что такое субатомный уровень

Субатомные частицы: квантовое царство

что такое субатомный уровень. Смотреть фото что такое субатомный уровень. Смотреть картинку что такое субатомный уровень. Картинка про что такое субатомный уровень. Фото что такое субатомный уровень

Насколько велики кварки?

Однако силы, удерживающие кварки вместе, огромны. В отличие от Земли, внутри протона нет ни поля, ни гравитации.

Силы в квантовом мире

Вещи в мире субатомных частиц не так легко представить и понять, как вещи, происходящие на Земле. В 1940-х годах американский физик Ричард Фейнман начал исследовать субатомные силы. Он обнаружил, что, скажем, в протоне нет гравитационного поля. Вместо этого частицы толкались, испуская и поглощая частицы.

что такое субатомный уровень. Смотреть фото что такое субатомный уровень. Смотреть картинку что такое субатомный уровень. Картинка про что такое субатомный уровень. Фото что такое субатомный уровень

Движения и силы внутри атомного ядра нелегко описать с помощью гравитационных полей и законов.

Масса и энергия

Все состоит из атомов, и все имеет массу. Однако атом по сути является пустым пространством. Протоны и нейтроны имеют почти одинаковую массу и в общем называются нуклонами. Масса нуклона примерно в 1836 раз больше массы электрона. Если округлить массу до 2000, электроны можно не учитывать. Масса объекта почти равна к сумме масс нуклонов, создающих этот объект. Но и нуклоны тоже имейте значительное пустое пространство внутри.

Глюоны безмассовые, поэтому каждый кварк должен иметь массу, равную одной трети нуклона, но это не так. Сумма массы всех кварков в объекте составляет около 2% от общей суммы. Скорость кварков близка к скорости света, то есть они содержат значительную кинетическую энергию. Кварки масштабируются в пространстве 10-15 м в поперечном направлении, и содержание такого быстрого объекта в таком маленьком месте требует огромных усилий, а значит, создает массу потенциальной энергии.

Относительность в субатомных частицах

что такое субатомный уровень. Смотреть фото что такое субатомный уровень. Смотреть картинку что такое субатомный уровень. Картинка про что такое субатомный уровень. Фото что такое субатомный уровень

Около 98% массы всего сущего состоит из экстремальной энергии протонов и нейтронов, а не из массы кварков внутри них.

В атоме есть нечто большее: виртуальные частицы вещества и антивещества, которые существуют всего лишь мгновение. Они усложняют представление, поскольку появляются повсюду во Вселенной, от глубокого космоса до ядра атомов.

Окончательным изображением объекта будет, главным образом, энергия, удерживаемая вместе силовыми полями в протонах и нейтронах, ядрах, атомах и молекулах, создающих объект. Это объяснимо в квантовом царстве. Науке предстоит многое сделать, чтобы завершить этот образ и узнать, что на самом деле происходит в любом масштабе окружающего мира или в нас.

Общие вопросы о субатомных частицах

Сколько существует субатомных частиц?
На данный момент открыто 36 подтвержденных элементарных частиц. Они также включают в себя античастицы. Субатомные частицы бывают двух типов: элементарные и составные. Они могут длиться всего несколько секунд и обнаруживаться повсюду во Вселенной, а не только внутри ядра атома.

Какие силы удерживают вместе субатомные частицы?

Субатомные частицы удерживаются вместе двумя типами сил: ядерной силой и электромагнитной силой. Это самая мощная сила, известная человечеству. Он должен удерживать частицы, движущиеся со скоростью, близкой к скорости света, в чрезвычайно маленьком пространстве, так что это самая сильная сила, обнаруженная до сих пор.

Что такое 12 элементарных частиц?

Существует более 12 субатомных частиц, но 12 основных включают шесть кварков (верхний, нижний, странный, очарованный, красивый и истинный), три электрона (электрон, мюон, тау) и три нейтрино (электрон, мюон, тау).

Источник

Субатомные частицы и их характеристики

Содержание:

В субатомные частицы Они меньше атома и встречаются в природе, почти все они составляют ее часть. Мы хорошо знаем основные и наиболее стабильные из них: электрон, протон и нейтрон.

Вся материя состоит из этих частиц, хотя есть и другие, хотя их существование долгое время игнорировалось. Первые модели атомов, датируемые несколькими столетиями до нашей эры, предполагали, что атомы неделимы, что-то вроде мрамора, который при определенном соединении дает начало различным элементам.

Когда стало известно, что это не так, благодаря открытиям электрона в 19 веке и атомного ядра в начале 20 века, ученые задались вопросом, имеют ли эти частицы внутреннюю структуру.

Вот почему субатомные частицы делятся на:

Открытие субатомных частиц

Открытия субатомных частиц начались в 19 веке, и первым был обнаружен электрон.

К 1890 году физики были очень заняты изучением излучения и передачи электромагнитных волн. Дж. Дж. Томсон был одним из них, и он провел множество экспериментов с трубкой, из которой был удален воздух и к которой прикреплена пара электродов.

При приложении напряжения образовывались загадочные лучи, называемые катодными лучами, природа которых была неизвестна, пока Дж. Дж. Томсон (1856-1940) не обнаружил, что они состоят из потока отрицательно заряженных частиц.

И он обнаружил две очень важные вещи: во-первых, масса частиц была чрезвычайно мала, а во-вторых, это значение было одинаковым для всех из них, независимо от того, из чего сделаны электроды.

Величина заряда была найдена вскоре после этого, в начале 1900-х годов американским физиком Робертом Милликеном (1868-1953) и его сотрудниками благодаря экспериментукапля масла.

Ядро атома: протоны и нейтроны

В конце 19 века Анри Беккерель (1852–1908) открыл явление естественной радиоактивности, которое заинтриговало других физиков, таких как супруги Мари и Пьер Кюри, а также новозеландец Эрнест Резерфорд.

Последний обнаружил три разных типа излучения от образцов урана, известного радиоактивного элемента. Он назвал их в честь первых трех букв греческого алфавита: α, β и γ.

Дисперсионные эксперименты Резерфорда

Используя высокоэнергетические, положительно заряженные α-частицы, Резерфорд бомбардировал тонкие золотые фольги и обнаружил, что, как и ожидалось, большая часть α-частиц прошла через фольгу без проблем.

Но что любопытно, небольшая часть частиц отклонилась, а некоторые даже отскочили в противоположном направлении. Последнее было невообразимо, поскольку, как утверждал Резерфорд, это было все равно, что выстрелить из винтовки в тонкий носовой платок и увидеть, как пули возвращаются.

Причина отклонения α-частиц заключается в том, что внутри листа есть что-то, что их отталкивает, и поэтому оно должно быть положительно заряжено. Это атомное ядро, крошечное по размеру, но содержащее почти всю массу атома.

Открытие нейтрона

На поиск нейтрона потребовалось немного больше времени, и это произошло благодаря английскому физику Джеймсу Чедвику (1891–1974), студенту Резерфорда. Сам Резерфорд предположил существование незаряженной частицы в ядре, чтобы объяснить, почему она не распадается из-за электростатического отталкивания.

Эксперименты Чедвика показали в 1932 году существование частицы массы, очень похожей на массу протона, но без заряда. Вот почему они назвали его нейтроном, и вместе с протоном они являются основными компонентами атомного ядра.

Основные субатомные частицы

В общем, субатомные частицы характеризуются:

Электрон

Фактически, это наименьший электрический заряд, который может быть найден в природе, поэтому любой другой заряд кратен заряду электрона в соответствии с принципом квантования заряда.

Его основные характеристики:

Электрон отвечает за образование химических связей, а также за электрическую и теплопроводность. А благодаря квантовой механике мы знаем, что электрон ведет двойное поведение: волна и частица одновременно.

Протон

Это электрически заряженная частица, заряд которой такой же по величине, как и у электрона, но с противоположным знаком.

Протон не является элементарной частицей, как электрон, но состоит из трех кварков, соединенных между собой глюоны и он намного массивнее электрона.

В отличие от этого, протон ограничен атомным ядром, и его количество определяет, каким элементом он является, а также его свойства.

Нейтрон

Нейтрон вместе с протоном составляют ядро ​​атома, и он также состоит из трех кварков: двух кварков типа вниз и единственный в своем роде вверх.

Это стабильная частица в атомном ядре, но как свободная частица она распадается с периодом полураспада примерно 10,3 минуты. Его масса едва превышает массу протона, и, как мы уже сказали, у него нет чистого заряда.

Число нейтронов в атоме важно, потому что, хотя оно не определяет природу элемента, как протон, оно определяет класс изотопа.

Изотопы элемента являются его вариантами, и их поведение может сильно отличаться друг от друга. Есть стабильные и нестабильные, например водород имеет дейтерий и тритий в качестве изотопов.

Кварки

Они являются составными частями протонов и нейтронов. На данный момент обнаружено 6 типов кварков, но ни один из них не является свободной частицей, а скорее связан с другими составными частицами.

Доказательства его существования были получены в результате экспериментов, проводимых с 1960-х годов на линейном ускорителе в Стэнфорде, а затем в ЦЕРНе.

Другие частицы

Начиная с 1930 года последовали открытия новых частиц, многие из которых были предсказаны теорией. Стандартная модель частиц предполагает существование 17 фундаментальных типов частиц, среди которых кварки, лептоны, бозоны и бозон Хиггса.

У них также есть свои соответствующие античастицы, которые при взаимодействии аннигилируют, генерируя новые частицы. Вот некоторые из них:

-Позитрон, идентичный электрону, но с положительным зарядом.

-Бозоны, которые являются переносчиками фундаментальных взаимодействий, кроме гравитации.

-Бозон Хиггса, отвечающий за массу.

-Гравитон, частица, предложенная для объяснения гравитации, но до сих пор нет доказательств ее существования.

Ссылки

Ошпаренный язык: причины, симптомы и лечение

Биомедицинская информатика: происхождение и применение

Источник

Парадоксы субатомного мира

Парадоксы субатомного мира

Давайте подведем некоторые итоги, четко обозначив все известные нам парадоксы субатомного мира.

1. На уровне атома, ядра и элементарной частицы материя имеет двойственный аспект, который в одной ситуации проявляется как частицы, а в другой – как волны. Причем частица имеет более или менее определенное местоположение, а волна распространяется во все стороны в пространстве.

2. Двойственная природа материи обусловливает «квантовый эффект», заключающийся в том, что находящаяся в ограниченном объеме пространства частица начинает усиленно двигаться, и чем значительнее ограничение, тем выше скорость. Результатом типичного «квантового эффекта» является твердость материи, идентичность атомов одного химического элемента и их высокая механическая устойчивость.

Поскольку ограничения объема атома и уж тем более ядра весьма значительны, скорости движения частиц чрезвычайно велики. Для исследования субатомного мира приходится использовать релятивистскую физику.

3. Атом вовсе не подобен маленькой планетарной системе. Вокруг ядра вращаются не частицы – электроны, а вероятностные волны, причем электрон может переходить с орбиты на орбиту, поглощая или испуская энергию в виде фотона.

4. На субатомном уровне существуют не твердые материальные объекты классической физики, а волновые вероятностные модели, которые отражают вероятность существования взаимосвязей.

5. Элементарные частицы вовсе не элементарны, а чрезвычайно сложны.

6. Всем известным элементарным частицам соответствуют свои античастицы. Пары частиц и античастиц возникают при наличии достаточного количества энергии и превращаются в чистую энергию при обратном процессе аннигиляции.

7. При столкновениях частицы способны переходить одна в другую: например, при столкновении протона и нейтрона рождается пи-мезон и т. д.

8. Никакой эксперимент не может привести к одновременно точному измерению динамических переменных: например, неопределенность положения события во времени оказывается связанной с неопределенностью количества энергии точно так же, как неопределенность пространственного положения частицы обнаруживает связь с неопределенностью ее импульса.

9. Масса является одной из форм энергии; поскольку энергия – это динамическая величина, связанная с процессом, частица воспринимается как динамический процесс, использующий энергию, которая проявляет себя в виде массы частицы.

10. Субатомные частицы одновременно делимы и неделимы. В процессе столкновения энергия двух частиц перераспределяется и образуются такие же частицы. А если энергия достаточно велика, то помимо таких же, как исходные, могут образоваться дополнительно новые частицы.

11. Силы взаимного притяжения и отталкивания между частицами способны преобразовываться в такие же частицы.

12. Мир частиц нельзя разложить на независящие друг от друга мельчайшие составляющие; частица не может быть изолированной.

13. Внутри атома материя не существует в определенных местах, а, скорее, «может существовать»; атомные явления не происходят в определенных местах и определенным образом наверняка, а, скорее, «могут происходить».

14. На результат эксперимента влияет система подготовки и измерения, конечным звеном которой является наблюдатель. Свойства объекта имеют значение только в контексте взаимодействия объекта с наблюдателем, ибо наблюдатель решает, каким образом он будет осуществлять измерения, и в зависимости от своего решения получает характеристику свойства наблюдаемого объекта.

15. В субатомном мире действуют нелокальные связи.

Казалось бы, достаточно сложностей и неразберихи в субатомном мире, лежащем в основе макромира. Но нет! Это еще не все.

Реальность, которая была открыта в результате изучения субатомного мира, обнаружила единство понятий, казавшихся до сих пор противоположными и даже непримиримыми. Мало того что частицы одновременно делимы и неделимы, вещество одновременно прерывисто и непрерывно, энергия превращается в частицы и наоборот и т. д., релятивистская физика объединила даже понятия пространства и времени. Именно это основополагающее единство, которое существует в более высоком измерении (четырехмерное пространство-время), является основой для объединения всех противоположных понятий.

Введение понятия вероятностных волн, которое в определенной степени решило парадокс «частица – волна», переместив его в совершенно новый контекст, привело к возникновению новой пары гораздо более глобальных противопоставлений: существования и несуществования (1). Атомная реальность лежит за пределами и этого противопоставления.

Возможно, это противопоставление наиболее трудно для восприятия со стороны нашего сознания. В физике можно построить конкретные модели, показывающие переход из состояния частиц в состояние волн и обратно. Но никакая модель не может объяснить переход от существования к несуществованию. Никакой физический процесс нельзя использовать для объяснения перехода из состояния, называемого виртуальной частицей, к состоянию покоя в вакууме, где эти объекты исчезают.

Мы не можем утверждать, что атомная частица существует в той или иной точке, и не можем утверждать, что ее там нет. Будучи вероятностной схемой, частица может существовать (одновременно!) в разных точках и представлять собой странную разновидность физической реальности, нечто среднее между существованием и несуществованием. Поэтому мы не можем описать состояние частицы в терминах фиксированных противопоставленных понятий (черное – белое, плюс – минус, холодно – тепло и т. д.). Частица не находится в определенной точке и не отсутствует там. Она не перемещается и не покоится. Изменяется только вероятная схема, то есть тенденция частицы находиться в определенных точках.

Точнее всего этот парадокс выразил Роберт Оппенгеймер, сказав: «Если мы спросим, например, постоянно ли нахождение электрона, нужно сказать „нет“, если мы спросим, изменяется ли местонахождения электрона с течением времени, нужно сказать „нет“, если мы спросим, неподвижен ли электрон, нужно сказать „нет“, если мы спросим, движется ли он, нужно сказать „нет“». Лучше не скажешь!

Не случайно В. Гейзенберг признавался: «Я помню многочисленные споры с Богом до поздней ночи, завершавшиеся признанием нашей беспомощности; когда после спора я выходил на прогулку в соседний парк, я вновь и вновь задавал себе один и тот же вопрос: „Разве может быть в природе столько абсурда, сколько мы видим в результатах атомных экспериментов?“»

Такие пары противоположных понятий, как сила и материя, частица и волна, движение и покой, существование и несуществование, объединенные в одновременное единство, представляют собой сегодня самое сложное для осознания положение квантовой теории. С какими еще парадоксами, переворачивающими все наши представления с ног на голову, столкнется наука, трудно предсказать

Бушующий мир. Но и это еще не все. Способность частиц реагировать на сжатие путем увеличения скорости движения говорит о фундаментальной подвижности материи, которая становится очевидной при углублении в субатомный мир. В этом мире большинство частиц приковано к молекулярным, атомным и ядерным структурам, и все они не покоятся, а находятся в состоянии хаотического движения; они подвижны по своей природе. Квантовая теория показывает, что вещество постоянно движется, не оставаясь ни на миг в состоянии покоя.

Например, взяв в руки кусок железа, мы не слышим и не чувствуем этого движения, оно, железо, кажется нам неподвижным и пассивным. Но стоит рассмотреть этот «мертвый» кусок железа под очень сильным микроскопом, который позволит нам увидеть все, что творится в атоме, мы увидим нечто совершенно другое. Давайте вспомним модель атома железа, в котором двадцать шесть электронов вращаются вокруг ядра, состоящего из двадцати шести протонов и тридцати нейтронов. Стремительный вихрь двадцати шести электронов вокруг ядра подобен хаотическому и постоянно изменяющемуся рою насекомых. Просто удивительно, как эти бешено вращающиеся электроны не сталкиваются друг с другом. Создается впечатление, что внутри каждого имеется встроенный механизм, бдительно следящий за тем, чтобы они не сталкивались.

А если мы заглянем в ядро, то увидим протоны и нейтроны, танцующие в бешеном ритме ламбаду, причем танцоры чередуются и пары меняют партнеров. Словом, в «мертвом» металле в буквальном и фигуральном смысле царит такое разнообразное движение протонов, нейтронов и электронов, которое просто невозможно себе представить.

Этот многослойный бушующий мир состоит из атомов и субатомных частиц, движущихся по различным орбитам с дикой скоростью, «танцующих» замечательный танец жизни под музыку, которую кто-то сочинил. Но ведь все материальные предметы, которые мы видим вокруг себя, состоят из атомов, связанных между собой внутримолекулярными связями различного типа и образующих таким образом молекулы. Только электроны в молекуле совершают движение не вокруг каждого атомного ядра, а вокруг группы атомов. И эти молекулы также находятся в беспрестанном хаотическом колебательном движении, характер которых зависит от термических условий вокруг атомов.

Словом, в субатомном и атомном мире безраздельно властвуют ритм, движение и непрестанное изменение. Но все изменения не случайны и не произвольны. Они следуют очень четким и ясным закономерностям: все частицы той или иной разновидности абсолютно идентичны по массе, величине электрического заряда и другим характерным показателям; все заряженные частицы имеют электрический заряд, который либо равен заряду электрона, либо противоположен ему по знаку, либо превышает его в два раза; и остальные характеристики частиц могут принимать не любые произвольные значения, а только ограниченное их количество, что позволяет ученым разделить частицы на несколько групп, которые могут быть также названы «семьями» (24).

Невольно напрашиваются вопросы: кто сочинил музыку для удивительного танца субатомных частиц, кто задал информационную программу и научил пары танцевать, в какой момент начался этот танец? Иными словами: как образуется материя, кто ее создал, когда это случилось? Это те вопросы, на которые наука ищет ответы.

К сожалению, наше мировосприятие характеризуется ограниченностью и приблизительностью. Наше ограниченное понимание природы приводит к разработке ограниченных «законов природы», которые позволяют описать большое количество явлений, но самые важные законы мироздания, влияющие на мировоззрение человека, по-прежнему во многом остаются для нас неизведанными.

«Позиция большинства физиков напоминает мировосприятие шизофреника, – говорит теоретик квантовой физики Фриц Рорлих из Сиракузского университета. – С одной стороны, они принимают стандартное толкование квантовой теории. С другой стороны, они настаивают на реальности квантовых систем, даже если таковые принципиально ненаблюдаемы».

Действительно странная позиция, которую можно выразить так: «Я не собираюсь думать об этом, даже если я знаю, что это правда». Эта позиция удерживает многих физиков от рассмотрения логических следствий из наиболее поразительных открытий квантовой физики. Как указывает Дэвид Мермин из Корнельского университета, физики подразделяются на три категории: первая – незначительное меньшинство, которому не дают покоя сами собой напрашивающиеся логические следствия; вторая – группа, уходящая от проблемы с помощью множества соображений и доводов, по большей части несостоятельных; и, наконец, третья категория – те, у кого нет никаких соображений, но это их не волнует. «Такая позиция, конечно, самая удобная», – отмечает Мермин (1).

Тем не менее ученые осознают, что все их теории, описывающие явления природы, включая и описание «законов», представляют собой продукт человеческого сознания, следствия понятийной структуры нашей картины мира, а не свойства самой реальности. Все научные модели и теории представляют собой лишь приближения к истинному положению дел. Ни одна из них не может претендовать на истину в последней инстанции. Неокончательность теорий проявляется прежде всего в использовании так называемых «фундаментальных констант», то есть величин, значения которых не выводятся из соответствующих теорий, а определяются эмпирически. Квантовая теория не может объяснить, почему электрон обладает именно такой массой и таким электрическим зарядом, а теория относительности не может объяснить именно такую величину скорости света.

Безусловно, наука никогда не сумеет создать идеальную теорию, которая объяснит все, но она постоянно должна стремиться к этому, пусть даже недостижимому рубежу. Ибо чем выше установлена планка, через которую должен перепрыгнуть прыгун, тем большую высоту он возьмет, даже если не установит рекорда. И ученые, как прыгун на тренировках, постоянно поднимают планку, последовательно разрабатывая отдельные частные и приблизительные теории, каждая из которых является более точной, чем предыдущая.

Сегодня наука уже располагает рядом частных теорий и моделей, достаточно успешно описывающих некоторые стороны волнующей нас волновой квантовой реальности. Как считают многие ученые, наиболее перспективными теориями – точками опоры для дальнейшего развития теоретической физики, опирающейся на сознание, являются гипотеза «бутстрапа» Джеффри Чу, теория Дэвида Бома и теория торсионных полей. А уникальные экспериментальные работы российских ученых под руководством академика В. П. Казначеева в значительной степени подтверждают правильность подходов в исследовании Вселенной и Сознания, заложенных в указанных гипотезах и теориях.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Парадоксы древних знаний

Парадоксы древних знаний «…Bукоренившихся у нас взглядах на прошлое пращур неолита всегда представлялся в образе мохнатого детинушки, гоняющегося за мамонтом. Но неожиданные открытия посыпались одно за другим…» Кем были наши предки? На этот вопрос, казалось, давно был

Парадоксы русской жизни

Парадоксы русской жизни Законы и логика в России не работают, потому что главным законом в нашей стране является сердце, центр, где сходятся все противоположности. Сердце судит о мире, людях и явлениях, исходя из единства мира и вещей, поэтому для него нет законов,

2. 1. Парадоксы современной России.

Глава 14 Сны, которые нас будят (Или сны-парадоксы)

Глава 14 Сны, которые нас будят (Или сны-парадоксы) ВЕЩИЕ, или предсказательные, сны чаще всего мы отличаем по яркой раскраске и остроте ощущений. Но так же и по ПАРАДОКСАЛЬНОСТИ сюжета или образа…Вернёмся к нашей Алисе.Я вырву из контекста парадоксально связанные образы

Глава 3. Парадоксы долголетия

3.3. Загадки и парадоксы времени

3.3. Загадки и парадоксы времени Сомнения по поводу того, включать или не включать в настоящую работу этот раздел, не оставляли меня до последней минуты. С одной стороны, я хотел бы попытаться объяснить некоторые загадки времени и феномены парапсихологии, но с другой — это

3.3.1. Физические парадоксы времени

3.3.1. Физические парадоксы времени «Летом 1912 г. …газеты Великобритании описали загадочную историю, произошедшую в железнодорожном экспрессе, следовавшем из Лондона в Глазго. Свидетелями происшествия в одном из вагонов оказались двое незнакомых друг другу пассажиров —

[Символ сокрытия Матерью Мира Своего Лика от мира]

[Символ сокрытия Матерью Мира Своего Лика от мира] Напомню Вам, что Матерь Мира скрыла Свой Лик от человечества также и в силу космических причин. Ибо, когда Люцифер решил унизить женщину для захвата власти над человечеством, космические условия благоприятствовали такому

[Символ сокрытия Матерью Мира Своего Лика от мира]

[Символ сокрытия Матерью Мира Своего Лика от мира] Напомню Вам, что Матерь Мира скрыла Свой Лик от человечества также и в силу космических причин. Ибо, когда Люцифер решил унизить женщину для захвата власти над человечеством, космические условия благоприятствовали такому

6. ПАРАДОКСЫ ЗДОРОВЬЯ С ПОЗИЦИЙ МАГИИ И ДУХОВНОСТИ

6. ПАРАДОКСЫ ЗДОРОВЬЯ С ПОЗИЦИЙ МАГИИ И ДУХОВНОСТИ Хотя многие аспекты магии самоисцеления уже были отмечены выше, и мне не раз пришлось повторяться, имеет смысл систематизировать и свести вместе моменты, связанные с обретением несокрушимого здоровья посредством

Управление состояниями Парадоксы сознания

Управление состояниями Парадоксы сознания Как только возникает желание улучшить свое состояние, значит, произошло ухудшение. Как только собираешься совершенствовать себя, значит, обнаружил новые несовершенства.Намерение рождается там, где обнаруживается его

Управление состояниями Парадоксы великого

Управление состояниями Парадоксы великого Принципы развития сознания можно выразить устойчивыми определениями:Внутреннее состояние ясности в понимании совершенства может проявляться вовне как тьма непонимания.Внутреннее состояние продвижения по пути совершенного

Глава 6. Активные и пассивные объекты духовно-нематериального мира как аналог живого и неживого материального мира.

Глава 6. Активные и пассивные объекты духовно-нематериального мира как аналог живого и неживого материального мира. «Все живо, но условно мы считаем живым только то, что достаточно сильно чувствует». К.Циолковский В материальном макромире, как известно, вещество (как один

Глава 11. ПАРАДОКСЫ, КОТОРЫХ НЕ БЫЛО

Глава 11. ПАРАДОКСЫ, КОТОРЫХ НЕ БЫЛО Одним из самых краеугольных, фундаментальных камней, лежащих в основании традиционной физики и философии, является принцип причинности. То есть «железной» однонаправленности во взаимоотношениях причины и следствия. Сперва, стало быть,

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *