что такое тампонирующие составы их назначение применение время нормального схватывания

Тампонажные материалы для цементирования обсадных колонн в интервалах залегания ММП

Многолетнемерзлые породы широко распространены на нашей планете и имеются на всех континентах, за исключением Австралии. ММП занимают около 47% территории России. В связи с ростом объемов буровых работ в северных районах приобрели актуальность специфические проблемы, связанные с цементированием обсадных колонн в вечной мерзлоте.

Многолетнемерзлые породы широко распространены на нашей планете и имеются на всех континентах, за исключением Австралии. ММП занимают около 47% территории России. В связи с ростом объемов буровых работ в северных районах приобрели актуальность специфические проблемы, связанные с цементированием обсадных колонн в вечной мерзлоте.

Обычные тампонажные портландцементы непригодны для применения в интервалах ММП, так как они не схватываются, а замерзают при температурах ниже нуля, даже с добавками хлористого кальция, а скорость гидратации при температурах ниже 4°С незначительна.

Если цементный раствор замерзает до начала схватывания, то в нем образуются прожилки льда. При растеплении образца и дальнейшем твердении при положительной температуре лед тает, а прожилки превращается в трещины, количество которых достигает 100 на 1 см2 площади. Трещины являются причиной резкого снижения прочности цементного камня и чрезвычайно высокого роста проницаемости образцов, достигающей 200 мД и более [1].

Таким образом, основным направлением исследований в данной области стала разработка альтернативных тампонажных материалов, соответствующих геолого-техническим условиям цементирования обсадных колонн в интервалах залегания ММП. Среди множества предложенных решений наибольшее распространения получили два типа материалов: на базе высокоглиноземистых цементов и на базе гипсоцементных смесей.

Основным компонентом высокоглиноземистых цементов является моноалюминат кальция CA. Такие цементы обычно схватываются и набирают прочность при низких температурах. Однако они имеют существенные недостатки, среди которых высокое тепловыделение при гидратации, приводящее к растеплению приствольной зоны в процессе ОЗЦ, а также несовместимость их с портландцементом и большинством реагентов, применяемых для обработки тампонажных растворов. Например, хлористый натрий резко замедляет сроки схватывания, а добавка хлористого кальция, напротив, может привести к мгновенному схватыванию цементного раствора. По этим причинам высокоглиноземистые цементы в настоящее время практически прекратили применять для цементирования обсадных колонн.

Требования, предъявляемые к тампонажному материалу, предназначенному для цементирования интервалов ММП, достаточно полно изложены в работах [4] и [5]. Они были рассмотрены с небольшими изменениями в следующем виде:

— цементный раствор должен обеспечивать приемлемое, технологическое оправданное время ОЗЦ;

— цементный камень должен приобретать за время ОЗЦ прочность, достаточную для продолжения буровых работ;

— цемент должен иметь низкую теплоту гидратации для уменьшения степени оттаивания мерзлых пород;

— цементный камень должен быть стойким к циклическим изменениям знакопеременных температур;

— цементный камень должен иметь высокую водостойкость (сохранять прочность при хранении в воде).

Кроме того, цементные раствор и камень должны обладать рядом свойств, предъявляемых к тампонажным растворам в целом (седиментационная устойчивость, технологически приемлемое время загустевания и т. д.).

На основе анализа литературных источников, промысловых данных и результатов лабораторных исследований наиболее перспективным материалом была признана гипсоцементная смесь. При этом заданным параметрам тампонажных растворов соответствовал только высокопрочное гипсовое вяжущее, позволяющее получить высокую раннюю прочность и удовлетворительную водостойкость цементного камня.

Анализ рынка и лабораторные испытания показали, что предъявляемым требованиям, как в части обеспечения заданных параметров тампонажных растворов, так и в части соотношения цена/качество, в наибольшей степени отвечает ГВВС для тампонажных растворов (Тампонажный гипс) производства ЗАО «Самарский Гипсовый Комбинат», который и был принят в качестве базового материала для разработки гипсоцементных тампонажных материалов.

Необходимо отметить, что на ЗАО «Самарский Гипсовый Комбинат» был разработан и в настоящее время производится специальный Тампонажный гипс, который рекомендуется для использования в качестве базового компонента составов, предназначенных для цементирования интервалов ММП.

Первоочередной задачей при разработке рецептуры композиции был поиск эффективного замедлителя схватывания гипса, который позволил бы получить приемлемое время загустевания тампонажного раствора, при этом не влиял отрицательно на прочностные показатели цементного камня, а также имел приемлемую стоимость. В связи с последним требованием рассматривались только реагенты отечественного производства.

Путем применения специальных добавок к Тампонажному гипсу была реализована высокая водостойкость цементного камня. Кроме того, введение данных добавок позволило значительно повысить седиментационную устойчивость тампонажных растворов, сведя водоотделение и усадку практически к нулю. Лабораторные исследования показали, что при хранении образцов Полицем Фрост в воде в течение 90 суток снижения прочности не происходит. Водостойкость цементного камня на базе Полицем Фрост представлена на рис. 1.

Таким образом, были разработаны две рецептуры тампонажных смесей для цементирования интервалов ММП, параметры которых, а также растворов на их основе, не уступают (а по ряду показателей и превосходят) решениям зарубежных компаний, представленным на рынке в настоящее время. При этом состав композиций полностью представлен компонентами отечественного производства, что положительно сказывается на цене конечного продукта. Основные показатели растворов и цементного камня на базе тампонажных материалов Полицем Фрост и Полицем Фрост Лайт приведены в таблице 1.

Таблица 1. Основные технологические показатели цементных растворов и камня на базе материалов Полицем Фрост и Полицем Фрост Лайт

Источник

Тампонирование нефтяных скважин

Первая в мире нефтяная скважина появилась в Российской империи в 1846 году. Теперь район, где она была пробурена, находится на территории Азербайджана. Скважина была геологоразведочной. А вот первую нефть из промышленной скважины получили американцы.

Это произошло, по разным данным, то ли в 1857, то ли в 1859 году.

Первые полвека своего существования нефтедобывающая промышленность обходилась без тампонирования скважин. Но примерно в 1907-1908 годах произошла первая удачная попытка уплотнения обсадной колонны цементным раствором с целью защиты нефтяных слоёв от проникновения воды.

Тампонажный цемент

На заре промышленной нефтедобычи для задач тампонирования применяли самый обыкновенный портландцемент — точно такой же, как и для строительства. Однако по мере развития нефтедобывающей отрасли требования к тампонажным материалам стали более строгими.

Первые нефтяные скважины были неглубокими, а производимый в те времена цемент имел относительно грубый помол, примерно 1200–1300 см2/г.

Уже тогда проявились первые недостатки этого материала для тампонирования скважин. Дело в том, что на малых глубинах в условиях небольших давлений и температур цементный раствор слишком медленно схватывался. Это приводило к задержке пуска скважины в эксплуатацию, так как приходилось долго ждать затвердевания цемента, чтобы он стал достаточно прочным.

Тогда нефтедобывающие компании потребовали от производителей портландцемента, чтобы для них делали более мелкий помол этого материала. Нефтяники были готовы платить больше за дополнительный помол, чтобы получать для своих нужд цемент надлежащего качества, обладающий улучшенными техническими характеристиками.

что такое тампонирующие составы их назначение применение время нормального схватывания. Смотреть фото что такое тампонирующие составы их назначение применение время нормального схватывания. Смотреть картинку что такое тампонирующие составы их назначение применение время нормального схватывания. Картинка про что такое тампонирующие составы их назначение применение время нормального схватывания. Фото что такое тампонирующие составы их назначение применение время нормального схватывания

Со временем и такие свойства перестали удовлетворять требованиям нефтедобывающих компаний. Скважины стали бурить на большую глубину, где давление и температура значительно выше, чем в неглубоких скважинах. В этих условиях быстросхватывающийся портландцемент не подойдёт, ведь он застывает ещё до того, как достигнет нужной глубины.

Из-за этого пришлось снова вернуться к цементам грубого помола. Более того, в состав стали вводить добавки, замедляющие его застывание. Первой стали использовать замедлители американцы. При помоле цемента добавляли гипс, а во время тампонирования — смесь борной кислоты и гуммиарабика. Позже для нужд нефтяников стали использовать и другие виды замедлителей. На данный момент максимальная глубина, на которой целесообразно использование цементов замедленного схватывания, составляет 4,8 километра.

Чаще всего тампонажные цементные растворы заливают между стенками скважины и обсадной трубой. Эта мера:

Кроме этого, тампонажный раствор можно заливать в скважину для уменьшения её глубины или для консервации. С его помощью можно также ликвидировать дефекты обсадной трубы.

Как происходит тампонирование скважин

Выбор тампонирующего раствора зависит от типа породы и других факторов. Например, если проникающий слой находится на небольшой глубине, не более полукилометра, состав для тампонирования проталкивают до нужной отметки с помощью бурового раствора. Если в породе есть крупные трещины, применяют вязкопластичный тампонажный состав. Он может включать в себя цемент, полимерные компоненты, составы на глины.

В цемент могут добавлять материалы, способствующие быстрому схватыванию, к примеру, хлористый кальций. Для изолирования пористых поверхностей применяют смолы, а для поглощающих карстовых полостей — глинолатексные составы. Использование смол для поверхностей, покрытых мелкими порами, очень эффективно, так как этот материал обладает большей проникающей способностью, чем цементные растворы.

Обычно закачивают тампонирующий состав через бурильную колонну на высоту участка, который следует изолировать. Тампонирование можно выполнять от забоя скважины или сверху. В последнем варианте его производят в один или несколько этапов.

Хотя одноэтапное заполнение делать проще, в некоторых случаях применение этого метода невозможно. Например, для такого способа нужно, чтобы расположение трещин было относительно равномерным. Многоэтапное тампонирование может проходить как с более глубоких горизонтов вверх, так и наоборот.

Если диаметр скважины невелик, зачастую используют пакер, с помощью которого производят изоляцию отдельных пластов.

Существует также циркуляционный метод. Он заключается в закачке избыточного количества тампонирующего раствора. Лишний материал по межтрубному пространству поднимается вверх. Хотя эта методика считается технически сложной, при её использовании не происходит закупорки трещин и других полостей.

Самые распространённые способы тампонирования нефтяных скважин

Рассмотрим подробнее наиболее распространённые способы тампонирования нефтяных скважин.

Для устранения негерметичности обсадной колонны и пространства за ней через фильтр скважины или дефект в колонне происходит закачка тампонажного раствора. Это самый распространённый вариант тампонирования скважин. Он может производиться тремя способами: с разбуриванием стакана; с вымыванием излишков; комбинированным методом.

В первом случае насосно-компрессорные трубы (НКТ) опускают в скважину таким образом, чтобы они оказались на 5–10 метров выше верхней границы отверстий фильтра или дефекта обсадной колонны. В них закачивают тампонажный раствор. Его излишки вымываются, а получившийся после его застывания в скважине стакан разбуривают.

Разбуривание затвердевшего цемента в колонне не всегда целесообразно. Чтобы обойтись без этого, производят вымывание тампонажного раствора, используя при этом противодавление на пласт. Очень важно, чтобы процесс закончился до того, как раствор затвердеет. Чаще всего данный метод используется, когда для тампонирования применяют нефтецементные растворы.

В некоторых случаях оба этих метода применяются в комплексе.
Этот способ называют комбинированным.

Ликвидационное тампонирование

Тампонирование производят не только для устранения дефектов поверхности и обсадной колонны, но и для ликвидации скважин. Это происходит в двух случаях. Скважина может быть пробурена для временных целей. Например, она является поисковой или разведочной. Кроме того, бывает, что эксплуатацию скважины прекращают. В этом случае её консервируют во избежание загрязнения с поверхности водоносных и нефтеносных горизонтов.

Чаще всего геологоразведочные скважины заполняют тампонажными составами после прекращения их использования.

Обычно для этого используют цементные мосты. При подборе состава тампонажных смесей в первую очередь учитывают степень агрессивности компонентов, входящих в состав подземных вод. Для тампонирования используют цемент, песок, глину, отходы бурения, ускорители застывания, различные добавки и другие компоненты.

Для агрессивных магнезиальных вод, температура которых не превышает 100 градусов по Цельсию, используют шлакопортландцемент.

Если температура подземных вод, имеющих нейтральный состав, превышает 100 градусов, то тампонирование производят портландцементом с добавлением кварцевого песка, который играет роль активной добавки.

Тампонирование нефтяной скважины, где присутствует сероводородная агрессивная среда, а температура достигает 250 градусов, проходит с использованием шлакопесчаного цемента.

Если подземные воды содержат агрессивные сульфатные компоненты, то используют портландцемент, обладающий повышенной сульфатостойкостью. Кроме того, в него добавляется ускоритель схватывания.

Если в скважине присутствуют соленосные отложения, её тампонируют цементом, основой которого является каустический магнезитовый порошок.

При консервации скважины, пробуренной на небольшую глубину и не имеющей значительного водопритока, используют просушенные шарики из глины с добавлением песка.

Один из самых сложных случаев — скважина с большим водопритоком, самоизливающийся поток которой может достигать полутораметровой высоты. Для её ликвидационного тампонирования потребуется целый комплекс мер, куда входит установка цементных мостов с гидроизолирующей перемычкой из глинистых шариков, а также применение различных наполнителей.

Правильный выбор тампонирующих составов и технологии проведения работ позволяют надёжно законсервировать скважину и избежать загрязнений подземных горизонтов.

Источник

Что такое тампонирующие составы их назначение применение время нормального схватывания

Рост технологических показателей глубокого бурения на нефть и газ во многом зависит от организации технологии промывки скважин, состава применяемых буровых растворов и их технологических свойств.

Под технологическими свойствами буровых растворов следует понимать влияние промывочных средств на буримость горных пород, фильтрационные процессы, очистку ствола и забоя скважины, устойчивость стенок ствола, сложенными неустойчивыми породами, снижение сопротивлений движению бурильного инструмента при его контакте с глинистой коркой и стенками скважины, раскрытие и освоение коллекторов, содержащих нефть и газ.

Технологические свойства буровых растворов существенно влияют на работоспособность буровых долот, забойных гидравлических и электрических двигателей, бурильных и обсадных труб и другого подземного бурового оборудования.

Понятие «буровые растворы» охватывает широкий круг жидких, суспензионных, аэрированных сред, имеющих различные составы и свойства. Термин « буровой раствор» стали применять вместо его синонимов – «глинистый раствор», «промывочный раствор», «промывочная жидкость».

Тампонажные растворы применяются при креплении обсадных колонн к стенкам скважины, а также при ремонте скважин. В отличие от буровых растворов тампонажные способны превращаться в твердое тело. В подавляющем количестве случаев в качестве вяжущего вещества в тампонажных растворах используется портландцемент. Поэтому в учебных пособиях термин «крепление скважин» отождествляется с термином «цементирование скважин».

Как показывает практика, качество приготавливаемых и закачиваемых в скважину буровых и тампонажных растворов, успех проводимых операций зависит в первую очередь от умения и знаний обслуживающего персонала.

Знание основ физико-химических процессов, происходящих в растворах, обрабатываемых различными реагентами, воздействия этих реагентов на растворы, стенки скважины и пласты, а также мастерство и умение управлять сложным буровым и цементировочным оборудованием – залог успешного проведения операций.

Часть 1 БУРОВЫЕ РАСТВОРЫ

Технологические функции бурового раствора

Буровой раствор в процессе бурения осуществляет ряд функций, которые тем разнообразнее, чем сложнее процесс бурения: глубже скважина, неустойчивее ее стенки, выше давление газа и нефти в разбуриваемых горизонтах.

Процесс бурения представляет собой совокупность различных операций, определяющих технологию проходки скважины, поэтому функции называются технологическими.

1 Гидродинамические функции осуществляются потоком раствора в скважине и заключаются в следующем:

— в выносе выбуренной породы (шлама) из скважины;

— в переносе энергии от насосов к забойным двигателям (турбобурам);

— в размыве породы на забое скважины (гидромониторный эффект);

— в охлаждении долота в процессе бурения.

2 Гидростатические функции осуществляются покоящимся буровым раствором. К этой группе функций относятся:

— удержание частиц выбуренной породы и утяжелителя во взвешенном состоянии при прекращении циркуляции бурового раствора;

— создание гидростатического давления на стенки скважины, сложенные слабосцементированными или пластичными породами;

— уменьшение нагрузки на талевую систему.

3 Функции, связанные с процессом коркообразования

Буровой раствор, представляющий собой тонкую взвесь коллоидных частиц (твердой фазы) в жидкой среде, в процессе движения в пласт образует на его поверхности и в порах фильтрационную корку, препятствующую или замедляющую дальнейшее поступление раствора. Этот процесс разделения жидкой и твердой фаз, в результате чего происходит кольматация (закупоривание) стенок скважины, называется фильтрацией. К этой группе функций относятся:

— уменьшение проницаемости пористых стенок скважины;

— сохранение или усиление связности слабосцементированных пород;

— уменьшение трения бурильных и обсадных труб о стенки скважин.

4 Физико-химические функции заключаются в добавлениях к буровому раствору специальных химических реагентов в процессе бурения скважины, которые принято называть химической обработкой. К этим функциям относятся:

— сохранение связности пород, образующих стенки скважины;

— предохранение бурового оборудования от коррозии и абразивного износа;

— сохранение проницаемости продуктивных горизонтов при их вскрытии;

— сохранение необходимых характеристик бурового раствора в процессе бурения скважины;

— улучшение буримости твердых пород.

К прочим функциям бурового раствора относятся:

— установление геологического разреза скважины (по составу шлама);

— сохранение теплового режима многолетнемерзлых пород.

Коллоидно-химические свойства буровых растворов

Буровые растворы представляют собой физико-химические системы, состоящие из двух или более фаз. Однофазные системы из двух или более веществ, не имеющие между компонентами поверхности раздела, называются гомогенными (истинные растворы). Системы, между фазами которых существуют реальные поверхности раздела, называются гетерогенными. К ним относится большинство буровых и тампонажных растворов.

Дисперсной фазой дисперсионной системы называется вещество, мелко раздробленной и равномерно распределенное в другом веществе, получившем название дисперсионной среды. И фаза, и среда могут быть твердыми, жидкими и газообразными. Буровые и тампонажные растворы относятся к полидисперсным системам, т.е. имеющим частицы дисперсной фазы различных размеров.

Из грубодисперсных систем в качестве бурового раствора применяют суспензии, эмульсии и аэрированные жидкости.

Суспензии – мутные жидкости с находящимися в них во взвешенном состоянии частицами твердого вещества. Эти частицы под влиянием силы тяжести оседают, т.е. седиментируют.

Аэрированной жидкостью называют многофазную систему, содержащую дисперсную фазу в виде пузырьков воздуха. Если воздух играет роль среды, то такие жидкости называются пенами.

Основные свойства дисперсных систем

Из всех дисперсных систем наиболее полно отвечают требованиям, предъявляемым к буровым растворам, коллоидные системы. По молекулярно-кинетической теории внутреннее сцепление тел обусловлено силами взаимодействия молекул. Внутри тела (жидкости) эти силы уравновешены. Силы притяжения молекул, расположенных на поверхности раздела двух фаз, не уравновешены. В результате избытка сил притяжения со стороны жидкости молекулы с границы раздела стремятся втянуться внутрь, поэтому поверхность раздела стремится к уменьшению. В связи с этим поверхностные молекулы на разделе фаз обладают некоторой некомпенсированной избыточной энергией, называемой поверхностной. Поверхностное натяжение можно представить как работу образования 1м2 поверхности (Дж/м2). Таким образом, ПАВ – это вещества, понижающие поверхностное натяжение.

Большое значение в характеристике дисперсных систем имеет явление смачиваемости. Смачивание жидкостью твердого тела можно рассматривать как результат действия сил поверхностного натяжения. Она характеризуется величиной краевого угла.

Различают кинетическую (седиментационную) и агрегативную устойчивости. Кинетическая обеспечивается седиментацией и броуновским движением, а агрегативная определяет способность частиц дисперсной фазы не слипаться. По агрегативному состоянию и механическим свойствам различают свободно-дисперсные (или бесструктурные) и связно-дисперсные (структурированные) системы. Первые отличаются подвижностью и не оказывают сопротивления сдвигу. Связнодисперсная система получила название «геля» и отличается наличием сплошной пространственной структуры. Она обладает вязкостью, пластичностью, прочностью, упругостью и т.п.

Коагуляция- укрупнение (слипание, слияние) частиц дисперсной фазы под действием молекулярных сил сцепления или сил тяжести.

Флокуляция – слипание гидрофобных минеральных частиц в хлопья. Гидрофобная коагуляция характеризуется полным расслоением дисперсной системы на жидкую и твердую фазы.

Структурообразование – это способность коллоидных частиц в неподвижном растворе слипаться по краям и образовывать сотообразную структуру, заполняющую весь объем раствора.

Основные параметры буровых растворов

Плотность (ρ, г/см3) – это отношение массы бурового раствора к его объему. Различают кажущую и истинную плотности. Первая характеризует раствор, выходящий из скважины и содержащий газообразную фазу, а вторая – раствор без газообразной фазы.

Условная вязкость (Т, сек) – величина, определяемая временем истечения из стандартной воронки 500 см3 бурового раствора и характеризующая подвижность бурового раствора.

Показатель фильтрации косвенно характеризует способность бурового раствора отфильтровываться через стенки ствола скважины.

Коэффициент трения (Ктр) – величина, определяемая отношением силы трения между двумя металлическими поверхностями в среде бурового раствора к прилагаемой нагрузке.

Толщина фильтрационной корки (К, мм) – фильтрационная корка образуется в результате отфильтровывания жидкой фазы бурового раствора через пористую систему.

Концентрация водородных ионов, определяемая величиной рН, характеризует щелочность бурового раствора. Чем больше рН, тем щелочность выше.

Материалы для приготовления буровых растворов

Глинистые минералы состоят из мельчайших плоских кристалликов-пластинок, между которыми проникают молекулы воды. Это и есть процесс распускания глины.

Натрий и кальций, не входящие в состав кристаллической решетки глинистых минералов, содержатся в поверхностном слое частиц глины. Поверхность глинистой частицы заряжена отрицательно, в то время как катионы натрия и кальция образуют «облако» в некотором отдалении от поверхности глины. Появление такого отрицательного заряда при распускании глины в воде является одной из причин устойчивости глинистых суспензий. По наименованию этих катионов, обеспечивающих защиту частиц от слипания, глины называют натриевыми и кальциевыми.

Вторым материалом для приготовления буровых растворов является органо-минеральное сырье (ОМС). Это природный материал, представляющий собой донные илистые органогенные отложения водоемов. На основе ОМС сначала готовится сапропелевая паста (вода + ОМС + каус-тическая сода), затем раствор (путем разбавления водой на буровой).

Химические реагенты для обработки буровых растворов

Реагенты–стабилизаторы представляют собой высокомолекулярные органические вещества, высокогидрофильные, хорошо растворимые в воде с образованием вязких растворов. Механизм действия заключается в адсорбции на поверхности коллоидных частиц и гидрофилизации последних.

Реагенты-стабилизаторы 1-ой группы используют как понизители фильтрации, 2-ой группы – понизители вязкости (разжижители). Чем больше молекулярная масса, тем эффективнее реагент. Когда структура молекулы представлена переплетающимися цепочками, реагент является понизителем фильтрации, но вязкость при этом повышается. Глобулярная форма молекулы присуща реагентам второй группы.

Крахмальный реагент получают путем гидролиза в щелочной среде. Он является понизителем фильтрации соленасыщенных буровых растворов.

2 Реагент, связывающий двухвалентные катионы

Двухвалентные катионы находятся в пластовых водах и разбуриваемых породах и, поступая в буровой раствор, ухудшают его качество. Источником Са++ является цемент (при разбуривании цементного стакана после установки цементного моста). Для связывания ионов кальция применяют углекислый натрий (кальцинированную соду).

Са SО4 + Nа2CO3 = СаСО3 + Nа2 SО4

Вместо ионов Са++ в растворе образуется нерастворимый углекислый кальций.

3 Регуляторы щелочности

По мере увеличения щелочности скорость распускания глины и ОМС сначала возрастает, а затем уменьшается. Большинство применяемых реагентов-стабилизаторов имеют рН 9-13. Суспензия глины имеет рН 7-8. Величина оптимальной щелочности – 9-11.

Едкий натр (гидрат окиси натрия, каустическая сода).

4 Смазочные добавки

В основе смазывающего действия, уменьшающего трение, лежит адсорбционный эффект. Действие реагента как смазывающей добавки зависит от его способности адсорбироваться на металле и сопротивляться выдавливанию при сближении трущихся поверхностей деталей инструмента. Смазки применяют для снижения трения между бурильными трубами и фильтрационной коркой при вращении.

Смазки ЗГВ-205, АКС-303, СК, нефть и др.

Если пена находится на поверхности, она сама быстро разрушается, если она внутри жидкости, только наиболее крупные пузыри способны всплыть, преодолевая прочность структуры. Но при перемешивании пузырьки встречаются в глубине и слабая поверхностная пленка, из которой ПАВ вытеснил пенообразователь, не может противостоять слиянию пузырьков. Они увеличиваются в размерах, всплывают и лопаются.

Вспененный раствор обладает высокими значениями структурно-механических характеристик. Ухудшается работа насосов.

Пеногасители: оксаль(Т-80), сивушное масло (применялось ранее), АКС-20.

6 Утяжелители буровых растворов

Степень дисперсности утяжелителя называется тонкостью помола.

Утяжелители: мел, доломит, барит, гематит, магнетит.

Выбор типа бурового раствора для бурения скважин

Наличие соленосных пород в геологическом разрезе месторождений Беларуси обусловило условное подразделение на части: надсолевую, верхнесоленосную, межсолевую, нижнесоленосную и подсолевую. В зависимости от вскрываемого разреза необходимо использовать несколько типов бурового раствора. Выбор типа раствора является одним из основных элементов технологии проводки скважин. Он определяет номенклатуру реагентов и материалов для его создания и эксплуатации.

Надсоль бурят пресным сапропелевым раствором (при мощности до 800 м), пресным глинистым, обработанным Лигнополом (от 800 до 2000 м) и пресным сапропелевым, обработанным Лигнополом (более 2000 м).

Соленосные комплексы бурят тремя типами растворов:

— соленасыщенным глинистым, обработанным крахмальным реагентом «Фито-РК»;

-соленасыщенным сапропелевым, обработанным крахмальным реагентом «Фито-РК»;

— соленасыщенным глинистым, обработанным Лигнополом.

Межсолевые и подсолевые отложения, являющиеся продуктивными, бурят в основном пресным сапропелевым раствором (в случае перекрытия соленосных отложений колонной) и соленасыщенным, который использовался при бурении основного ствола, если соленосные отложения не перекрывались колонной.

Буровые растворы для вскрытия продуктивных отложений не требуют обработки химическими реагентами.

Часть 2 Тампонажные растворы (ТР)

Для извлечения нефти надо создать долговечный устойчивый канал, соединяющий продуктивный горизонт с резервуарами. Для транспортировки нефти или газа надо разобщить пласты горных пород и закрепить стенки скважины.

При креплении скважин применяются металлические трубы, которые, свинчивая в колонну, спускают в пробуренную скважину на определенную глубину. Эти трубы и колонна называются обсадными.

С целью разобщения пластов в обсадную колонну закачивают цементный раствор, который вытесняет находящийся в ней буровой раствор, и продавливают в затрубное пространство на расчетную высоту. Процесс транспортирования (закачивания) цементного раствора в затрубное пространство называется процессом цементирования скважины.

Тампонажные растворы – это комбинации спецматериалов или составов, используемых для тампонирования. Тампонажные смеси с течением времени могут затвердевать с образованием тампонажного камня или загустевать, упрочняться, оставаясь вязкой или вязко-пластичной системой.

По виду тампонирование делят на:

— технологическое, выполняемое в процессе сооружения скважины;

— ликвидационное, проводимое для ликвидации скважины после выполнения целевого назначения.

Функции тампонажного раствора и камня обусловлены целью тампонирования и в зависимости от этого к исходному тампонажному раствору предъявляются различные требования.

Требования к тампонажному раствору

1 Технического характера:

— способность проникать в любые поры и микротрещины;

— хорошая сцепляемость с обсадными трубами и горными породами;

— восприимчивость к обработке с целью регулирования свойств;

— отсутствие взаимодействия с тампонируемыми породами и пластовыми водами;

— устойчивость к размывающему действию подземных вод;

— стабильность при повышенных температуре и давлении;

— отсутствие усадки с образованием трещин при твердении.

2 Технологического характера:

— хорошая прокачиваемость буровыми насосами;

— небольшие сопротивления при движении;

— малая чувствительность к перемешиванию;

— возможность комбинирования с другим раствором;

— хорошая смываемость с технологического оборудования;

— легкая разбуриваемость камня.

3 Экономического характера:

— сырье должно быть недефицитным и недорогим;

— не влиять отрицательно на окружающую среду.

Классификация тампонажных растворов

В зависимости от вяжущей основы ТР делятся:

— растворы на основе органических веществ (синтетические смолы).

Жидкая основа ТР – вода, реже – углеводородная жидкость.

В зависимости от температуры испытания применяют:

— цемент для «холодных» скважин с температурой испытания 22оС;

— цемент для «горячих» скважин с температурой испытания – 75оС.

По плотности ТР делят на:

— легкие – до 1,3 г/см3

— облегченные – 1,3 – 1,75 г/см3;

— тяжелые – больше 20,20 г/см3.

По срокам схватывания делят на:

— быстро схватывающиеся – до 40 мин;

— ускоренно схватывающиеся – 40 мин- 1час 20 мин;

— медленно схватывающиеся – больше 2 час.

Основные технологические параметры ТР

Цементным тестом называется смесь цемента с водой. Цемент перед испытанием просеивается через сито 80 мкм.

Водо-цементное отношение – В/Ц – отношение объема воды к весу цемента.

Тесто готовится вручную в сферической чаше в течение 3 минут или на специальных мешалках 5 минут.

Растекаемость, см – определяет текучесть (подвижность) цементного раствора.

Плотность, г/см3 – отношение массы цементного раствора к его объему.

Фильтрация или водоотдача, см3 за 30мин – величина, определяемая объемом жидкости затворения, отфильтрованной за 30 минут при пропускании цементного раствора через бумажный фильтр ограниченной площади под давлением 1 атм.

Седиментационная устойчивость цементного раствора – определяется водоотделением, т.е. максимальным количеством воды, способным выделиться из цементного раствора в результате процесса седиментации.

Требования к тампонажному камню

Достаточная механическая прочность.

Непроницаемость для бурового раствора, пластовых вод и газа.

Стойкость к коррозионному воздействию пластовых вод.

Сохранение объема при твердении и упрочнении.

Уровень требований к параметрам зависит от цели тампонирования.

Измеряемые характеристики тампонажного камня:

— прочность на изгиб и сжатие;

— объемные изменения при твердении.

Материалы для приготовления тампонажных растворов

на неорганической основе : вяжущие- цементы, гипс, известь;

на органической основе: синтетические смолы, битумы, латексы;

жидкости затворения: пресная вода, минерализованная вода, углеводородные жидкости;

добавки, регулирующие плотность растворов, придания им закупоривающих свойств (наполнители), снижения стоимости;

материалы для регулирования сроков схватывания и реологических характеристик (реагенты).

Утяжелители для тампонажных растворов

Предупреждение осложнений при цементировании достигается регулированием противодавления на пласты, что может быть обеспечено применением тампонажных растворов с увеличенной плотностью. Для этого необходимо повышать плотность дисперсионной среды или твердой фазы. Распространен второй способ, при котором утяжеление достигается:

совместным помолом клинкера и утяжеляющих добавок;

увеличением окиси железа в портландцементе.

Реагенты для регулирования свойств тампонажных растворов

Ускорители сроков схватывания: это в основном электролиты и такие вяжущие, как гипс и глиноземистый цемент. Самый распространенный – хлористый кальций. Хлористый калий, силикат натрия, хлорид натрия, кальцинированная сода и др.

Пластификаторы – применяют для повышения текучести растворов. ССБ, ГКЖ, ПЛС, С-4 и др.

Понизители фильтрации (водоотдачи) – являются стабилизаторами дисперсных систем и поэтому снижают фильтрацию. Бентонитовая глина, ПАА, декстрин, КМЦ, ПВТ-ТР и др.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *