что такое спин электрона
Что такое спин электрона
В 1922 году немецкие физики О. Штерн и В. Герлах поставили опыты, целью которых было измерение магнитных моментов Pm атомов различных химических элементов. Для химических элементов, образующих первую группу таблицы Менделеева и имеющих один валентный электрон, магнитный момент атома равен магнитному моменту валентного электрона, т.е. одного электрона.
Идея опыта заключалась в измерении силы, действующей на атом в сильно неоднородном магнитном поле. Неоднородность магнитного поля должна быть такова, чтобы она сказывалась на расстояниях порядка размера атома. Только при этом можно было получить силу, действующую на каждый атом в отдельности.
Схема опыта изображена на рис. 7.9. В колбе с вакуумом, 10 –5 мм рт. ст., нагревался серебряный шарик К, до температуры испарения.
Атомы серебра летели с тепловой скоростью около 100 м/с через щелевые диафрагмы В и, проходя резко неоднородное магнитное поле, попадали на фотопластинку А.
Если бы момент импульса атома (и его магнитный момент
) мог принимать произвольные ориентации в пространстве (т.е. в магнитном поле), то можно было ожидать непрерывного распределения попаданий атомов серебра на фотопластинку с большой плотностью попаданий в середине. Но на опыте были получены совершенно неожиданные результаты: на фотопластинке получились две резкие полосы – все атомы отклонялись в магнитном поле двояким образом, соответствующим лишь двум возможным ориентациям магнитного момента (рис. 7.10).
Этим доказывался квантовый характер магнитных моментов электронов. Количественный анализ показал, что проекция магнитного момента электрона равна магнетону Бора:
.
Таким образом, для атомов серебра Штерн и Герлах получили, что проекция магнитного момента атома (электрона) на направление магнитного поля численно равна магнетону Бора.
.
Опыты Штерна и Герлаха не только подтвердили пространственное квантование моментов импульсов в магнитном поле, но и дали экспериментальное подтверждение тому, что магнитные моменты электронов тоже состоят из некоторого числа «элементарных моментов», т.е. имеют дискретную природу. Единицей измерения магнитных моментов электронов и атомов является магнетон Бора (ħ – единица измерения механического момента импульса).
Кроме того, в этих опытах было обнаружено новое явление. Валентный электрон в основном состоянии атома серебра имеет орбитальное квантовое число l = 0 (s—состояние). Но при l = 0 (проекция момента импульса на направление внешнего поля равна нулю). Возник вопрос, пространственное квантование какого момента импульса обнаружилось в этих опытах и проекция какого магнитного момента равна магнетону Бора.
В 1925 г. студенты Геттингенского университета Гаудсмит и Уленбек предположили существование собственного механического момента импульса у электрона (спина) и, соответственно, собственного магнитного момента электрона Pms.
Введение понятия спина сразу объяснило ряд затруднений, имевшихся к тому времени в квантовой механике. И в первую очередь – результатов опытов Штерна и Герлаха.
Авторы дали такое толкование спина: электрон – вращающийся волчок. Но тогда следует, что «поверхность» волчка (электрона) должна вращаться с линейной скоростью, равной 300 с, где с – скорость света. От такого толкования спина пришлось отказаться.
В современном представлении – спин, как заряд и масса, есть свойство электрона.
П. Дирак впоследствии показал, что существование спина вытекает из решения релятивистского волнового уравнения Шредингера.
Из общих выводов квантовой механики следует, что спин должен быть квантован: , где s – спиновое квантовое число.
Аналогично, проекция спина на ось z (Lsz) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2s + 1) различных ориентаций в магнитном поле.
Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: , а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.
Для атомов первой группы, валентный электрон которых находится в s—состоянии (l = 0), момент импульса атома равен спину валентного электрона. Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле. (Опыты с электронами в p—состоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).
Численное значение спина электрона:
.
По аналогии с пространственным квантованием орбитального момента проекция спина
квантуется (аналогично, как
, то и
). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением:
,
где – магнитное спиновое квантовое число,
, т.е. может принимать только два значения, что и наблюдается в опыте Штерна и Герлаха.
Итак, проекция спинового механического момента импульса на направление внешнего магнитного поля может принимать два значения:
Так как мы всегда имеем дело с проекциями, то говоря, что спин имеет две ориентации, имеем в виду две проекции.
Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:
.
Отношение – спиновое гиромагнитное отношение.
Прорыв в спинтронике
Ученые из IBM Research и ведущего европейского образовательного и научно-исследовательского центра ETH Zurich впервые в истории получили изображения формирования стабильной спиновой спирали в полупроводнике.
«Обычно подобные спины электронов быстро меняют и теряют свою ориентацию. Но нам впервые удалось найти способ выравнивания их свойств в регулярный цикл смены спинов»
Немного о спинтронике
Спинтроника (или спиновая электроника) — достаточно молодая область современной физики, привлекающая многих исследователей многообещающими практическими применениями.
Ее отличие от традиционной электроники заключается в том, что если в обычном электрическом токе перемещаются заряды, то в электронике нового поколения перемещаются спины электронов.
Спин электрона (собственный момент импульса) − это внутренняя характеристика электрона, имеющая квантовую природу и не зависящая от движения электрона. Спин электрона может находиться в одном из двух состояний − либо «спин-вверх» (направление спина совпадает с направлением намагниченности магнитного материала), либо «спин-вниз» (спин и намагниченность разно-направлены).
«Вращение» электрона и его верхней и нижней ориентации кодирует логические биты в системе. При кодировании битов ученые предлагают ориентироваться на физическое пространство, в котором находится электрон. Электрон, ось которого направлена условно вверх, принимают за логическую единицу, а электрон, ось которого направлена условно вниз — за логический ноль.
В чем состоит миссия спинтроники?
В ближайшие десять-пятнадцать лет кремниевые процессоры достигнут предела своих возможностей. Поэтому уже сейчас ученые ищут новые физические принципы, на которых будут построены быстродействующие устройства с низким энергопотреблением и тепловыделением.
В спинтронных устройствах переворот спина практически не требует затрат энергии, а в промежутках между операциями устройство отключается от источника питания. Если изменить направление спина, то кинетическая энергия электрона не изменится. Это означает, что тепла почти не выделяется.
Специалисты выделяют три главных направления развития спинтроники: квантовый компьютер, спиновый полевой транзистор и спиновая память.
По словам ученых из IBM, электроны очень быстро меняют спины – на переключение тратится около 100 пикосекунд (1 пикосекунда – одна триллионная доля секунды). И в этом заключается основная проблема – 100 пикосекунд недостаточно, чтобы микросхемы успели зафиксировать изменение состояния в системе.
Несмотря ни на что
Исследователи из IBM разработали метод синхронизации электронов, увеличив время спина в 30 раз — до 1 наносекунды (что равняется циклу микропроцессора с частотой 1 Гигагерц).
Внимание ученых привлек ранее не описанный физиками факт – при вращении электронов в полупроводниках их спины перемещаются на десятки микрометров, при этом синхронно вращаясь, подобно вальсирующим парам.
«Если в начале круга в вальсе лица всех женщин обращены в одну сторону, то уже через некоторое время вращающиеся пары окажутся смотрящими в разных направлениях.
Теперь же мы получили возможность зафиксировать скорость вращения танцоров и привязать ее к направлению их перемещения. Получается идеальная хореография – лица всех танцующих женщин в определенной области площадки направлены в одну сторону».
В лабораториях IBM Research ученые использовали ультракороткие лазерные импульсы для наблюдения за перемещениями тысяч спинов электронов, которые были запущены во вращение одновременно в пределах сверхмалой области.
Исследователи IBM применили методику сканирующего микроскопа с временным разрешением и получили изображения синхронного «вальса» спинов электронов. Синхронизация вращения спинов электронов позволила наблюдать их перемещение на расстояния более 10 микрон (одной сотой миллиметра), что увеличило возможность использования спина для обработки логических операций – быстрой и экономной с точки зрения потребления энергии.
Что такое спин в физике: момент импульса, бозоны, фермионы
Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.
Больше полезной информации для учащихся – у нас в телеграм.
Спин и момент импульса
Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.
Теперь вспомним, что такое момент импульса в классической механике.
Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.
В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:
По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.
Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).
Спин же является собственным моментом импульса, то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы.
Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.
Спиновое квантовое число
Для характеристики спина в квантовой физике введено спиновое квантовое число.
Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:
Бозоны и фермионы
Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.
Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.
Фермионы: электрон, лептон, кварк
Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.
Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе, специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что «в полной мере квантовую физику не понимает никто», обратиться за помощью к опытным специалистам – вполне естественно!