что такое спарсить сайт

Парсинг — что это такое простыми словами. Как работает парсинг и парсеры, и какие типы парсеров бывают (подробный обзор +видео)

Парсинг – что это такое простыми словами? Если коротко, то это сбор информации по разным критериям из интернета, в автоматическом режиме. В процессе работы парсера сравнивается заданный образец и найденная информация, которая в дальнейшем будет структурирована.

В качестве примера можно привести англо-русский словарь. У нас есть исходное слово «parsing». Мы открываем словарь, находим его. И в качестве результата получаем перевод слова «разбор» или «анализ». Ну, а теперь давайте разберем эту тему поподробнее

Содержание статьи:

Парсинг: что это такое простыми словами

Парсинг — это процесс автоматического сбора информации по заданным нами критериям. Для лучшего понимания давайте разберем пример:

Пример того, что такое парсинг:
Представьте, что у нас есть интернет-магазин поставщика, который позволяет работать по схеме дропшиппинга и мы хотим скопировать информацию о товарах из этого магазина, а потом разместить ее на нашем сайте/интернет магазине (под информацией я подразумеваю: название товара, ссылку на товар, цену товара, изображение товара). Как мы можем собрать эту информацию?

Первый вариант сбора — делать все вручную:
То есть, мы вручную проходим по всем страницам сайта с которого хотим собрать информацию и вручную копируем всю эту информацию в таблицу для дальнейшего размещения на нашем сайте. Думаю понятно, что этот способ сбора информации может быть удобен, когда нужно собрать 10-50 товаров. Ну, а что делать, когда информацию нужно собрать о 500-1000 товаров? В этом случае лучше подойдет второй вариант.

Второй вариант — спарсить всю информацию разом:
Мы используем специальную программу или сервис (о них я буду говорить ниже) и в автоматическом режиме скачиваем всю информацию в готовую Excel таблицу. Такой способ подразумевает огромную экономию времени и позволяет не заниматься рутинной работой.

Причем, сбор информации из интернет-магазина я взял лишь для примера. С помощью парсеров можно собирать любую информацию к которой у нас есть доступ.

Грубо говоря парсинг позволяет автоматизировать сбор любой информации по заданным нами критериям. Думаю понятно, что использовать ручной способ сбора информации малоэффективно (особенно в наше время, когда информации слишком много).

Для наглядности хочу сразу показать главные преимущества парсинга:

Если говорить о наличие минусов, то это, разумеется, отсутствие у полученных данных уникальности. Прежде всего, это относится к контенту, мы ведь собираем все из открытых источников и парсер не уникализирует собранную информацию.

Думаю, что с понятием парсинга мы разобрались, теперь давайте разберемся со специальными программами и сервисами для парсинга.

Что такое парсер и как он работает

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

Парсер – это некое программное обеспечение или алгоритм с определенной последовательностью действий, цель работы которого получить заданную информацию.

Сбор информации происходит в 3 этапа:

Чаще всего парсер — это платная или бесплатная программа или сервис, созданный под ваши требования или выбранный вами для определенных целей. Подобных программ и сервисов очень много. Чаще всего языком написания является Python или PHP.

Но также есть и отдельные программы, которые позволяют писать парсеры. Например я пользуюсь программой ZennoPoster и пишу парсеры в ней — она позволяет собирать парсер как конструктор, но работать он будет по тому же принципу, что и платные/бесплатные сервисы парсинга.

Для примера можете посмотреть это видео в котором я показываю, как я создавал парсер для сбора информации с сервиса spravker.ru.

Чтобы было понятнее, давайте разберем каких типов и видов бывают парсеры:

Не следует забывать о том, что парсинг имеет определенные минусы. Недостатком использования считаются технические сложности, которые парсер может создать. Так, подключения к сайту создают нагрузку на сервер. Каждое подключение программы фиксируется. Если подключаться часто, то сайт может вас заблокировать по IP (но это легко можно обойти с помощью прокси).

Источник

Что такое парсинг и как правильно парсить

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

Что такое парсинг данных должен знать каждый владелец сайта, планирующий серьёзно развиваться в бизнесе. Это явление настолько распространено, что рано или поздно с парсингом может столкнуться любой. Либо как заказчик данной операции, либо как лицо, владеющее объектом для сбора информации, то есть ресурсом в Интернете.

К парсингу в российской бизнес-среде часто наблюдается негативное отношение. По принципу: если это не незаконно, то уж точно аморально. На самом деле из его грамотного и тактичного использования каждая компания может извлечь немало преимуществ.

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

Что такое парсинг

Глагол “to parse” в дословном переводе не означает ничего плохого. Делать грамматический разбор или структурировать — действия полезные и нужные. На языке всех, кто работает с данными на сайтах это слово имеет свой оттенок.

Парсить — собирать и систематизировать информацию, размещенную на определенных сайтах, с помощью специальных программ, автоматизирующих процесс.

Если вы когда-либо задавались вопросом, что такое парсер сайта, то вот он ответ. Это программные продукты, основной функцией которых является получение необходимых данных, соответствующих заданным параметрам.

Законно ли использовать парсинг

После выяснения что такое парсинг, может показаться, что это нечто, не соответствующее нормам действующего законодательства. На самом деле это не так. Законом не преследуется парсинг. Зато запрещены:

Парсинг законен, если он касается сбора информации, находящейся в открытом доступе. То есть всего, что можно и так собрать вручную.

Парсеры просто позволяют ускорить процесс и избежать ошибок из-за человеческого фактора. Поэтому «незаконности» в процесс они не добавляют.

Другое дело, как владелец свежесобранной базы распорядится подобной информацией. Ответственность может наступить именно за последующие действия.

Для чего нужен парсинг

Что такое парсить сайт разобрались. Переходим к тому, зачем же это может понадобиться. Здесь открывается широкий простор для действий.

Основная проблема современного Интернета — избыток информации, которую человек не в состоянии систематизировать вручную.

Парсинг используется для:

Сквозная аналитика это тоже своеобразный парсинг, только рекламы и продаж. Система интегрируется с площадками и CRM, а потом автоматически соединяет данные о бюджетах, кликах, сделках и подсчитывает окупаемость каждой кампании. Используйте ее, чтобы не потеряться в большом количестве информации и видеть в отчетах то, что вам действительно нужно. Отчеты Calltouch легко кастомизировать под себя и задачи команды маркетологов.

Сквозная аналитика

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

Достоинства парсинга

Они многочисленны. По сравнению с человеком парсеры могут:

Ограничения при парсинге

Есть несколько вариантов ограничений, которые могут затруднить работу парсера:

Какую информацию можно парсить

Спарсить можно всё, что есть на сайте в открытом доступе. Чаще всего требуются:

Изображения с сайтов технически спарсить тоже можно, но, как уже упоминалось выше, если они защищены авторским правом, лучше не нужно. Нельзя собирать с чужих сайтов личные данные их пользователей, которые те вводили в личных кабинетах.

Парсинг часто используется в индустрии e-commerce. Оценить влияние парсинга и его результатов можно в сквозной аналитике для интернет-магазинов. Вам доступны отчеты по любым временным срезам, метрикам и товарам. С помощью этих данных вы узнаете, из каких источников вы получаете добавления в корзины и продажи, и сможете оптимизировать рекламу с опорой на эти данные.

Модуль е-коммерс

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

Алгоритм работы парсинга

Принцип действия программы зависит от целей. Но схематично он выглядит так:

Способы применения

Основных способов применения парсинга существует два:

Обычно оба варианта работают в тесной связке друг с другом. Например, анализ ценовых позиций у конкурентов отталкивается от имеющегося диапазона на собственном сайте, а обнаруженные новинки сопоставляются с собственной товарной базой и т. п.

Источник

Парсинг — это полезно и не стыдно. Особенно если данные собирает робот RPA, а отчеты показывает BI

Продавцы следят друг за другом. Интернет-магазины хотят знать, какие у конкурентов цены и условия доставки, производители смотрят, чтобы дистрибьюторы не занижали цены. Для удовлетворения их любопытства каждый день сочиняются сотни парсеров. Но есть решение получше — простое и универсальное.

Привет, я Ольга Артюшкина, руководитель направления Ecommerce в «Первом Бите». То, о чем я хочу рассказать, будет полезно ответственным за маркетинг и продажи в онлайне. Надеюсь, вы найдете здесь рабочую идею, которая поможет давать клиентам лучшие условия в интернет-магазине и на маркетплейсах.

Представьте, что вы ищете двуспальную кровать. Что-нибудь поизящнее того, что продается в «Икее», тысяч за сорок. Вроде одной из этих:

Внимательно гуглите, отбираете два интернет-магазина с самыми классными кроватями. На картинках и ценниках — именно то, что вы искали. Потом смотрите на стоимость доставки, подъема на ваш шестой этаж без лифта и сборки. В магазине № 1 калькулятор насчитал за всё 4 200 рублей:

«Хм, это 10% стоимости кровати, дороговато», — думаете вы и идете в магазин № 2. А там получилось вообще 7 000 рублей. Вы решаете, что это сплошное надувательство и заказываете кровать в магазине №1.

Это скрины с сайтов двух реальных продавцов мебели для дома, популярных в Москве и Петербурге. Если бы магазин № 2 внимательнее изучал конкурентов, он, возможно, не допустил бы такой заметной разницы в стоимости услуг, и терял меньше клиентов. Или хотя бы обосновал, почему у них подъем на этаж стоит 500 рублей, а не 300, как у других.

Еще пример — про конструктор Lego Minecraft «Пещера зомби». Мы видим, что Ozon внимательно мониторит всех продавцов на своей площадке и дает минимальную цену в любой момент. Например, у него конструктор стоит 1 139 рублей, а у ближайшего конкурента, ИП Мустафина И.Р. — 1 599 рублей.

Понимая, что при таком раскладе вряд ли что-то удастся продать, ИП Мутафина И.Р. снижает цену почти до уровня «Озона» (всего на 20 рублей дороже) и распродает все конструкторы:

Продавец с ценой 1 999 рублей ждет, когда «Пещера зомби» у всех закончится, и тогда на его улицу придет праздник, но возможно, он просто не знает, какие цены у конкурентов. Ладно бы продавал только 20 видов конструкторов на одном «Озоне» — можно было бы несколько раз в день руками проверять каждую позицию и сравнивать с конкурентами (не исключено, что ИП Мустафина И.Р. так и делает). А если у него 20 тысяч наименований игрушек, которые продаются на двадцати площадках?

Для таких случаев нужен парсинг — автоматизированный сбор информации на сайтах конкурентов и партнеров. Кроме цен на товары можно отслеживать условия доставки и стоимость подъема на этаж, отзывы и характеристики товаров, скидки, акции и наличие на складе. В общем, любую открытую информацию, которую видит любой человек.

Кто-то считает, что парсинг — постыдное занятие, вроде воровства. Но вообще-то любой поисковик тоже занимается парсингом контента, иначе как он покажет страницы, релевантные вашему запросу. И соцсети этим занимаются, и Олег из «Тинькоф-банка».

Другое дело, как распоряжаться полученной информацией. Если магазин копирует отзывы на товары у конкурентов и размещает у себя, это стыдно. Если магазин обновляет цены и скидки, ориентируясь на конкурентов — это этично и правильно.

Шесть лет назад в один из наших офисов пришел производитель детских товаров и сказал, что у него проблемы с российскими дистрибьюторами: многие из них постоянно нарушают договоренности, ставя цену ниже рекомендованной. Это вызывает разные нехорошие подозрения у честных дистрибьюторов и подталкивают их к демпингу: «Почему им можно, а нам нельзя?»

Чтобы все играли по правилам, компания наняла аналитика, который проверял цены. И конечно это не помогло. Аналитик работал 8 часов в день и мог проверить каждый из 50 тысяч товаров в лучшем случае раз в неделю. Доходило до того, что дистрибьюторы на Дальнем Востоке пользовались разницей во времени: пока Москва спала, они демпинговали, когда просыпалась — возвращали минимальную цену. Так и жили в напряженной атмосфере.

Тогда мы написали для клиента программу-парсер на Python, который мониторил сайты дистрибьюторов каждый час и показывал отчет производителю. Это сработало, дистрибьюторы быстро поняли, что они под неусыпным контролем и прекратили хулиганить.

Потом были похожие проекты, но каждый раз приходилось делать всё как впервые. Мы тратили десятки часов, чтобы понять, какой именно парсер создавать. Искать ли готовое решение или самим написать, будет это скрипт или код, на каком языке, что прикручивать, чтобы обходить ловушки и капчи.

Однажды для производителя шин мы даже использовали парсер, написанный в Excel. Это был оптимальный вариант с точки зрения стоимости и эффективности. Он настраивался в интерфейсе галочками и кнопками, был понятнее многих других парсеров и незаметнее на сайтах конкурентов. Но и такой парсер нельзя было назвать идеальным: приходилось постоянно поддерживать его работоспособность, а маркетплейсы время от времени его все равно блокировали на несколько часов.

Когда мы начали внедрять программных роботов (RPA), мы поняли: вот же он, идеал!

RPA (Robotic Process Automation) — это роботизация рутинных процессов. Первыми RPA начали использовать крупные федеральные компании с большим количеством клиентов: телеком, банки и страховщики. Здесь роботы обрабатывают транзакции и обращения, отправляют письма и СМС, проверяют корректность данных, занимаются внутренними процессами в бухгалтерии, HR и других отделах.

Одна же из главных задач любого парсера — стать максимально похожим на человека, чтобы в нем не распознали бота и не забанили (а банят многие, особенно маркетплейсы, ведь никто не любит делиться данными с чужими парсерами). Ради этого снижают частоту запросов до одного в 3 секунды, «как у человека», и придумывают другие уловки. Однако ни одному парсеру никогда не сыграть человека на все сто.

Разработчики парсеров и разработчики сайтов, которые их интересуют, играют в кошки-мышки. Они как вирус и антивирус: у них вечное противостояние.

Парсерам приходится пользоваться прокси от разных провайдеров, менять куски кода при любом изменении на сайте, выкручиваться после попадания в ловушки. Им, например, подсовывают ссылки с пустыми страницами, которые люди не видят, а парсеры «видят».

Все эти проблемы не знакомы роботам RPA. По сравнению с парсерами у них всё просто и предсказуемо. Они не копаются в коде страниц, собирая нужные участки — они вообще могут заходить на любой сайт через поисковик, забив, например, «Лего майнкрафт пещера зомби спб купить». Даже самый продвинутый маркетплейс не подумает, что это робот.

Еще робот RPA быстро настраивается под конкретные площадки, даже если это «Яндекс.Маркет» или Ozon с миллионами позиций. Мы, например, настроили робота под десять топовых маркетплейсов, и в каждом случае это заняло от 8 до 16 часов. В разы быстрее парсеров.

Если парсер настроен на то, чтобы искать только цены — допустим, на смартфоны Xiaomi, — а клиенту вдруг понадобилось узнать их характеристики, то парсер придется готовить к новой задаче десятки часов. Робот RPA будет готов через 1-2 часа.

сайты конкурентов принимают его за человека и не блокируют;

настраивается за считанные часы под любую «парсинговую» задачу;

Собрать данные — половина дела. Чтобы этими данными было удобно пользоваться, их надо правильно показать.

Обычно парсеры и программные роботы делают отчеты в табличном виде. Допустим, производителя смартфонов интересует, как российские магазины в течение двух недель соблюдают договоренность продавать Xiaomi Mi 9 6/128GB не дешевле 19 000 рублей. Парсер (как и робот RPA) выдаст примерно такой отчет:

Данные можно импортировать в учетную систему для лучшей наглядности. Но еще лучше — в BI-систему, ведь они созданы для визуализации данных и удобной работы с ними. Двухнедельный отчет уместится на один экран:

В большинстве случаев для парсинга используют базовые возможности как RPA, так и BI. Соответственно, порог входа значительно ниже, чем при использовании этих инструментов по полной. Особенно это касается BI — прошли времена, когда она была роскошью для крупных компаний.

Подписка на популярную BI-систему Qlik Sense начинается от 30 тысяч рублей в год. Power BI от Microsoft вообще можно пользоваться бесплатно с некоторыми ограничениями.

У вендоров RPA тоже есть бесплатные версии, но реалистичнее ориентироваться минимум на 200 тысяч рублей в год за робота российской разработки.

Итого: 200–300 тысяч рублей в год — порог входа. Если понадобится помощь при настройке — плюс 3–4 тысячи рублей за час.

Автор — Ольга Артюшкина, руководитель направления Ecommerce в компании «Первый Бит». При участии Сергея Белостоцкого, руководителя BI, RPA в компании «Первый Бит».

Источник

Как спарсить любой сайт?

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

Меня зовут Даниил Охлопков, и я расскажу про свой подход к написанию скриптов, извлекающих данные из интернета: с чего начать, куда смотреть и что использовать.

Написав тонну парсеров, я придумал алгоритм действий, который не только минимизирует затраченное время на разработку, но и увеличивает их живучесть, робастность, масштабируемость.

Чтобы спарсить данные с вебсайта, пробуйте подходы именно в таком порядке:

Найдите официальное API,

Найдите XHR запросы в консоли разработчика вашего браузера,

Найдите сырые JSON в html странице,

Отрендерите код страницы через автоматизацию браузера,

Совет профессионалов: не начинайте с BS4/Scrapy

Крутые вебсайты с крутыми продактами делают тонну A/B тестов, чтобы повышать конверсии, вовлеченности и другие бизнес-метрики. Для нас это значит одно: элементы на вебстранице будут меняться и переставляться. В идеальном мире, наш написанный парсер не должен требовать доработки каждую неделю из-за изменений на сайте.

Приходим к выводу, что не надо извлекать данные из HTML тегов раньше времени: разметка страницы может сильно поменяться, а CSS-селекторы и XPath могут не помочь. Используйте другие методы, о которых ниже. ⬇️

Используйте официальный API

Поищите XHR запросы в консоли разработчика

Все современные вебсайты (но не в дарк вебе, лол) используют Javascript, чтобы догружать данные с бекенда. Это позволяет сайтам открываться плавно и скачивать контент постепенно после получения структуры страницы (HTML, скелетон страницы).

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

В итоге, даже не имея официального API, можно воспользоваться красивым и удобным закрытым API. ☺️

Даже если фронт поменяется полностью, этот API с большой вероятностью будет работать. Да, добавятся новые поля, да, возможно, некоторые данные уберут из выдачи. Но структура ответа останется, а значит, ваш парсер почти не изменится.

Алгорим действий такой:

Открывайте вебстраницу, которую хотите спарсить

Открывайте вкладку Network и кликайте на фильтр XHR запросов

Обновляйте страницу, чтобы в логах стали появляться запросы

Найдите запрос, который запрашивает данные, которые вам нужны

Копируйте запрос как cURL и переносите его в свой язык программирования для дальнейшей автоматизации.

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайтКнопка, которую я искал месяцы

Поищите JSON в HTML коде страницы

Как было удобно с XHR запросами, да? Ощущение, что ты используешь официальное API. 🤗 Приходит много данных, ты все сохраняешь в базу. Ты счастлив. Ты бог парсинга.

Но тут надо парсить другой сайт, а там нет нужных GET/POST запросов! Ну вот нет и все. И ты думаешь: неужели расчехлять XPath/CSS-selectors? 🙅‍♀️ Нет! 🙅‍♂️

Чтобы страница хорошо проиндексировалась поисковиками, необходимо, чтобы в HTML коде уже содержалась вся полезная информация: поисковики не рендерят Javascript, довольствуясь только HTML. А значит, где-то в коде должны быть все данные.

Современные SSR-движки (server-side-rendering) оставляют внизу страницы JSON со всеми данные, добавленный бекендом при генерации страницы. Стоп, это же и есть ответ API, который нам нужен! 😱😱😱

Вот несколько примеров, где такой клад может быть зарыт (не баньте, плиз):

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайтКрасивый JSON на главной странице Habr.com. Почти официальный API! Надеюсь, меня не забанят. что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайтИ наш любимый (у парсеров) Linkedin!

Алгоритм действий такой:

В dev tools берете самый первый запрос, где браузер запрашивает HTML страницу (не код текущий уже отрендеренной страницы, а именно ответ GET запроса).

Внизу ищите длинную длинную строчку с данными.

Вырезаете JSON из HTML любыми костылямии (я использую html.find(«=<") ).

Отрендерите JS через Headless Browsers

Если коротко, то есть инструменты, которые позволяют управлять браузером: открывать страницы, вводить текст, скроллить, кликать. Конечно же, это все было сделано для того, чтобы автоматизировать тесты веб интерфейса. I’m something of a web QA myself.

После того, как вы открыли страницу, чуть подождали (пока JS сделает все свои 100500 запросов), можно смотреть на HTML страницу опять и поискать там тот заветный JSON со всеми данными.

Для масштабируемости и простоты, я советую использовать удалённые браузерные кластеры (remote Selenium grid).

Вот так я подключаюсь к Selenoid из своего кода: по факту нужно просто указать адрес запущенного Selenoid, но я еще зачем-то передаю кучу параметров бразеру, вдруг вы тоже захотите. На выходе этой функции у меня обычный Selenium driver, который я использую также, как если бы я запускал браузер локально (через файлик chromedriver).

Парсите HTML теги

Если случилось чудо и у сайта нет ни официального API, ни вкусных XHR запросов, ни жирного JSON внизу HTML, если рендеринг браузерами вам тоже не помог, то остается последний, самый нудный и неблагодарный метод. Да, это взять и начать парсить HTML разметку страницы. То есть, например, из Cool website достать ссылку. Это можно делать как простыми регулярными выражениями, так и через более умные инструменты (в питоне это BeautifulSoup4 и Scrapy) и фильтры (XPath, CSS-selectors).

Мой единственный совет: постараться минимизировать число фильтров и условий, чтобы меньше переобучаться на текущей структуре HTML страницы, которая может измениться в следующем A/B тесте.

что такое спарсить сайт. Смотреть фото что такое спарсить сайт. Смотреть картинку что такое спарсить сайт. Картинка про что такое спарсить сайт. Фото что такое спарсить сайт

Подписывайтесь на мой Телеграм канал, где я рассказываю свои истории из парсинга и сливаю датасеты.

Источник

Руководство по парсингу веб-сайтов в 2021 году

Меня зовут Максим Кульгин и моя компания xmldatafeed занимается парсингом сайтов в России порядка четырех лет. Ежедневно мы парсим более 500 крупнейших интернет-магазинов в России и на выходе мы отдаем данные в формате Excel/CSV и делаем готовую аналитику для маркетплейсов. Тема парсинга в последнее время становится все более востребованной и в этой статье мы хотим дать общий обзор подходов и механизмов парсинга данных, учитывая правовые особенности.

За последнее десятилетие данные стали ресурсом для развития бизнеса, а Интернет — их основным источником благодаря пяти миллиардам пользователей, формирующим миллиарды фрагментов данных каждую секунду. Анализ данных Всемирной паутины может помочь компаниям выявлять скрытые закономерности, позволяющие им добиваться выполнения своих целей. Однако сбор большого объема данных — непростая для компаний задача, особенно для тех, которые думают, что кнопка «Экспортировать в Excel» (если такая присутствует) и обработка данных вручную — единственные способы сбора данных.

Парсинг веб-сайтов позволяет компаниям автоматизировать процессы сбора данных во Всемирной паутине, используя ботов или автоматические скрипты, называемые «обходчиками» веб-страниц, автоматическими сборщиками данных или веб-сборщиками (web crawlers). В этой статье раскрыты все важные аспекты парсинга веб-сайтов, включая понятие парсинга, почему он важен, как он работает, варианты применения, а также сведения о поставщиках парсеров и руководство по доступным к покупке программным продуктам и услугам.

Парсинг веб-сайтов, который также называют сбором/извлечением данных, скрейпингом данных или содержимого экрана, добычей данных/интернет-данных и иногда обходом/сканированием Всемирной паутины, — это процесс извлечения данных из веб-сайтов.

Процесс парсинга веб-сайтов включает в себя отправку запросов на получение веб-страницы и извлечение из нее машиночитаемой информации.

Всё более широкое использование аналитики данных и автоматизации — существенные тенденции бизнеса. Парсинг веб-сайтов может стать движущей силой для обеих тенденций. Помимо этих причин, у парсинга веб-сайтов есть множество применений, которые могут повлиять на все отрасли. Парсинг веб-сайтов дает компаниям возможность:

Эти факторы объясняют возрастающий интерес к парсингу веб-сайтов, который можно наблюдать в Google Trends на представленном выше изображении.

Обычно процесс парсинга веб-сайтов состоит из следующих последовательных шагов:

Распространенные варианты применения парсинга веб-сайтов перечислены ниже.

Чтобы называться компаний по парсингу веб-сайтов, поставщик подобных программных решений должен предоставлять возможность извлечения данных из множества интернет-ресурсов и возможность экспорта извлеченных данных в различные форматы. Да, сфера парсинга веб-сайтов переполнена, и есть разные способы решения задач по парсингу веб-сайтов на корпоративном уровне.

Фреймворки с открытым исходным кодом делают парсинг веб-сайтов дешевле и проще для личного использования. Наиболее широко используемые инструменты: Scrapy, Selenium, BeautifulSoup и Puppeteer.

Пользователи могут собирать информацию, используя библиотеки наподобие Selenium, чтобы автоматизировать этот процесс. Когда на веб-странице есть список, то чаще всего есть и другие страницы, помимо той, которая сразу отображается пользователю. Пример — веб-страницы с «бесконечной прокруткой». Например, предположим, что вы просматриваете веб-страницы YouTube. На веб-странице, которую вы просматриваете, среди всех перечисленных видео не оказалось такого, который вы бы захотели посмотреть. Затем вам нужно прокрутить список вниз, чтобы появились следующие видео. Selenium позволяет пользователям автоматизировать перемещение по последующим страницам списка и сканирование требуемой информации о каждом элементе списка. Далее пользователи могут сформировать набор данных, содержащий информацию о каждом элементе списка, представленного на веб-сайте. Например, можно создать набор данных о фильмах, в который будут входить наименования, рейтинги IMDb, актеры и позиции фильмов в топе 250 IMDb, сканируя список лучших фильмов по версии IMDb с помощью инструментов с открытым исходным кодом наподобие Scrapy.

Хотя на рынке есть различные проприетарные решения, продукты разделены на два типа:

Хотя парсить данные со своего собственного веб-сайта нетрудно, эта задача будет более сложной на веб-сайтах, стремящихся противодействовать сканированию своего контента роботами, которые не относятся к роботам поисковых систем. Как следствие, передовые парсеры собирают данные с использованием набора различных IP-адресов и цифровых подписей, действуя не как автоматический программный робот, а как группа пользователей, просматривающих веб-сайт.

Полностью управляемые услуги по парсингу веб-сайтов, также называемые «данные-как-услуга» (data-as-a-service, DaaS), будут более удобны для компаний, которым нужен широкомасштабный сбор данных. Работа с веб-сервисами, предоставляющими такие услуги, обычно выглядит так:

Такие компании, как Yipitdata, PromptCloud и ScrapeHero, — некоторые из поставщиков, предлагающих полностью управляемые услуги по парсингу веб-сайтов.

Используя готовое существующее программное обеспечение (ПО) с открытым или закрытым исходным кодом и навыки программирования, любая компания может создавать качественные парсеры веб-сайтов. При условии, что у компании есть технический персонал для осуществления этой задачи, и что парсинг необходим для реализации стратегически важного проекта, собственную разработку можно считать оптимальным вариантом.

Выбор подходящего инструмента или веб-сервиса для сбора данных во Всемирной паутине зависит от различных факторов, включая тип проекта, бюджет и наличие технического персонала. Чтобы кратко охарактеризовать представленную выше схему принятия решения, правильный ход мыслей при выборе автоматического сборщика данных должен быть таким:

Коротко говоря, если: при парсинге собираются общедоступные данные, парсинг не наносит вред компании-владельцу данных, среди собранных данных нет персональных и при повторной публикации собранных данных добавляется ссылка на источник, то, по всей видимости, заниматься парсингом законно. Однако это не юридическое заключение, поэтому, пожалуйста, обратитесь к профессиональному юристу за конкретной консультацией.

Законность парсинга ранее долгое время была неоднозначной, но сейчас в этом вопросе больше ясности. В настоящее время нормативно-правовые акты, регулирующие конфиденциальность персональных данных, наподобие GDPR Европейского союза и CCPA в Калифорнии не препятствуют парсингу веб-сайтов. В России недавно приняли дополнительные поправки в закон об Персональных данных. Просто убедитесь, что:

Говоря о компаниях, Апелляционный суд девятого округа США после иска LinkedIn против hiQ постановил, что автоматический парсинг общедоступных данных, очевидно, не нарушает Закон о компьютерном мошенничестве и злоупотреблении (Computer Fraud and Abuse Act, CFAA).

Тем не менее при использовании парсинга веб-сайтов действуют ограничения.

При оценке законности парсинга учтите также, что каждый результат поиска, который вы видите на страницах поисковых систем, был собран ею. Помимо этого, сообщается, что хедж-фонды тратят миллиарды на сбор данных, чтобы принимать более эффективные инвестиционные решения. Поэтому парсинг — это не сомнительная практика, которую применяют только небольшие компании.

Почему владельцы веб-сайтов хотят защитить их от парсинга?

Отчет 2020 от imperva о нежелательных программных роботах, собирающих данные

Распространенные и наиболее успешные приемы парсинга веб-сайтов:

Многие администраторы крупных веб-сайтов применяют инструменты для защиты от роботов. Роботам приходится обходить их, чтобы просканировать большое количество HTML-страниц. Использование прокси-серверов и отправка запросов через разные IP-адреса могут помочь преодолеть эти трудности.

Переход от статического IP-адреса на динамический также может оказаться полезным для того, чтобы парсер не обнаружили и не заблокировали.

Следует ограничить частоту отправки запросов на один и тот же веб-сайт по двум причинам:

Согласно GDPR, незаконно собирать личную информацию (personally identifiable information, PII) резидентов ЕС, если только у вас нет их явного на это согласия.

Если вы собираетесь собирать данные на веб-сайте, где требуется проходить авторизацию, вам нужно принять пользовательское соглашение (Terms & Conditions), чтобы зарегистрироваться там. Некоторые пользовательские соглашения включают в себя принципы компаний, связанные с парсингом данных, в соответствии с которыми вам не разрешается парсить любые данные на веб-сайте.

Однако даже несмотря на то, что пользовательское соглашение LinkedIn однозначно запрещает парсинг данных, как упоминалось выше, парсинг LinkedIn пока еще не нарушает закон. Мы не дает юридическое заключение и не беремся однозначно разъяснять смысл пользовательских соглашений компаний.

Парсинг превращается в игру в кошки-мышки между владельцами контента и его сборщиками — обе стороны тратят миллиарды на преодоление мер, разработанных другой стороной. Можно ожидать, что обе стороны будут использовать машинное обучение для создания более продвинутых систем.

Открытый исходный код играет важную роль в разработке ПО, в том числе в области разработки парсеров. Кроме того, популярность Python растет, и она уже довольно высока. Можно ожидать, что библиотеки с открытым исходным кодом, как например: Selenium, Scrapy и Beautiful Soup, которые работают на Python, будут в ближайшем будущем формировать подходы к парсингу веб-сайтов.

Вместе с библиотеками с открытым исходным кодом интерес к искусственному интеллекту (ИИ) делает будущее более радужным, поскольку системы на основе ИИ в значительной степени полагаются на данные, а автоматизация сбора данных может содействовать различным вариантам применения ИИ с тренировкой на общедоступных данных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *