что такое тао в физике
Время на квантовом уровне течет иначе. Но как? И что это означает для физики?
До начала ХХ столетия считалось, что время – есть величина абсолютная. Но после того, как Альберт Эйнштейн опубликовал общую теорию относительности (ОТО), стало понятно, что время – понятие более субъективное и имеет отношение к наблюдателю, который его измеряет. И все же, многие продолжали трактовать время так, словно это прямая железнодорожная линия, двигаться по которой можно только вперед или назад. Но что, если эта железнодорожная линия ветвится или вовсе имеет окружные пути, двигаясь по которым поезд возвращается на станцию, которую уже проезжал? Иными словами, можно ли путешествовать в будущее или прошлое? Начиная со знаменитого романа Герберта Уэллса «Машина времени», научные фантасты придаются фантазиям во всю. Но в реальной жизни представить нечто подобное невозможно. Ведь если бы кто-то в будущем изобрел машину времени, неужто он бы не предупредил нас об угрозе пандемии COVID-19 или об ужасных последствиях глобального потепления? Но к нам так никто и не прибыл. Быть может, стоит посмотреть на время под другим углом?
Законы квантового мира очень сильно отличаются от тех, что мы можем непосредственно наблюдать
Квантовая механика – раздел теоретической физики, описывающий физические явления, действие в которых сравнимо по величине с постоянной Планка.
Ход времени
Наше понятие времени восходит к картине, описанной Исааком Ньютоном: стрела времени движется только вперед, лишая нас всякой возможности вернуться назад, в прошлое. В то же самое время ОТО гласит, что ход времени различен для наблюдателей в разных гравитационных полях.
Это означает, что у поверхности Земли время течет медленнее, так как сила гравитации на планете сильнее, чем на орбите. И чем сильнее гравитационное поле, тем больше этот эффект. Подробнее о том, почему время на вершине горы и на пляже течет по-разному, можно прочитать здесь.
Выходит, законы движения Ньютона положили конец идее абсолютного положения времени в пространстве, а теория относительности и вовсе поставила на этой идее крест. Более того, как пишут в своей книге «Кратчайшая история времени» физики Стивен Хокинг и Леонард Млодинов, путешествия во времени возможны.
Обложка замечательной книги Стивена Хокинга и Леонарда Млодинова, настоятельно рекомендуем к прочтению
Теория относительности показывает, что создание машины времени, способной переместить нас в будущее действительно возможно. Все, что нужно сделать после ее создания – войти внутрь, подождать некоторое время, а затем выйти – и обнаружить, что на Земле время шло иначе, нежели для вас. То есть намного быстрее. Безусловно, никто на планете не обладает подобными технологиями, но их появление – вопрос времени. Ведь если хорошенько подумать, то что нужно для изобретения такой машины?
Во-первых, она должна разгонятся до околосветовых скоростей (напомню, что скорость света достигает 300 000 км/с), а во-вторых, следует вспомнить знаменитый парадокс близнецов, при помощи которого физики пытаются доказать противоречивость специальной теории относительности, которая гласит, что с точки зрения «неподвижных» наблюдателей все процессы у двигающихся объектов замедляются.
Согласно специальной теории относительности (СТО) все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости.
Альберт Эйнштейн опубликовал теорию относительности 106 лет назад.
Немного проясним – данный способ предполагает, что машина времени, в которую вы вошли, взлетает, разгоняется до околосветовой скорости, движется так какое-то время (в зависимости от того, как далеко вперед во времени вы направляетесь) и затем возвращается назад. Когда путешествие заканчивается, покинув машину времени вы понимаете, что для вас прошло намного меньше времени, чем для всех жителей Земли – вы совершили путешествие в будущее. Но если отныне мы воспринимаем время по-другому, быть может, законы физики подскажут, как путешествовать в прошлое?
Можно ли отправиться в прошлое?
Первый намек на то, что человек может совершать путешествия во времени, появился в 1949 году, когда австрийский математик Курт Гедель нашел новое решение уравнений Эйнштейна. Или новую структуру пространства-времени, допустимую с точки зрения ОТО.
Вообще, говоря об уравнениях Эйнштейна, важно понимать, что они удовлетворяют множество разных математических моделей Вселенной. Эти модели различаются, например, начальными или граничными условиями.
И чтобы понять, соответствуют ли они Вселенной, в которой мы живем, мы должны проверить их физические предсказания.
Кстати, если вы давно не пересматривали «Назад в будущее» – самое время)
Гедель, будучи математиком, прославился тем, что доказал – не все истинные утверждения можно доказать, даже если дело сводится к попытке доказать все истинные утверждения, например, с помощью простой арифметики. Таким образом, подобно принципу неопределенности, теорема Геделя о неполноте может быть фундаментальным ограничением нашей способности познавать и предсказывать Вселенную.
Принцип неопределенности – принцип, сформулированный Гейзенбергом и утверждающий, что нельзя одновременно точно определить и положение, и скорость частицы; чем точнее мы знаем одно, тем менее точно другое.
Интересно, что пространство-время Геделя имело любопытную особенность: Вселенная в его представлении вращалась как целое. А вот Эйнштейн был очень огорчен тем, что его уравнения допускают подобное решение. Общая теория относительности в его понимании не должна позволять путешествия во времени. Уравнение Геделя, однако, не соответствует Вселенной, в которой мы живем, но его труд позволил миру взглянуть на время (а заодно и на Вселенную) иначе.
Итак, пространство-время, как известно, тесно взаимосвязаны. Это означает, что вопрос о путешествиях во времени переплетается с проблемой перемещения на скоростях, превыщающих 300 000 км/с, то есть скорость света. А когда речь заходит о фотонах, общая теория относительности, увы, уходит на задний план, а ее место занимает квантовая механика.
Подробнее о том, что изучает квантовая механика, а главное как, мы рассказывали в этой статье, рекомендую к прочтению!
Переход на квантовый уровень
Не так давно команда физиков из Университетов Вены, Бристоля, Балеарских островов и Института квантовой оптики и квантовой информации (IQOQI-Вена) показала, как квантовые системы могут одновременно развиваться по двум противоположным временным стрелкам (вперед и назад во времени). Иными словами, квантовые системы могут двигаться как вперед, так и назад во времени.
Квантовые системы могут двигаться как вперед, так и назад во времени
Ранее, чтобы понять почему, ученые установили, что время знает только одно направление — вперед. Так что нам с вами придется вспомнить второй закон термодинамики. Он гласит, что в замкнутой системе энтропия системы (то есть мера беспорядка и случайности внутри системы) остается постоянной или увеличивается.
Если наша Вселенная представляет собой замкнутый цикл, свернутый в клубок, ее энтропия никогда не может уменьшиться, а это означает, что Вселенная никогда не вернется в более раннюю точку. Но что, если бы стрела времени «посмотрела» на явления, где изменения энтропии невелики?
Второй закон термодинамики – это статистический закон, в среднем верный для макроскопической системы. В микроскопической системе мы можем видеть, как система естественным образом эволюционируют в сторону ситуаций с более низкой энтропией, – пишут авторы научной работы.
Вот что говорит об этом Джулия Рубино, научный сотрудник Университета Бристоля и ведущий автор новой статьи: «Давайте предположим, что в начале газ в сосуде занимает только его половину. Затем представьте, что мы удаляем клапан, который удерживал его в пределах половины сосуда, так что газ теперь может свободно расширяться по всему сосуду».
Термодинамика хранит в себе множество тайн о нашем мире и Вселенной
В результате мы увидим, что частицы начнут свободно перемещаться по всему объему сосуда. Со временем газ займет весь сосуд. «В принципе, существует ненулевая вероятность того, что в какой-то момент газ естественным образом вернется, чтобы занять половину сосуда, только эта вероятность становится меньше, чем больше становится количество частиц, составляющих газ», – объясняет Рубино.
Если бы существовало только три частицы газа вместо огромного количества газа (состоящего из миллиардов частиц), эти несколько частиц могли бы снова оказаться в той части сосуда, откуда они первоначально стартовали. Вот такая физика.
ОТО допускает путешествия во времени в будущее. С прошлым все намного сложнее
Далее, как вы могли догадаться, следует второй закон термодинамики – так называемый статистический закон, который является верным в среднем для макроскопической системы. «В микроскопической системе мы можем видеть, как система естественным образом эволюционирует в сторону ситуаций с более низкой энтропией», – отмечают исследователи.
Стрела времени
Чтобы разобраться еще подробнее, отметим, что в ходе нового исследования физики задавались вопросом о последствиях применения описанной выше парадигмы в квантовой области. Согласно принципу квантовой суперпозиции, отдельные единицы (например, свет) могут существовать одновременно в двух состояниях, как в виде волн, так и в виде частиц, проявляясь в том или ином виде в зависимости от того, что именно вы тестируете.
Команда Рубино рассмотрела квантовую суперпозицию с состоянием, которое развивается как назад, так и вперед во времени. Измерения показали, что чаще всего система в конечном итоге движется вперед во времени. Если бы не небольшие изменения энтропии, система действительно могла бы продолжать развиваться как вперед, так и назад во времени.
Разрушение суперпозиции состоянии при взаимодействии с окружением с течением времени Изображение Joint Quantum Institute
Так как же эти сложные физические понятия соотносятся с реальным человеческим опытом? Неужели наконец-то пришло время начать собирать вещи для путешествия назад во времени? Увы.
«Мы, люди, являемся макроскопическими системами. Мы не можем воспринимать эти квантовые суперпозиции временных эволюций», – говорит Рубино. Для нас время действительно движется вперед. Возможно, это тот случай, когда мир немного не определился.
И действительно – на самом фундаментальном уровне мир состоит из квантовых систем (которые могут двигаться вперед и назад). Более глубокое понимание того, как описать течение времени на уровне этих элементарных составляющих, могло бы позволить физикам сформулировать более точные теории для их описания и, в конечном счете, получить более глубокое понимание физических явлений мира, в котором мы живем.
Еще больше интересных статей обо всем на свете, а также о путешествиях во времени и Мультивселенной читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!
Выводы
Однако не все согласны с тем, что различие между макроскопическим и микроскопическим является четким. Как пишет Popular Mechanics, Рамакришна Подила, доцент кафедры физики и астрономии Университета Клемсона в Южной Каролине, говорит, что статистика многих частиц по сравнению со статистикой отдельных частиц является более точным способом описания вещей.
Даже у одной частицы есть свои собственные, уникальные микросостояния. Подила считает, что в нашем стремлении понять время мы ставим уравнения выше физической реальности — и упускаем главное.
Связывание стрелы времени с энтропией или коллапсом квантово-механической системы (как указано в статье) – это не формальные утверждения, а популярные методы, которые просты в использовании. Даже то, что время движется вперед, само по себе не аксиома, а теория, которую астрофизик Артур Эддингтон придумал и популяризировал в 1927 году.
Время и пространство неразрывно связаны, но правильно ли мы их понимаем?
Так что, возможно, идея о том, что пространство и время сливаются в один переплетенный континуум, имеет право на жизнь. С тех пор как Альберт Эйнштейн сформулировал теорию относительности, мы перестали воспринимать пространство как трехмерную фигуру, а время — как одномерное.
Время стало четвертым элементом четырехмерного вектора, описывающего пространство и время, — говорит Рубино. Это единая, динамичная сущность, над которой мы все еще ломаем голову.
В заключение же хочу не только поблагодарить читателя за внимание, но и вновь процитировать ученых: «Хотя время часто рассматривается как непрерывно увеличивающийся параметр, наше исследование показывает, что законы, управляющие его течением в квантово-механических контекстах, намного сложнее. Это может означать, что нам нужно переосмыслить то, как мы представляем эту величину во всех тех контекстах, где квантовые законы играют решающую роль».
Из-за квантовой суперпозиции ход времени в микромире не имеет определенного направления — исчезает грань между причиной и следствием.
Полностью ознакомиться с текстом научной работы можно в журнале Nature. Кстати, как вы думаете, можно ли путешествовать во времени и что новое исследование говорит нам о Вселенной? Ответ будем ждать здесь, а также в комментариях к этой статье!
Новости, статьи и анонсы публикаций
Свободное общение и обсуждение материалов
Когда кто-то упоминает вслух «другие измерения», мы начинаем думать о всяких параллельных Вселенных — альтернативных реальностях, которые существуют параллел…
Несмотря на то, что самая простая классификация фантастики делит её исключительно на два вида – научную (science fiction) и чистую (fantasy), современная кин…
У протонов есть постоянный спин, который является внутренним свойством частицы, подобно массе или заряду. Тем не менее «откуда берется спин» стало такой тайн…
Изучение нейтрино привело к неожиданному открытию в математике
Три физика хотели обсчитать процесс изменения нейтрино. В итоге они обнаружили неожиданное взаимоотношение между одними из самых распространённых объектов математики.
Однажды в августе, утром после завтрака математик Теренс Тао открыл емейл, написанный тремя физиками, с которыми он не был знаком. Троица объяснила ему, что наткнулась на простую формулу, которая в случае, если она окажется верной, опишет неожиданное взаимоотношение между одними из наиболее базовых и важных объектов линейной алгебры.
Формула «выглядела слишком хорошо, чтобы быть правдой», сказал Тао, профессор из Калифорнийского университета в Лос-Анджелесе, лауреат Филдсовской премии, один из ведущих математиков мира. «Нечто настолько короткое и простое уже давно должно было оказаться в учебниках, — сказал он. – Поэтому сначала я подумал – нет, этого не может быть».
А потом он подумал ещё немного.
Физики – Стивен Парк из Национальной ускорительной лаборатории им. Ферми, Синин Чжан из Чикагского университета и Питер Дентон из Брукхейвенской национальной лаборатории – получили это математическое тождество за два месяца до этого, пытаясь разобраться со странным поведением элементарных частиц под названием нейтрино.
Они заметили, что «собственные векторы», сложные для подсчёта величины, описывавшие в их случае то, как нейтрино распространяются в материи, приравниваются к комбинации членов, известных как «собственные числа», вычислять которые гораздо проще. Более того, они поняли что эта взаимосвязь между собственными векторами и собственными числами – очень часто встречающимися в математике, физике и инженерных расчётах объектами, которые изучают ещё с XVIII века – судя по всему, более общего порядка.
Хотя физики не могли поверить, что они открыли новый факт, относящийся к такой базовой математике, они не смогли найти такого взаимоотношения ни в книгах, ни в статьях. Поэтому они решили рискнуть и связаться с Тао, несмотря на то, что на его сайте была размещена просьба не беспокоить его по подобным случаям.
«К нашему удивлению он ответил через два часа, и сказал, что никогда не видел раньше ничего подобного», — сказал Парк. А кроме этого, в ответе Тао были три независимых доказательства этого тождества.
Синин Чжан, Питер Дентон и Стивен Парк с открытой ими формулой
Полторы недели спустя физики и Тао, которого Парк называет «пожарным шлангом математики», опубликовали в интернете работу, сообщающую о новой формуле. Сейчас эту работу оценивают специалисты журнала Communications in Mathematical Physics. В отдельной работе, опубликованной в журнале Journal of High Energy Physics, Дентон, Парк и Чжан используют эту формулу для упрощения уравнений, описывающих поведение нейтрино.
Эксперты говорят, что у этой формулы может появиться больше способов применения, поскольку в огромном количестве задач требуется подсчёт собственных векторов и собственных чисел. «Она обладает широчайшим применением, — сказал Джон Биком, специалист по физике частиц из Университета Огайо. – Кто знает, какие двери она сможет открыть».
Математики думают так же. «Это и удивительно, и интересно, — сказал Ван Вю, математик из Йельского университета. – Не подозревал, что можно вычислять собственные векторы, используя только лишь информацию о собственных числах».
Вю и Тао доказали близкое по смыслу тождество в 2009 году (поэтому-то Дентон, Парк и Чжан и решили связаться с Тао), однако новая формула не следует очевидным образом из старой. И хотя похожая формула по случайности появилась в математической работе в мае этого года, её авторы не связали её с собственными векторами и собственными числами.
В каком-то смысле неудивительно, что новая идея по поводу математических объектов возрастом в несколько столетий, исходит от физиков. Природа вдохновляла математические изыскания с тех пор, как люди начали считать на 10 пальцах. «Чтобы математика процветала, ей нужно быть связанной с природой, — сказал Вю. – Другого способа нет».
Фокусы преобразований
Собственные векторы и собственные числа так часто встречаются, поскольку характеризуют линейные преобразования: операции, растягивающие, сжимающие, вращающие или ещё каким-либо образом меняющие все части одного объекта одинаково. Эти преобразования представлены прямоугольными массивами чисел, именуемыми матрицами. Одна матрица поворачивает объект на 90 градусов; другая переворачивает его вверх ногами и уменьшает в два раза.
Делают это матрицы, изменяя «векторы» объектов – математические стрелки, указывающие на каждое физическое место объекта. Собственные векторы матрицы – это такие векторы, которые продолжают указывать в том же направлении, что и раньше, после применения матрицы. Допустим, мы возьмём матрицу, поворачивающую объект на 90 градусов вокруг оси х: собственные векторы направлены вдоль оси х, поскольку расположенные по этой оси точки не поворачиваются, когда все остальные вращаются вокруг них.
Похожая матрица может вращать объекты вокруг оси х и сжимать их в два раза. Как сильно матрица сжимает или растягивает собственные векторы объекта, описывают соответствующие собственные числа – в данном случае, 1/2 (если собственный вектор не меняется, его собственное число равняется 1).
Теренс Тао
Собственные векторы и собственные числа независимы, и обычно их приходится подсчитывать отдельно, начиная со строк и столбцов самой матрицы. Студенты учатся делать это для простых матриц. Но новая формула отличается от существующих методов. «Что интересно по поводу этого тождества, так это что вам не нужно знать никаких значений, содержащихся в матрице, чтобы что-то вычислить», — сказал Тао.
Тождество применяется к эрмитовым матрицам, осуществляющим вещественные преобразования собственных векторов (по контрасту с мнимыми числами), и, следовательно, применимым к ситуациям, происходящим в реальности. Формула выражает каждый собственный вектор эрмитовой матрицы через собственные числа этой матрицы и её «минорной матрицы» – такой матрицы меньшего размера, которая получается удалением строки и столбца из оригинальной.
Оглядываясь назад, формула кажется разумной, сказал Тао, поскольку собственные числа минорной матрицы кодируют в себе скрытую информацию. Однако «к примеру, лично я о таком бы никогда не подумал».
Он сказал, что в математике редко появляется инструмент, не связанный с задачей. Однако он считает, что взаимосвязь собственных векторов и собственных чисел обязана иметь значение. «Это настолько красиво, что я уверен, что формула найдёт какое-то применение в ближайшем будущем, — сказал он. – Пока что у нас для неё есть только одно применение».
Частицы-оборотни
И это применение связано с нейтрино: самыми странными, наименее изученными и самыми скрытными из известных фундаментальных частиц. Каждую секунду через тело человека проходят триллионы таких частиц, но поскольку они практически не обнаруживают своего присутствия, многие их свойства остаются неизвестными.
Что интересно, теория утверждает, что именно различия в поведении нейтрино и антинейтрино могут быть причиной доминирования во Вселенной материи над антиматерией. Если бы эти две противоположности появились после Большого взрыва в равных количествах, они бы аннигилировали друг друга, и в космосе не осталось бы ничего, кроме света. Разница между нейтрино и антинейтрино могла послужить появлению жизненно важного избытка материи. «Если они ведут себя по-разному, это даст нам некое представление о том, почему Вселенная заполнена материей», — сказала Дебора Харрис, физик из Йоркского университета и Фермилаб, работающая в эксперименте с нейтрино DUNE (Deep Underground Neutrino Experiment, глубокий подземный нейтринный эксперимент), предназначенном для измерения подобных различий.
Эксперимент, который будет измерять характеристики нейтрино, запущенных из Фермилаб в Иллинойсе в подземный детектор, расположенный в Южной Дакоте в 1300 км от источника, использует тот факт, что нейтрино бывают трёх разных типов – электронное, мюонное и тау. Однако каждый тип представляет собой квантовомеханическую смесь, и нейтрино осциллируют, меняя свои типы на ходу. По мере путешествия нейтрино из Фермилаб их смесь меняется, поэтому мюонное нейтрино может превратиться в электронное или тау-нейтрино.
Эти осцилляции описывает чрезвычайно сложная матрица размера 3х3. Исходя из собственных векторов и собственных чисел физики могут подсчитать выражение, описывающее вероятность того, что мюонное нейтрино превратится в электронное к тому времени, когда оно прибудет в Южную Дакоту. Они также подсчитывают вероятность того, что мюонное нейтрино станет электронным антинейтрино.
Эфемерные частицы нейтрино не только проходят сквозь материю, но ещё и меняют свой тип на лету. В эксперименте DUNE будет запущен луч нейтрино, многие из которых по пути от источника к цели поменяют свои типы. Эти изменения и будут измерять физики.
На диаграмме указана вероятность обнаружения нейтрино разного типа в зависимости от дальности их путешествия в км. Жёлтый – мюонные, синий – электронные, коричневый – тау.
В этих выражениях есть неизвестное: «фаза нарушения CP-инвариантности», показывающее, насколько отличаются друг от друга закономерности осцилляции нейтрино и антинейтрино. Измеряя и сравнивая реальные соотношения осцилляции, учёные с DUNE могут вычислить это неизвестное. Если фаза нарушения окажется достаточно большой, это поможет объяснить, почему Вселенная заполнена материей.
И как будто этих сложностей недостаточно, один странный эффект, предпосылки которого впервые были обнаружены в 1978 году физиком Линкольном Вольфенштейном, делает матрицу нейтрино ещё более сложной. Нейтрино редко взаимодействуют с материей в обычном смысле, но Вольфенштейн обнаружил, что их прохождение через материю, в отличие от пустого космоса, всё же изменяет то, как они распространяются. Иногда нейтрино, проникающий сквозь материю, взаимодействует с электронами в атоме, по сути меняясь с ним местами: электронное нейтрино превращается в электрон и наоборот.
Такие подмены вводят в матрицу новый член, влияющий на электронные нейтрино, что чрезвычайно усложняет математику. Именно этот эффект Михеева — Смирнова — Вольфенштейна [который был предсказан и теоретически исследован советскими физиками Станиславом Михеевым и Алексеем Смирновым в 1985 году на основе рассмотренного в Вольфенштейном случая осцилляций нейтрино в среде с постоянной плотностью] толкнул Парка, Чжана и Дентона на поиски способа упростить вычисления.
Выражение для вычисления собственных чисел проще выражения для собственных векторов, поэтому Парк, Чжан и Дентон использовали это как отправную точку. До этого они разработали новый метод приблизительного вычисления собственных чисел. Отталкиваясь от него они заметили, что длинные выражения для собственных векторов из предыдущих работ равнялись комбинациям этих собственных чисел. Связав всё это вместе, «можно легко и быстро подсчитать осцилляции нейтрино в материи», сказал Чжан.
Касательно того, как именно они углядели закономерность, из которой вытекает формула, физики не совсем уверены. Парк говорит, что они просто заметили отдельные проявления закономерности и обобщили её. Также он признаёт, что хорошо умеет решать загадки. Он является соавтором ещё одной важной закономерности, обнаруженной в 1986 году, и облегчившей вычисления в области физики частиц, а также по сей день вдохновляющей учёных на новые открытия.
И всё же, то, что странное поведение нейтрино могло привести к появлению новых идей, связанных с матрицей, шокировало многих. «Люди решали задачи линейной алгебры уже очень, очень долгое время, — сказал Парк. – Я всё жду, что кто-нибудь пришлёт мне емейл, где будет написано: Если вы посмотрите на эту малоизвестную работу Коши, то там в примечании к третьему приложению есть эта формула».
Минорное отличие
На самом деле похожая формула уже была известна, однако её никто не заметил, поскольку она была замаскирована.
В сентябре Тао получил ещё один неожиданный емейл, в этот раз от Цзиюаня Чжана, аспиранта по математике из Мельбурнского университета в Австралии. Чжан указал на наличие эквивалентной формулы в работе, написанной им вместе с его куратором Питером Форестером в мае, до появления работ Тао и трёх физиков. Чжан и Форрестер работали в области чистой математики, теории случайных матриц. Они применили эту формулу, исследуя задачу, связанную с решённой Тао и его коллегами в 1999 году.
Форестер объяснил нам, что впервые эта формула появилась ещё в одном виде в работе 2001 года за авторством Юлия Барышникова, математика, сейчас работающего в Иллинойсском университете в Урбане-Шампейне, на работе которого основывались Форестер и Чжан. Но эти математики описывали объекты своего тождества не как собственные векторы, а как члены, необходимые для вычисления собственных чисел определённых минорных матриц, появляющихся в ходе решения их задачи.
Форестер назвал формулу в их с Чжаном работе «идентичной» той, что использовали Тао и три физика. Тао назвал формулы «почти идентичными», относящимися друг к другу так же, как две стороны иллюзии «кролик/утка». «Некоторые люди искали кроликов, другие искали только уток», — сказал он.
Дентон в емейле написал, что существовавшая до этого формула «близка к нашему результату, но не подходит к нему идеально». Он добавил, что «в свете важности собственных векторов для многих задач, мы всё же думаем, что наш результат достаточно отличается от остальных, чтобы считать его новым».
Возможно, не так уж странно, что в данной области за одно-единственное лето после нескольких столетий может подняться такое внезапное волнение. «В математике есть много примеров одновременных открытий, — сказал Тао. – Результаты каким-то образом висят в воздухе. И люди просто начинают искать их в правильных местах».