что такое сумма поглощенных оснований
Что такое сумма поглощенных оснований
Определение суммы поглощенных оснований по методу Каппена
Soils. Determination of base absorption sum by Kappen method
Дата введения 2022-01-01
Предисловие
Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»
Сведения о стандарте
1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Инновационный экологический фонд» (ООО «Инэко»)
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 августа 2020 г. N 132-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
Минэкономики Республики Армения
Госстандарт Республики Беларусь
Госстандарт Республики Казахстан
4 Приказом Федерального агентства по техническому регулированию и метрологии от 6 октября 2020 г. N 749-ст межгосударственный стандарт ГОСТ 27821-2020 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2022 г.
Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»
ВНЕСЕНА поправка, опубликованная в ИУС N 2, 2021 год
Поправка внесена изготовителем базы данных
1 Область применения
Настоящий стандарт распространяется на почвы и устанавливает метод определения суммы поглощенных оснований по Каппену.
Стандарт не распространяется на карбонатные, засоленные и гипсосодержащие почвы.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 1770 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия
ГОСТ 3118 Реактивы. Кислота соляная. Технические условия
ГОСТ 4328 Реактивы. Натрия гидроокись. Технические условия
ГОСТ 4919.1 Реактивы и особо чистые вещества. Методы приготовления растворов индикаторов
ГОСТ 6709 Вода дистиллированная. Технические условия
ГОСТ 12026 Бумага фильтровальная лабораторная. Технические условия
ГОСТ 16287 Электроды стеклянные промышленные для определения активности ионов водорода ГСП. Технические условия
ГОСТ 17792 Электрод сравнения хлорсеребряный насыщенный образцовый 2-го разряда
ГОСТ 24104 Весы лабораторные. Общие технические требования
Что такое сумма поглощенных оснований
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Определение суммы поглощенных оснований по методу Каппена
Soils. Determination of base absorption
sum by Kappen method
1. РАЗРАБОТАН И ВНЕСЕН Государственным агропромышленным комитетом СССР
С.Г.Самохвалов (руководитель темы), канд. с.-х. наук; Н.А.Целикова
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта СССР от 20.09.88 N 3188
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД,
на который дана ссылка
Настоящий стандарт устанавливает метод определения суммы поглощенных оснований по Каппену в почвах при выполнении почвенно-агрохимических и мелиоративных обследований.
Стандарт не распространяется на карбонатные, засоленные и гипсосодержащие почвы.
Метод основан на реакции поглощенных оснований почв с соляной кислотой и последующем титровании гидроокисью натрия остатка кислоты, не вступившей в реакцию.
Предельное значение суммарной относительной погрешности метода при двусторонней доверительной вероятности =0,95 составляет, %:
1. МЕТОД ОТБОРА ПРОБ
Пробы почвы доводят до воздушно-сухого состояния, измельчают, пропускают через сито с отверстиями диаметром 1-2 мм и пересыпают в коробки или пакеты. Пробы для анализа отбирают ложкой или шпателем, предварительно перемешав пробу на всю глубину коробки или пакета.
2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ
Весы лабораторные 4-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104-88.
Весы квадрантные ВКПД-40 с устройством пропорционального дозирования с погрешностью не более 2%.
Иономер или рН-метр с погрешностью измерения не более 0,1 единицы рН.
Электрод стеклянный для определения активности ионов водорода.
Электрод сравнения хлорсеребряный насыщенный образцовый 2-го разряда по ГОСТ 17792-72.
Блок автоматического титрования.
Кассеты десятипозиционные с технологическими емкостями или колбы конические вместимостью 150-200 см по ГОСТ 25336-82.
Установки фильтровальные десятипозиционные или воронки стеклянные лабораторные по ГОСТ 25336-82.
Цилиндр мерный вместимостью 50 см исполнения 1 по ГОСТ 1770-74 или дозаторы на 50 см с погрешностью дозирования не более 1%.
Пипетка вместимостью 25 см 2-го класса точности по ГОСТ 20292-74 или шприц-дозатор на 25 см с погрешностью дозирования не более 1%.
Стаканы химические или колбы конические вместимостью 50 см по ГОСТ 25336-82.
Бюретка вместимостью 50 см по ГОСТ 20292-74.
Бумага фильтровальная по ГОСТ 12026-76.
Кислота соляная по ГОСТ 3118-77, х.ч. или ч.д.а., раствор концентрации с (НСl)=0,1 моль/дм (0,1 н).
Натрия гидроокись по ГОСТ 4328-77, х.ч. или ч.д.а.
Вода дистиллированная по ГОСТ 6709-72.
3. ПОДГОТОВКА К АНАЛИЗУ
4. ПРОВЕДЕНИЕ АНАЛИЗА
Почвы с раствором перемешивают в течение 1 ч на ротаторе и оставляют на 24 ч. Определение суммы поглощенных оснований возможно как в отстое, так и в фильтрате. В последнем случае раствор взбалтывают вручную для взмучивания и фильтруют через бумажные фильтры.
4.2. Для анализа отбирают 25 см отстоявшейся жидкости или фильтрата в химический стакан и ставят его на магнитную мешалку.
В раствор погружают электродную пару и кончик дозирующей трубки бюретки. Бюретку заполняют раствором гидроокиси натрия. На блоке автоматического титрования устанавливают значение эквивалентной точки, равное 8,2 единицы рН, и время выдержки, равное 30 с. Включают блок автоматического титрования, магнитную мешалку и открывают кран бюретки. По окончании титрования записывают расход гидроокиси натрия по бюретке. Аналогично проводят титрование 25 см раствора соляной кислоты.
При отсутствии блока автоматического титрования анализируемые пробы отбирают в конические колбы и титруют вручную, контролируя рН с помощью рН-метра или индикатора фенолфталеина, до появления ярко-розовой окраски, не исчезающей в течение 1 мин. В случае выпадения осадка полуторных окислов при титровании с фенолфталеином окраску следует наблюдать в прозрачном слое над осадком.
5. ОБРАБОТКА РЕЗУЛЬТАТОВ
5.1. Сумму поглощенных оснований ( ) в миллимолях в 100 г почвы вычисляют по формуле
,
— объем раствора гидроокиси натрия, израсходованный на титрование пробы вытяжки, см ;
— концентрация раствора гидроокиси натрия, ммоль/дм ;
— масса навески почвы, соответствующая взятому для титрования объему вытяжки, г.
За результат анализа принимают значение единичного определения суммы поглощенных оснований.
Результат анализа выражают в миллимолях в 100 г почвы с округлением до первого десятичного знака
5.2. Допускаемые относительные отклонения от среднего арифметического значения результатов двух повторных анализов, выполненных в одной лаборатории, при выборочном контроле воспроизводимости с доверительной вероятностью =0,95 составляют, %:
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Home » Агрохимия » Степень насыщенности основаниями и буферность почвы
Популярные статьи
Приложения для Android
Степень насыщенности основаниями и буферность почвы
Степень насыщенности оснований (V) — сумма поглощенных оснований, выраженная в процентах от емкости катионного обмена (T).
Степень насыщенности оснований определяют по формуле:
Степень насыщенности почвы основаниями — показатель нуждаемости почв в известковании. Чем он ниже, тем выше необходимость внесения извести. Так, при одинаковых гидролитических кислотностях (Н) двух почв, например, 5 мг-экв/100 г почвы, но разных ЕКО (T), например, первой — 10 мг-экв/100 г, второй 20 мг-экв/100 г, степень насыщенности основаниями (V) в первом случае составит 50%, второй — 75%. Таким образом, при равной величине гидролитической кислотности первая почва кислее, так как 50% емкости катионного обмена приходится на подкисляющие катионы и она в большей степени нуждается в замене их на основания. При равных ЕКО в первую очередь в известковании будет нуждаться почва с большей величиной гидролитической кислотности.
Буферность почвы
Буферность почвы — способность противостоять изменению реакции среды. Буферность характеризуется величиной емкости катионного поглощения (T), составом поглощенных катионов и катионо-анионным составом почвенного раствора. Показатель используется для расчета оптимальных доз, форм, сроков и способов внесения удобрений и мелиорантов под сельскохозяйственные культуры. Чем выше значение ЕКО, тем выше буферность почвы.
Буферные свойства против кислотности возрастают с ростом насыщенности почв основаниями и с переходом от нейтральной к щелочной реакции среды. При появлении в почве ионов водорода, например, в результате нитрификации или физиологической кислотности NH4NO3, они обмениваются с катионами ППК, в результате образуется нейтральная соль и реакция раствора не меняется:
Буферные свойства против подщелачивания увеличиваются на нейтральных почвах с ростом гидролитической кислотности, с уменьшением степени насыщенности основаниями и с переходом от нейтральных к кислым почвам. При появлении в таких почвах гидроксид-ионов, например, Са(ОН)2 в результате внесения физиологически щелочного Са(NO3)2, катион кальция вытесняется из ППК эквивалентное количество ионов водорода, в результате образуется вода и реакция раствора не меняется:
Под действием подкисляющих и подщелачивающих факторов реакция почвенного раствора может изменяться, однако скорость изменений в почвах с низкой ЕКО, таких как, песчаные, супесчаные подзолы, гораздо выше, чем в высокоемких, например, суглинистых черноземах.
В почвенном растворе буферность создается присутствующими слабыми органическими и минеральными кислотами и их солями:
Буферность почв проявляется также в устойчивости к временному изменению концентрации почвенного раствора, вызванному недостатком влаги, неравномерным или периодическим внесением удобрений и мелиорантов. Почвы с высокой буферностью, ЕКО и разнообразным составом поглощенных ионов легко удерживают в поглощенном состоянии максимально допустимые разовые дозы мелиорантов и удобрений без значительного повышения концентрации почвенного раствора.
Малобуферные, малоемкие почвы не могут без увеличения концентрации почвенного раствора и роста потерь элементов от вымывания удерживать большие разовые дозы мелиорантов и удобрений, поэтому на таких почвах удобрения вносят дробно.
Применение органических и минеральных удобрений в сочетании с периодическим внесением мелиорантов позволяет повысить ЕКО, регулировать состав поглощенных катионов, повысить буферность почв.
Сумма поглощенных оснований и ее связь с емкостью поглощения
Ответ:
Сумма обменно-поглощенных катионов Са, Mg, K и Na называют суммой обменных оснований (S).
ЕКО представляет собой сумму обменных оснований плюс сумма обменно поглощенного H и Al.
Таким образом, S представляет собой выраженное в % количество оснований по отношению к общей сумме обменных катионов (включая Н и Аl), находящихся в ППК.
Состав обменно-поглощенных катионов в разных почвах неодинаков и зависит от факторов и типа почвообразования, характера с/х использования почвы, степени ее окультуренности и т.д.
В поглощенном комплексе всех почв обязательно присутствует Ca и Mg. В почвах галогенного ряда при солонцевании, значительное место среди обменно – поглощенных катионов занимает Na, в кислых почвах у подзолистого типа почвообразования – ионы Н и Al. Для черноземов характерно резкое преобладание в составе обменно поглощенных катионов ППК Са и Mg. Следует отметить, что в почве имеются практически все катионы, необходимые для роста и развития растений, но содержание их невелико. Осн6овными, насыщающими ППК являются Ca, Mg, K, Na, H, Al, NH4. Именно их содержание и определяют при характеристике почв.
Влияние обменно-поглощенных катионов на генетические и агрономические свойства почв исключительно велико и различно.
Степень насыщенности почв основаниями,ее агрономическое значение.
Ответ:
Серая лесная среднесуглинистая 15-30
— типичный тяжелосуглинистый 30-70
— южный суглинистый 20-50
Светло – каштановая суглинистая 20-40
Краснозем суглинистый 13-25
Серозем типичный суглинистый 8-20
Наиболее ценным с агрономической точки зрения является катион Са, который, способствуя коагуляции почвенных коллоидов, обуславливает закрепление гумуса и образование водопрочной агрономически ценной зернисто-комковатой структуры, следовательно, и благоприятные агрофизические свойства. Са способствует созданию физически уравновешенного почвенного раствора, благоприятствуя жизнедеятельности полезных почвенных микроорганизмов и растительности, блокирует поступление в растение тяжелых металлов, радиоактивных и фитотоксичных элементов, усредняет реакцию среды. Именно поэтому наиболее плодородные, высоко гумуссированные почвы (черноземы), содержат в ППК до 98-99 % обменно-поглощенного Са.
Катионы Н, а так же Н и Al обусловливают кислую реакцию почвенного раствора и разрушение почвенного тела, в результате чего затрудняется аккумуляция гумуса, ухудшаются агрофизические свойства почвы. Значительное количество обменно-поглощенного водорода и подвижного Al, содержат ненасыщенные основаниями кислые подзолистые и дерново-подзолистые почвы.
Главным условием повышения плодородия этих почв является замена обменно-поглощенных катионов Н (Н и Al) на катионы Са.
Содержание в ППК определенного количества (3-5) ЕКО обменных натрия и калия вызывает подщелачивание раствора и осолонцевание почвенной массы. Подобный эффект наблюдается и при повышенном содержании в ППК катионов Mg, особенно в сочетании с Na.
Насыщенные Mg и Na почвы малоплодородны, это солонцы и почвы различной степени солонцеватости, особенно характерны для зоны сухих степей и полупустынь. Улучшение этих почв и повышение их плодородия, также требует замены обменно-поглощенных катионов Na на катионы Ca.
Таким образом, для агрономической характеристики почв и повышение их плодородия необходимо знать состав обменных катионов, оценивать значения почвенной кислотности и щелочности, находить эффективные приемы их устранения.
Состав обменных катионов в подзоле,серой лесной почве,черноземе,солонце.Их влияние наплодородие почвы и развитие растений
.Ответ:
Влияние обменно-поглощенных катионов на генетические и агрономические свойства почв исключительно велико и различно.
Серая лесная среднесуглинистая 15-30
— типичный тяжелосуглинистый 30-70
— южный суглинистый 20-50
Светло – каштановая суглинистая 20-40
Краснозем суглинистый 13-25
Серозем типичный суглинистый 8-20
Наиболее ценным с агрономической точки зрения является катион Са, который, способствуя коагуляции почвенных коллоидов, обуславливает закрепление гумуса и образование водопрочной агрономически ценной зернисто-комковатой структуры, следовательно, и благоприятные агрофизические свойства. Са способствует созданию физически уравновешенного почвенного раствора, благоприятствуя жизнедеятельности полезных почвенных микроорганизмов и растительности, блокирует поступление в растение тяжелых металлов, радиоактивных и фитотоксичных элементов, усредняет реакцию среды. Именно поэтому наиболее плодородные, высоко гумуссированные почвы (черноземы), содержат в ППК до 98-99 % обменно-поглощенного Са.
Катионы Н, а так же Н и Al обусловливают кислую реакцию почвенного раствора и разрушение почвенного тела, в результате чего затрудняется аккумуляция гумуса, ухудшаются агрофизические свойства почвы. Значительное количество обменно-поглощенного водорода и подвижного Al, содержат ненасыщенные основаниями кислые подзолистые и дерново-подзолистые почвы.
Главным условием повышения плодородия этих почв является замена обменно-поглощенных катионов Н (Н и Al) на катионы Са.
Содержание в ППК определенного количества (3-5) ЕКО обменных натрия и калия вызывает подщелачивание раствора и осолонцевание почвенной массы. Подобный эффект наблюдается и при повышенном содержании в ППК катионов Mg, особенно в сочетании с Na.
Насыщенные Mg и Na почвы малоплодородны, это солонцы и почвы различной степени солонцеватости, особенно характерны для зоны сухих степей и полупустынь. Улучшение этих почв и повышение их плодородия, также требует замены обменно-поглощенных катионов Na на катионы Ca.
Таким образом, для агрономической характеристики почв и повышение их плодородия необходимо знать состав обменных катионов, оценивать значения почвенной кислотности и щелочности, находить эффективные приемы их устранения.
Почвенный раствор его состав, реакция.Агроэкологическое значение щелочно- кислотных условий в почве.
Ответ:
Дождевая вода, поступающая в почву, содержит некоторое количество растворенных веществ: газов атмосферного воздуха (О2, СО2, N2, NН3 и др.), а также соединений, находящихся в воздухе в виде пыли. В почве она активно взаимодействует с твердой фазой, переводя в раствор отдельные ее компоненты. Следовательно, вода в почве представляет собой почвенный раствор.
Почвенный раствор имеет огромное значение в генезисе почв и их плодородии. Он участвует в процессах преобразования минеральных и органических соединений; в составе его по профилю почв перемещаются разнообразные продукты почвообразования. Исключительно велика роль почвенного раствора в питании растений. Поэтому важно знать его состав,
Реакция почвы зависит от многих факторов, и прежде всего от химического состава, состава обменно-поглощенных катионов, наличия солей, органических и минеральных кислот, жизнедеятельности организмов.
Под кислотностью почвы понимают ее способность подкислять почвенный раствор имеющимися в почве кислотами и обменно-поглощенными катионами Н, а так же Al способного при вытеснении из ППК образовывать гидролитически кислые соли.
В зависимости от реакции почвенного раствора различают строго определенные уровни кислотности и щелочности:
Сумма обменных оснований, Степень насыщенности основаниями, Емкость катионного обмена, Буферность почвы
Реакция почвенного раствора зависит не только от размеров обменной и гидролитической кислотности, но и от степени насыщенности почвы основаниями. Сумма поглощенных оснований показывает общее содержание катионов оснований (Са +, Mg2+, К+, Na+, NH4 и т.д.) в почвенном поглощающем комплексе (ППК). При сопоставлении значений суммы поглощенных оснований и гидролитической кислотности можно сделать предположение о степени кислотности почв. Этот показатель необходим для расчета емкости катионного обмена и степени насыщенности почв основаниями. Сумму обменно-поглощенных катионов кальция, магния, калия и натрия называют суммой обменных оснований (S).
Глино-гумусовый комплекс может связывать как основания, полезные для питания растений (катионы Са2+, Mg2+, К+, Na), так и ионы Н+ и А13+. Степень насыщенности основаниями (V) вычисляется как отношение суммы обменных оснований к общей емкости катионного обмена, выраженное в процентах. В зависимости от соотношения почвы делят на насыщенные (V> 80%) и ненасыщенные (V=» 50-70%) основаниями.
Лучшими считаются почвы, насыщенные основаниями, например, черноземы с высоким содержанием Са2+ и Мg2+. Они имеют нейтральную или слабощелочную реакцию. В таких почвах органические и минеральные коллоиды сохраняются и накапливаются, что способствует увеличению общей емкости поглощения катионов.
Преобладающее содержание ионов Н+ и А13+ в почвенном поглощающем комплексе (ППК) обуславливает высокую кислотность почвы и со временем приводит к разрушению минералов. Емкость поглощения катионов уменьшается, ухудшается структура. В таких почвах создается неблагоприятный водно-воздушный режим, на поверхности постепенно образуется корка.
Определение степени насыщенности почвы основаниями позволяет более точно решить вопрос об очередности и необходимости известкования. Этот показатель характеризует относительное место гидролитической кислотности в ППК. Может быть так: два участка почвы имеют одинаковую гидролитическую кислотность, но степень насыщенности основаниями разная, тогда потребность, и очередность в известковании разные
Степень насыщенности основаниями используется при определении нуждаемости почв в известковании. При V более 80% известкование проводить не нужно, при V менее 50% — потребность в нем высокая, в промежутке — средняя и слабая.
Соотношение катионов калия, магния и кальция влияет на потенциальную структуру почвы. Кальций делает структуру почвы рыхлой; он удерживает частицы глины на расстоянии друг от друга и действует как связующее вещество между глиной и органическим веществом. Магний действует аналогичным образом, но не является связующим элементом между органическим веществом и песком или глинистыми частицами. Слишком большое количество калия и натрия приводит к поверхностному уплотнению почвы. Оптимальная структура это идеальный баланс ионов Ca, Mg и K, связанных с глиной и гумусом. Этот баланс определяет какое удобрение требуется для улучшения почвы. Например, если в почве превышено содержание кальция и не хватает магния, то для улучшения структуры почвы необходимо использовать удобрения, содержащие магний. Если же наоборот есть нехватка кальция и избыток магния, то желаемый результат даст применение известковых удобрений.
Меньшая доля катионов Ca+ и большая Mg+ не вызовет больших проблем напрямую. Магний удерживает частицы глины на расстоянии, как и кальций, но он связывается с органическим веществом. Однако слишком большое количество K+ делает почву восприимчивой к поверхностному уплотнению. Слишком малое количество K+, в свою очередь, приводит к снижению урожайности. Состояние почвы ухудшается и при избыточной доле Na+ в составе обменных катионов: усиливается разрушение почвенной структуры, возрастет распыленность. Из-за уменьшения пористости, особенно некапиллярной, снижается скорость фильтрации воды вплоть до полной водонепроницаемости.
Один из факторов влияющих на плодородие почвы это способность почвы к катионному обмену. Высокая способность означает, что почва может содержать много питательных веществ, необходимых растениям. При низком показателе питательные вещества не связаны частицами гумуса и глины, поэтому легко вымываются из почвы и уходят под пахотный слой.
При оценке способности почвы к катионному обмену учитываются три фактора: емкость катионного обмена (ЕКО), насыщенность питательными веществами и соотношение между катионами химических элементов в почве.
Емкость катионного обмена (емкость поглощения) — общее количество катионов одного рода, которое может быть вытеснено из почвы. Чем показатель выше, тем почва плодороднее. Помимо минералогического и гранулометрического состава почвы, на ЕКО влияет содержание органических веществ, то есть значение в основном зависит от доли глины и гумуса в почве. Показатель также повышается при увеличении pH участка.
На кислых почвах катионы водорода, алюминия, марганца и железа вытесняются из ППК внесением извести. При этом отрицательно влияющие на растения катионы в ППК замещаются кальцием, что позволяет считать его стражем почвенного плодородия
Буферность почвы это способность противостоять изменению реакции среды. Буферность характеризуется величиной емкости катионного поглощения, составом поглощенных катионов и катионо-анионным составом почвенного раствора. Показатель используется для расчета оптимальных доз, форм, сроков и способов внесения удобрений и мелиорантов под сельскохозяйственные культуры. Чем выше значение ЕКО, тем выше буферность почвы.
Буферность почв проявляется также в устойчивости к временному изменению концентрации почвенного раствора, вызванному недостатком влаги, неравномерным или периодическим внесением удобрений и мелиорантов. Почвы с высокой буферностью, ЕКО и разнообразным составом поглощенных ионов легко удерживают в поглощенном состоянии максимально допустимые разовые дозы мелиорантов и удобрений без значительного повышения концентрации почвенного раствора.
Малобуферные и малоемкие почвы не могут без увеличения концентрации почвенного раствора и роста потерь элементов от вымывания удерживать большие разовые дозы мелиорантов и удобрений, поэтому на таких почвах удобрения вносят дробно.