что такое температура перегрева в холодильной технике
Что такое температура перегрева в холодильной технике
3. ИСПАРИТЕЛЬ С ПРЯМЫМ ЦИКЛОМ РАСШИРЕНИЯ
Одной из наиболее важных характеристик холодильного контура, без всякого сомне-
ния, является величина перегрева паров хладагента на выходе из испарителя.
Перегревом пара называют разность между температурой этого пара и температурой кипения
жидкости, из которой этот пар образовался, при постоянном давлении.
Для испарителей перегрев пара представляет собой разность между температурой, измерен-
ной с помощью термобаллона ТРВ, и температурой кипения, соответствующей показаниям
манометра НД (в большинстве случаев потерями давления в трубопроводе всасывания можно
пренебречь ввиду их малости).
В примере, приведенном
перегрев составляет: 11 – 4 = 7 K.
Если ремонтник замечает, что перегрев выходит за пределы этого диапазона, можно гово-
рить об аномалиях в работе установки.
3.2. ПЕРЕГРЕВ ХЛАДАГЕНТА В ИСПАРИТЕЛЯХ
С ПРЯМЫМ ЦИКЛОМ РАСШИРЕНИЯ
Обычно считается, что в испарителях с прямым циклом расширения
величина перегрева должна составлять от 5 до 8 K.
Хладагенты с большим температурным глайдом см. в разделе 58
Установки, работающие на R407C, см. в разделе 102.2.
Установки, работающие на R407A, см. в разделе 102.3.
Что происходит с перегревом?
Отметим, что перегрев должен быть минимально допустимым, не провоцирующий пульсаций давления на входе из испарителя. Как на испарителе охлаждения жидкости, так и на испарителе воздухоотделителя с непосредственным охлаждением воздуха, величина перегрева позволяет дать оценку степени заполнения воздухоотделителя. Проводя диагностику любой холодильной машины, основным показателем является величина перегрева (рис.83.6).
Следует всегда быть внимательными, поскольку недопустимое снижение перегрева свидетельствует о заливе испарителя жидким хладагентом, что может стать причиной возникновения губительных для компрессора гидравлических ударов. Аналогичный риск имеет место и в охладителях жидкости.
Что касается водоохлаждающих машин, то для них перегреву пара на выходе из испарителя свойственно меняться от 4 К до 8 К (рис.83.7). Если речь идет о моноблочных агрегатах, то они имеют заводскую настройку ТРВ, которую изменять не рекомендуется.
В холодильных машинах высокой производительности, компрессор, как правило, оборудуют регулятором производительности. В данных агрегатах может быть установлено несколько параллельных компрессоров. Если в одном холодильном контуре работает три компрессора, то расход хладагента меняется в зависимости от количества работающих компрессоров: 100% — 3 действующих компрессора, 66% — 2 действующих компрессора, 33% — 1 компрессор и 0% — компрессоры отключены.
Поскольку ТРВ один, то ему необходимо подавать хладагент в испаритель независимо от режима работы централи. Номинальную холодопроизводитеьность определяют тогда, когда расход хладагента составляет 100%. Исходя из этого следует, что ТРВ необходимо адаптироваться к изменениям расхода. Ему нужно поддерживать перегрев пара в указанных пределах, когда холодопроизводительность составляет 100%, 66% и 33%. При регулировании холодопроизводительности (меняется число работающих компрессоров) перегрев не остается постоянным.
По мере снижения температуры воды на входе в испаритель, датчик температуры подает команду на включение одного, а после — двух других компрессоров. ТРВ оказывается переразмеренным и испаритель начинает переполняться жидким хладагентом. Иногда ТРВ может стать причиной возникновения пульсаций давления в испарителе, соответственно, и на входе в компрессор.
В нашем случае (сравниваем рис.83.8 и рис.83.9) перегрев снижается с 6 К (производительность 100%) до 9 С – 4 С=5 К (минимальная производительность).
Теперь отрегулируем ТРВ на перегрев 6 К. При увеличении производительности перегрев снова измениться. Поэтому не следует менять заводскую настройку ТРВ самостоятельно, не понимая последствий такого вмешательства.
Если необходимо произвести настройку ТРВ на определенную величину перегрева в централи по производству ледяной воды, то выполнять ее следует при максимальной производительности централи (100%) и температуре воды на входе в испаритель равной 12 С. Не нужно настраивать ТРВ на малый перегрев, поскольку при снижении холодопроизводительности он будет уменьшаться. Необходимо всегда проверять величину перегрева, поскольку при пониженной холодопроизводительности перегрев не должен опускаться ниже 4 К.
Данная проблема не возникнет, если в централи установлен электронный ТРВ, поскольку встроенный процессор постоянно поддерживает перегрев на оптимальном уровне.
Вернемся к рисунку 83.8. Централь работается с максимальной холодопроизводительностью (задействованы все три компрессора), и перепад температур по воде равен 5 К. Известно, что расход воды через испаритель является постоянной величиной, поэтому если компрессор работает, то перепад температур по воде не может быть больше 5 К.
Необходимость перегрева хладагента в процессе парообразования в испарителе
1. Необходимость перегрева хладагента в процессе парообразования в испарителе
Рассмотрим парокомпрессионный цикл с хладагентом R22 и температурой испарения +5 °С, обычно используемый при комфортном кондиционировании.
Рис. 2.7. Реальный цикл холодильной машины на T-S диаграмме
В точке 1 на входе испарителя давление составляет примерно 4,8 бара, а температура +5 °С. В точке 1 (рис. 2.7 и 2.8) жидкость начинает испаряться, и чем ближе к точке 2, тем больше в испарителе пара и меньше жидкости. Однако давление и температура по всей длине испарителя остаются постоянными. В точке 2 жидкости уже нет, есть только пар.
Однако производить сжатие в этой точке еще нельзя, так как из-за изменения, например, температуры окружающей среды, точка 2 может «плавать», сдвигаясь при этом в область парожидкостной фазы. Поступление части жидкости в компрессор может привести к гидродинамическому удару (влажный ход) и выходу компрессора из строя.
Поэтому отбор тепла производят до тех пор, пока на выходе из испарителя не произойдет перегрев пара на 5–8 К выше температуры кипения (точка 3). Этот режим называется режимом «сухого хода».
Рис. 2.8. Процесс испарения в холодильной машине
Кроме того, данный режим обеспечивает повышение холодопроизводительности холодильной машины.
Температуру испарения следует выбирать как можно выше, так как повышение температуры испарения на 1 °С ведет к повышению холодопроизводительности на 3–5 %.
Рассмотрим, что происходит с охлажденным воздухом, который с помощью вентилятора проходит через испаритель.
Пусть температура воздуха на входе в испаритель равна 22 °С, а на выходе 15 °С. Перепад температуры воздуха составляет , а полный перепад между температурой хладагента (5 °С) и температурой воздуха на входе составит:
.
и
зависят от влажности окружающего воздуха. Как правило, для испарителей, охлаждающих воздух, могут быть приняты следующие значения:
= 6–10 К;
= 16–20 К.
2. Наличие потерь в компрессоре
Потери в компрессоре возникают из-за трения, наличия мертвого объема, наличия масла в хладагенте, охлаждения встроенного электродвигателя хладагентом др. Эти потери можно уменьшить, увеличив степень сжатия и температуру сжатого хладагента до 60–70°С (линия 3-4, рис. 2.7), хотя температура конденсации должна быть около 40 °С.
Рис. 2.9. Изменение температуры по длине конденсатора
Разность между температурой конденсации и температурой окружающей среды должна быть как можно меньше, так как снижение температуры конденсации на 1 °С ведет к увеличению холодопроизводительности на 1 %.
3. Снятие перегрева и переохлаждение конденсатора
Учитывая, что для исключения потерь в компрессоре температура хладагента повышена до 60–70 °С, то при конденсации нам необходимо прежде всего снять перегрев и привести хладагент к требуемой температуре конденсации (линия 4-5, рис. 2.7).
Рис. 2.10. Процесс конденсации в холодильной машине
На вход конденсатора поступает хладагент в виде перегретого пара с температурой t = 70 °C. (точка 4, рис. 2.9 и 2.10). Воздух, проходящий через конденсатор (в конденсаторах с воздушным охлаждением), охлаждает хладагент при постоянном давлении.
Хладагент начинает конденсироваться и в точке 5 появляются первые капли жидкости. По мере приближения к точке 6 количество жидкой фракции будет увеличиваться, а в точке 6 жидкость составит 100 %. Однако дросселировать газ в этой точке нецелесообразно из-за возможных потерь при дросселировании. Потери при дросселировании определяются физическими свойствами холодильного агента, а также интервалом температур до и после дросселирования ‑ чем больше интервал, тем больше потери. Поэтому одним из способов снижения потерь является уменьшение этого интервала путем понижения температуры жидкого хладагента перед дросселированием.
Это обеспечивается переохлаждением хладагента в конденсаторе на 5–8 К относительно температуры конденсации. Процесс переохлаждения идет по лини 6-7′ (рис. 2.9), а в ряде случаев линия переохлаждения совпадает с пограничной кривой (линия 6-7). В точке 7′ давление составляет 15 бар, температура – 32–35 °С. Перепад температур воздуха, нагреваемого конденсатором, составляет 5–10 К. Температура конденсации должна быть на 10–15 К выше температуры окружающей среды.
4. Потери при дросселировании
Хотя в парокомпрессионном цикле работа расширения составляет небольшую часть работы цикла, обеспечить адиабатическое расширение крайне сложно. Поэтому применяют дросселирование с помощью терморегулирующего вентиля (ТРВ) или трубки малого сечения (капиллярной трубки). Дросселирование обеспечивает понижение давления без изменения энтальпии. Однако в процессе дросселирования реальных газов температура понижается меньше, чем при адиабатическом расширении. Это объясняется наличием частичного парообразования за счет выделения теплоты трения в процессе дросселирования. Вследствие этого снижаются полезная работа расширения и холодопроизводительность. Этот необратимый процесс идет с увеличением удельной энтропии. Следовательно, на T-S диаграмме линия процесса дросселирования пойдет не вертикально вниз (H =const), а наклонно (линия 7′-1).
Таким образом, на T-S диаграмме парокомпрессионный цикл описывается следующими процессами:
1-2 – отбор тепла от охлаждаемой среды при парообразовании (кипении) хладагента в испарителе при постоянном давлении;
2-3 – отбор тепла от охлаждаемой среды при перегреве газообразного хладагента в испарителе;
3-4 – сжатие хладагента компрессором;
4-5 – снятие перегрева хладагента в конденсаторе;
5-6 – конденсация хладагента;
6-7 или 6-7′ – переохлаждение хладагента;
7-1 или 7′-1 – дросселирование хладагента.
Удельная холодопроизводительность (на 1 кг хладагента) пропорциональна площади a-1-2-3-d-а. Затраченная работа площади – 1-2-3-4-5-6-7′-1.
Энергия, отданная конденсатором, пропорциональна сумме вышеуказанных площадей, то есть площади a-1-7′-6-5-4-3-d-а.
Увеличение холодопроизводительности за счет переохлаждения конденсатора равно площади a-1-1′-b-а.
Увеличение холодопроизводительности за счет перегрева хладагента при кипении равно площади c-2-3-d-с.
Методика заправки кондиционеров фреоном
Заправка кондиционера фреоном может осуществляться несколькими способами, каждый из них имеет свои преимущества, недостатки и точность.
Выбор метода заправки кондиционеров зависит от уровня профессионализма мастера, необходимой точности и используемых инструментов.
Также необходимо помнить о том что не все хладагенты можно дозаправлять, а лишь однокомпонентные (R22) или условно изотропные (R410a).
Многокомпонентные фреоны состоят из смеси газов с различными физическими свойствами, которые при утечке улетучиваются неравномерно и даже при небольшой утечке их состав изменяется, поэтому системы на таких хладагентах необходимо полностью перезаправлять.
Заправка кондиционера фреоном по массе
Каждый кондиционер заправлен на заводе определённым количеством хладагента, масса которого указана в документации на кондиционер (также указана на шильдике), там же указана информация о количестве фреона которое надо добавить дополнительно на каждый метр фреоновой трассы (обычно 5-15 гр.)
При заправке этим методом необходимо полностью освободить холодильный контур от оставшегося фреона (в баллон или стравть в атмосферу,экологии это нисколько не вредит- об этом читайте в статье о влиянии фреона на климат )и отвакуумировать. После залить в систему указанное количество хладагента по весам или с помощью заправочного цилиндра.
Преимущества этого метода в высокой точности и достаточной простоте процесса заправки кондиционера. К недостаткам относятся необходимость эвакуации фреона и вакуумирования контура, а заправочный цилиндр, к тому же имеет ограниченный объём 2 или 4 килограмма и большие габариты, что позволяет использовать его в основном в стационарных условиях.
Заправка кондиционера фреоном по переохлаждению
Температура переохлаждения – это разница между температурой конденсации фреона определённой по таблице или шкале манометра (определяется по давлению считанному с манометра, подсоединённого к магистрали высокого давления непосредственно на шкале или по таблице) и температурой на выходе из конденсатора. Температура переохлаждения обычно должна находится в пределах 10-12 0 C (точное значение указывают производители)
Значение переохлаждения ниже данных значений указывает на недостаток фреона- он не успевает достаточно охладиться. В этом случае его надо дозаправить
Если переохлаждение выше указанного диапазона, значит в системе переизбыток фреона и его необходимо слить до достижения оптимальных значений переохлаждения.
Заправить данным способом можно с помощью специальных приборов, которые сразу определяют величину переохлаждения и давление конденсации, а можно и с помощью отдельных приборов- манометрического коллектора и термометра.
К достоинствам этого метода относится достаточная точность заправки. Но на точность данного метода влияет загрязнённость теплообменника, поэтому до заправки данным методом необходимо очистить (промыть) конденсатор наружного блока.
Заправка кондиционера хладагентом по перегреву
Перегрев- это разница между температурой испарения хладагента определённой по давлению насыщения в холодильном контуре и температурой после испарителя. Практически определяется путём измерения давления на всасывающем вентиле кондиционера и температуры всасывающей трубки на расстоянии 15-20 см от компрессора.
Перегрев обычно находится в пределе 5-7 0 C (точное значение указывает производитель)
Переохлаждение выше нормы говорит о недостатке хладагента- систему нужно заправлять до достижения требуемой величины перегрева.
Данный метод достаточно точен и его можно существенно упростить, если использовать специальные приборы.
Другие методы заправки холодильных систем
Если в системе есть смотровое окошко, то по наличию пузырьков можно судить о нехватке фреона. В этом случае заправляют холодильный контур до исчезновения потока пузырьков, делать это нужно порциями, после каждой ждать стабилизации давления и отсутствия пузырьков.
Также можно заправлять по давлению, добиваясь при этом температур конденсации и испарения указанных производителем. Точность этого метода зависит от чистоты конденсатора и испарителя.
Здесь можно посмотреть таблицу зависимости температуры испарения фреона от давления.
Проверить нехватку хладагента в простых системах можно контролируя заполненость испарителя хладагентом- в нормально заправленном кондиционере температура всей поверхности испарителя должна быть одинаковой, если есть участки с более высокой температурой, это значит фреона не хватает и его надо дозаправлять.
А вот один из самых профессиональных видеоуроков по заправке кондиционеров от компании Rothenberger.
Принципы работы холодильной машины
Основные понятия, связанные с работой холодильной машины
Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.
Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.
Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.
Например, хладагент R-410А, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения – 51°С.
Если жидкий хладагент находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине хладагент кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя хладагент активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.
Рассмотрим процесс конденсации паров жидкости на примере хладагента R-410А. Температура конденсации паров хладагента, так же, как и температура кипения, зависит от давления и температуры окружающей среды. Чем выше давление и температура, тем выше температура конденсации. Так, например, конденсация паров хладагента R-410А при давлении 23,5 bar начинается уже при температуре плюс 40°С. Процесс конденсации паров хладагента, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.
Естественно, чтобы процесс кипения хладагента в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно “подливать” в испаритель жидкий хладагент, а в конденсатор постоянно подавать пары хладагента. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.
Наиболее обширный класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка, ТРВ, ЭРВ), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) высокое давление порядка 23,5 bar.
Теперь, когда рассмотрены основные понятия, связанные с работой холодильной машины, перейдем к более подробному рассмотрению схемы компрессионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.
Схема компрессионного цикла охлаждения
Рис. 1. Схема компрессионного цикла охлаждения
Кондиционер – это та же холодильная машина, предназначенная для тепловой обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией и многочисленными дополнительными опциями. Обработка воздуха предполагает придание ему определенных кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения). Остановимся на принципе работы и физических процессах, происходящих в холодильной машине (кондиционере). Охлаждение в кондиционере обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация – при высоком давлении и высокой температуре. Принципиальная схема компрессионного цикла охлаждения показана на рис. 1.
Начнем рассмотрение работы цикла с выхода испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии с низким давлением и температурой.
Парообразный хладагент всасывается компрессором, который повышает его давление до 23,5 bar и температуру до плюс 70-90°С (участок 2-2).
Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, то есть переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением в зависимости от типа холодильной системы.
На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ (хладагент) полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно плюс 4-7°С.
При этом температура конденсации примерно на 10-20°С выше температуры атмосферного воздуха.
Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается (примерно в три раза), часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4).
Парожидкостной хладагент кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.
Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента испаряются и в компрессор не попадает жидкость. Следует отметить, что в случае попадания жидкого хладагента в компрессор, так называемого “гидравлического удара”, возможны повреждения и поломки клапанов и других деталей компрессора.
Перегретый пар выходит из испарителя (точка 1), и цикл возобновляется.
Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.
Все компрессионные циклы холодильных машин включают два определенных уровня давления. Граница между ними проходит через нагнетательный клапан на выходе компрессора с одной стороны и выход из регулятора потока (из капиллярной трубки, ТРВ, ЭРВ) с другой стороны.
Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений в холодильной машине.
На стороне высокого давления находятся все элементы, работающие при давлении конденсации.
На стороне низкого давления находятся все элементы, работающие при давлении испарения.
Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.
Теоретический и реальный цикл охлаждения.
Риc. 2. Диаграмма давления и теплосодержания
Цикл охлаждения можно представить графически в виде диаграммы зависимости абсолютного давления и теплосодержания (энтальпии). На диаграмме (рис. 2) представлена характерная кривая отображающая процесс насыщения хладагента.
Левая часть кривой соответствует состоянию насыщенной жидкости, правая часть – состоянию насыщенного пара. Две кривые соединяются в центре в так называемой “критической точке”, где хладагент может находиться как в жидком, так и в парообразном состоянии. Зоны слева и справа от кривой соответствуют переохлажденной жидкости и перегретому пару. Внутри кривой линии помещается зона, соответствующая состоянию смеси жидкости и пара.
Рис. 3. Изображение теоретического цикла сжатия на диаграмме «Давление и теплосодержание»
Рассмотрим схему теоретического (идеального) цикла охлаждения с тем, чтобы лучше понять действующие факторы (рис. 3).
Рассмотрим наиболее характерные процессы, происходящие в компрессионном цикле охлаждения.
Сжатие пара в компрессоре.
Холодный парообразный насыщенный хладагент поступает в компрессор (точка С`). В процессе сжатия повышаются его давление и температура (точка D). Теплосодержание также повышается на величину, определяемую отрезком НС`-HD, то есть проекцией линии C`-D на горизонтальную ось.
Конденсация.
В конце цикла сжатия (точка D) горячий пар поступает в конденсатор, где начинается его конденсация и переход из состояния горячего пара в состояние горячей жидкости. Этот переход в новое состояние происходит при неизменных давлении и температуре. Следует отметить, что, хотя температура смеси остается практически неизменной, теплосодержание уменьшается за счет отвода тепла от конденсатора и превращения пара в жидкость, поэтому он отображается на диаграмме в виде прямой, параллельной горизонтальной оси.
Процесс в конденсаторе происходит в три стадии: снятие перегрева ( D-E ), собственно конденсация (Е-А) и переохлаждение жидкости (А-А`).
Рассмотрим кратко каждый этап.
Снятие перегрева ( D-E ).
Это первая фаза, происходящая в конденсаторе, и в течение ее температура охлаждаемого пара снижается до температуры насыщения или конденсации. На этом этапе происходит лишь отъем излишнего тепла и не происходит изменение агрегатного состояния хладагента.
На этом участке снимается примерно 10-20% общего теплосъема в конденсаторе.
Конденсация (Е-А).
Температура конденсации охлаждаемого пара и образующейся жидкости сохраняется постоянной на протяжении всей этой фазы. Происходит изменение агрегатного состояния хладагента с переходом насыщенного пара в состояние насыщенной жидкости. На этом участке снимается 60-80% теплосъема.
Переохлаждение жидкости (А-А`).
На этой фазе хладагент, находящийся в жидком состоянии, подвергается дальнейшему охлаждению, в результате чего его температура понижается. Получается переохлажденная жидкость (по отношению к состоянию насыщенной жидкости) без изменения агрегатного состояния.
Переохлаждение хладагента дает значительные энергетические преимущества: при нормальном функционировании понижение температуры хладагента на один градус соответствует повышению мощности холодильной машины примерно на 1% при том же уровне энергопотребления.
Количество тепла, выделяемого в конденсаторе.
Участок D-A` соответствует изменению теплосодержания хладагента в конденсаторе и характеризует количество тепла, выделяемого в конденсаторе.
Регулятор потока (А`-B).
Переохлажденная жидкость с параметрами в точке А` поступает на регулятор потока (капиллярную трубку или терморегулирующий расширительный клапан), где происходит резкое снижение давления. Если давление за регулятором потока становится достаточно низким, то кипение хладагента может происходить непосредственно за регулятором, достигая параметров точки В.
Испарение жидкости в испарителе (В-C).
Смесь жидкости и пара (точка В) поступает в испаритель, где она поглощает тепло от окружающей среды (потока воздуха) и переходит полностью в парообразное состояние (точка С). Процесс идет при постоянной температуре, но с увеличением теплосодержания.
Как уже говорилось выше, парообразный хладагент несколько перегревается на выходе испарителя. Главная задача фазы перегрева (С-С`) – обеспечение полного испарения остающихся капель жидкости, чтобы в компрессор поступал только парообразный хладагент. Для этого требуется повышение площади теплообменной поверхности испарителя на 2-3% на каждые 0,5°С перегрева. Поскольку обычно перегрев соответствуют 5-8°С, то увеличение площади поверхности испарителя может составлять около 20%, что безусловно оправдано, так как увеличивает эффективность охлаждения.
Количество тепла, поглощаемого испарителем.
Участок HB-НС` соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.
Реальный цикл охлаждения.
Рис. 4. Изображение цикла реального сжатия на диаграмме «Давление-теплосодержание»
C`L: потеря давления при всасывании
MD: потеря давления при выходе
HDHC`: теоретический термический эквивалент сжатия
HD`HC`: реальный термический эквивалент сжатия
C`D: теоретическое сжатие
LM: реальное сжатие
В действительности в результате потерь давления, возникающих на линии всасывания и нагнетания, а также в клапанах компрессора, цикл охлаждения отображается на диаграмме несколько иным образом (рис. 4).
Из-за потерь давления на входе (участок C`-L) компрессор должен производить всасывание при давлении ниже давления испарения.
С другой стороны, из-за потерь давления на выходе (участок М-D`), компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации.
Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла.
Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.
Во-первых, процесс сжатия в компрессоре отличается от адиабатического, поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.
Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.
В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.
Оценка эффективности цикла охлаждения
Эффективность цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.
Коэффициент эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (НD-НС).
Фактически он представляет собой соотношение холодильной мощности и электрической мощности, потребляемой компрессором.
Причем он не является показателем производительности холодильной машины, а представляет собой сравнительный параметр при оценке эффективности процесса передачи энергии. Так, например, если холодильная машина имеет коэффициент термической эффективности, равный 2,5, то это означает, что на каждую единицу электроэнергии, потребляемую холодильной машиной, производится 2,5 единицы холода.