что такое точка экстремума функции
Экстремумы функции: признаки существования, примеры решений
Экстремумы функции, их необходимый и достаточный признаки
Нахождение эктремумов функции может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графиков. Кстати, будет полезным открыть в новом окне материал Свойства и графики элементарных функций.
Рассмотрим график непрерывной функции (рисунок снизу).
Определение. Точка x 1 области определения функции f(x) называется точкой максимума функции, если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f(x 0 ) > f(x 0 + Δx) ). В этом случае говорят, что функция имеет в точке x 1 максимум.
Определение. Точка x 2 области определения функции f(x) называется точкой минимума функции, если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f(x 0 ) 0 + Δx) ). В этом случае говорят, что функция имеет в точке x 2 минимум.
Определение. Точки, в которых производная функции равна нулю или не существует, называются критическими точками.
Пример 1. Рассмотрим функцию .
В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.
Итак, чтобы определить точки экстремума функции, требуется выполнить следующее:
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Пример 2. Найти экстремумы функции .
Решение. Найдём производную функции:
.
Приравняем производную нулю, чтобы найти критические точки:
.
Так как для любых значений «икса» знаменатель не равен нулю, то приравняем нулю числитель:
.
То есть, точка x = 3 является точкой минимума.
Найдём значение функции в точке минимума:
.
Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.
Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.
Локальный характер экстремумов функции
Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .
Ищем экстремумы функции вместе
Пример 3. Найти экстремумы функции и построить её график.
Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых
, т.е.
, откуда
и
. Критическими точками
и
разбивают всю область определения функции на три интервала монотонности:
. Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.
Для интервала контрольной точкой может служить
: находим
. Взяв в интервале
точку
, получим
, а взяв в интервале
точку
, имеем
. Итак, в интервалах
и
, а в интервале
. Согласно первому достаточному признаку экстремума, в точке
экстремума нет (так как производная сохраняет знак в интервале
), а в точке
функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции:
, а
. В интервале
функция убывает, так как в этом интервале
, а в интервале
возрастает, так как в этом интервале
.
Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение
, корни которого
и
, т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Пример 4. Найти экстремумы функции и построить её график.
Областью определения функции является вся числовая прямая, кроме точки , т.е.
.
Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала
.
Находим производную и критические точки функции:
1) ;
2) ,
но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.
Таким образом, заданная функция имеет две критические точки: и
. Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку
. Для этого найдём вторую производную
и определим её знак при
: получим
. Так как
и
, то
является точкой минимума функции, при этом
.
Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:
(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично
означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если
, то
. Далее, находим
,
т.е. если , то
.
Найти экстремумы функции самостоятельно, а затем посмотреть решение
Пример 5. Найти экстремумы функции .
Пример 6. Найти экстремумы функции .
Пример 7. Найти экстремумы функции .
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Продолжаем искать экстремумы функции вместе
Пример 8. Найти экстремумы функции .
Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из
получаем
.
Найдём первую производную функции:
Найдём критические точки функции:
Точки и
не могут быть точками экстремума, так как находятся на границе области определения функции. В точке
производная функции меняет знак с плюса на минус, а в точке
— с минуса на плюс. Следовательно,
— точка максимума, а точка
— точка минимума функции.
Найдём значения функции в этих точках:
Таким образом, экстремумы функции:
.
Пример 9. Найти экстремумы функции .
Решение. Найдём область определения функции.
Найдём первую производную функции:
Найдём критические точки функции:
Таким образом, у данной функции две критические точки: и
. Определим значения производной в критических точках. При переходе через точку
производная функции продолжает убывать (сохраняет знак минус), а при переходе через точку
— начинает возрастать (меняет знак с минуса на плюс). Следовательно,
— точка минимума функции.
Найдём значение функции в точке минимума:
Таким образом, минимум функции:
.
Пример 10. Найти экстремумы функции .
Решение. Найдём первую производную функции:
.
Найдём критические точки функции:
.
Так как для любого действительного x должно выполняться условие , то
.
Таким образом, данная функция имеет одну критическую точку. Определим значения производной в критической точке. При переходе через точку производная функции начинает убывать (меняет знак с плюса на минус). Следовательно,
— точка максимума функции.
Найдём значение функции в точке максимума:
.
Таким образом, максимум функции:
.
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок № 16. Экстремумы функции.
Перечень вопросов, рассматриваемых в теме
1) Определение точек максимума и минимума функции
2) Определение точки экстремума функции
3) Условия достаточные для нахождения точек экстремума функции
Возрастание функции. Функция y=f(x) возрастает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство
. Другими словами – большему значению аргумента соответствует большее значение функции.
Максимум функции. Значение функции в точке максимума называют максимумом функции
Минимум функции. Значение функции в точке минимума называют минимумом функции
Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).
Точка максимума функции. Точку х0 называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точка минимума функции. Точку х0 называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точки экстремума функции. Точки минимума и максимума называют точками экстремума.
Убывание функции. Функция y = f(x) убывает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство
. Другими словами – большему значению аргумента соответствует большее значение функции.
Алгоритм исследования функции на монотонность и экстремумы:
1) Найти область определения функции D(f)
3) Найти стационарные (f'(x) = 0) и критические (f'(x) не
существует) точки функции y = f(x).
4) Отметить стационарные и критические точки на числовой
прямой и определить знаки производной на получившихся
5) Сделать выводы о монотонности функции и точках ее
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.
Теоретический материал для самостоятельного изучения
Точки, в которых происходит изменение характера монотонности функции – это ТОЧКИ ЭКСТРЕМУМА.
Точки максимума и минимума – точки экстремума.
Функция может иметь неограниченное количество экстремумов.
Критическая точка – это точка, производная в которой равна 0 или не существует.
Важно помнить, что любая точка экстремума является критической точкой, но не всякая критическая является экстремальной.
Алгоритм нахождения максимума/минимума функции на отрезке:
Примеры и разбор решения заданий тренировочного модуля
Решение: Найдем производную заданной функции: у’=2x-8
Определяем знак производной функции и изобразим на рисунке, следовательно, функция возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)
Ответ: возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)
№2. Найдите точку минимума функции у= 2х-ln(х+3)+9
Решение: Найдем производную заданной функции:
Найдем нули производной:
Определим знаки производной функции и изобразим на рисунке поведение функции:
Решение: Если нас интересует движение автомобиля, то, принимая в качестве функции зависимость пройденного расстояния от времени, с помощью производной мы получим зависимость скорости от времени.
V=х'(t)= 20t – 48. Подставляем вместо t 3c и получаем ответ. V=12 м\c
№4. На рисунке изображен график функции. На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7. Определите количество целых точек, в которых производная функции отрицательна.
Решение: Производная функции отрицательна на тех интервалах, на которых функция убывает. В данном случае это точки х3,х5,х7. Следовательно, таких точек 3