое мнение на этот счет.
А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).
Способ №2: нахождение рабочего напряжения конденсатора через ток утечки
Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.
Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:
и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.
У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):
Напряжение на конденсаторе, В | Ток утечки, мкА | Прирост тока, мкА |
---|---|---|
10 | 1.1 | 1.1 |
20 | 2.2 | 1.1 |
30 | 3.3 | 1.1 |
40 | 4.5 | 1.2 |
50 | 5.8 | 1.3 |
60 | 7.2 | 1.4 |
70 | 8.9 | 1.7 |
80 | 11.0 | 2.1 |
90 | 13.4 | 2.4 |
100 | 16.0 | 2.6 |
Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.
Если из полученных значений построить график, то он будет иметь следующий вид:
Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:
Стандартный ряд номинальных рабочих напряжений конденсаторов, В | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.3 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 | 350 | 400 | 450 | 500 |
то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.
Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.
Как измерить ток утечки конденсатора?
Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.
При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.
Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:
Определение емкости неизвестного конденсатора
Способ №1: измерение емкости специальными приборами
Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!
Способ №2: измерение емкости двух последовательно включенных конденсаторов
На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.
Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:
Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.
Подставляем эти цифры в формулу и получаем:
Способ №3: измерение емкости через постоянную времени цепи
Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)
Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).
Вот какой-то чел очень хорошо все рассказал на видео:
Другие способы измерения емкости
Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.
Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.
Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40. 85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.
Можно ли проверить конденсатор мультиметром не выпаивая его с платы?
Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.
Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.
Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.
Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.
Вот пример, когда все пять конденсаторов покажут ложное КЗ:
В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая «прозвонка» конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.
Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.
Вот очень правильный и понятный видос на эту тему:
Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.