что такое сигма в статистике

Что такое сигма в статистике

σ – греческая буква, принятая в статистике для обозначения среднеквадратического (или стандартного) отклонения. Используется для описания распределения наблюдений какой-либо характеристики вокруг среднего/целевого значения.

Стандартное отклонение рассчитывают по формуле:

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

где σ – стандартное отклонение, X̅ – среднее арифметическое всех наблюдений, Xi – величина i-вого наблюдения, а n – общее количество наблюдений.

σ-уровень также является показателем поведения процесса. В данном случае, количество σ, находящееся между средним значением и ближайшим пределом допуска, является бизнес-индикатором стабильности процесса и доли дефектной продукции.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистикеНа рисунке слева изображен процесс на уровне 4σ. Что произойдет, если величина стандартного отклонения увеличится, а пределы допуска, при этом останутся прежними?

Если величина стандартного отклонения вырастет, к примеру, в два раза, то количество сигм, которое может поместиться на отрезке между целевым значением и ближайшим пределом допуска, соответственно, уменьшиться в два раза. При этом, доля произведенной продукции, характеристики которой находятся за пределами допуска спецификации, тоже вырастет – это означает, что количество дефектной продукции увеличится.

Что случиться если значение сигма уменьшиться?

Логично, что снижение величины стандартного отклонения, сопровождаемое повышением стабильности процесса, приведет к снижению доли дефектной продукции. Задача 6σ заключается в повышении качества продукции путем понижения значения σ, т.е. вариации процесса.

Источник

Среднеквадратическое (стандартное) отклонение

Определение

Среднеквадратическое отклонение (англ. Standard Deviation, SD) является показателем, который используется в теории вероятности и математической статистике для оценки степени рассеивания случайной величины относительно ее математического ожидания. В инвестировании стандартное отклонение доходности ценных бумаг или портфеля используется для оценки меры риска. Чем выше степень рассеивания доходности ценной бумаги относительно ожидаемого доходности (математическое ожидание доходности), тем выше риск инвестирования, и наоборот.

Среднеквадратическое отклонение как правило обозначается греческой буквой σ (сигма), а стандартное отклонение латинской буквой S или как Std(X), где X – случайная величина.

Формула

Истинное значение среднеквадратического отклонения

Если известно точное распределение дискретной случайной величины, а именно, известно ее значение при каждом исходе и может быть оценена вероятность каждого исхода, то формула расчета среднеквадратического отклонения будет выглядеть следующим образом.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Где Xi – значение случайной величины X при i-ом исходе; M(X) математическое ожидание случайной величины X; pi – вероятность i-го исхода; N – количество возможных исходов.

При этом математическое ожидание случайной величины рассчитывается по формуле:

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Стандартное отклонение генеральной совокупности

На практике вместо точного распределение случайной величины обычно доступна только выборка данных. В этом случае рассчитывается оценочное значение среднеквадратического отклонения, которое в этом случае называют стандартным отклонением (S). Если оценка основывается на всей генеральной совокупности данных, необходимо использовать следующую формулу.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Где Xi – i-ое значение случайной величины X; X – среднеарифметическое генеральной совокупности; N – объем генеральной совокупности.

Стандартное отклонение выборки

Если используется не вся генеральная совокупность данных, а выборка из нее, то формула расчета стандартного отклонения основывается на несмещенной оценке дисперсии.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Где Xi – i-ое значение случайной величины X; X – среднеарифметическое выборки; N – объем выборки.

Примеры расчета

Пример 1

Портфельный менеджер должен оценить риски инвестирования в акции двух компаний А и Б. При этом он рассматривает 5 сценариев развития событий, информация по которым представлена в таблице.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Поскольку нам известно точное распределение доходности каждой из акций, мы можем рассчитать истинное значение среднеквадратического отклонения доходности для каждой из них.

Шаг 1. Рассчитаем математическое ожидание доходности для каждой из акций.

Шаг 2. Подставим полученные данные в первую формулу.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Как мы можем видеть, акции Компании А характеризуются меньшим уровнем риска, поскольку у них ниже среднеквадратическое отклонение доходности. Следует также отметить, что и ожидаемая доходность у них ниже, чем у акций Компании Б.

Пример 2

Аналитик располагает данными о доходности двух ценных бумаг за последние 5 лет, которые представлены в таблице.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Поскольку точное распределение доходности неизвестно, а в распоряжении аналитика есть только выборка из генеральной совокупности данных, мы можем рассчитать стандартное отклонение выборки на основании несмещенной дисперсии.

Шаг 1. Рассчитаем ожидаемую доходность для каждой ценной бумаги как среднеарифметическое выборки.

X А = (7 + 15 + 2 – 5 + 6) ÷ 5 = 5%

X Б = (3 – 2 + 12 + 4 +8) ÷ 5 = 5%

Шаг 2. Рассчитаем стандартное отклонение доходности для каждой из ценных бумаг по формуле для выборки из генеральной совокупности данных.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Следует отметить, что обе ценные бумаги имеют равную ожидаемую доходность 5%. При этом стандартное отклонение доходности у ценной бумаги Б ниже, что при прочих равных делает ее более привлекательным объектом инвестирования в следствие лучшего профиля риск-доходность.

Стандартное отклонение в Excel

В Excel предусмотрено две функции для расчета стандартного отклонения выборки и генеральной совокупности.

Для выборки воспользуйтесь функцией «СТАНДОТКЛОН.В»:

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Для генеральной совокупности используется функция «СТАНДОТКЛОН.Г»:

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Интерпретация

В инвестировании стандартное отклонение доходности используется в качестве меры волатильности. Чем выше его значение, тем выше риск, связанный с инвестированием в этот актив, и наоборот. При прочих равных параметрах, предпочтение следует отдавать тому активу, у которого этот показатель будет минимальным.

Источник

Среднеквадратическое отклонение

Среднеквадрати́ческое отклоне́ние (синонимы: среднеквадрати́чное отклоне́ние, квадрати́чное отклоне́ние; близкие термины: станда́ртное отклоне́ние, станда́ртный разбро́с) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания.

Содержание

Основные сведения

Измеряется в единицах измерения самой случайной величины. Равно корню квадратному из дисперсии случайной величины. Среднеквадратическое отклонение используют при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Стандартное отклонение (оценка среднеквадратического отклонения случайной величины Пол, стены вокруг нас и потолок, x относительно её математического ожидания на основе несмещённой оценки её дисперсии):

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Правило трёх сигм

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Правило трёх сигм (что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике) — практически все значения нормально распределённой случайной величины лежат в интервале что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике. Более строго — не менее чем с 99,7 % достоверностью значение нормально распределенной случайной величины лежит в указанном интервале (при условии, что величина что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистикеистинная, а не полученная в результате обработки выборки).

Интерпретация величины среднеквадратического отклонения

Большое значение среднеквадратического отклонения показывает большой разброс значений в представленном множестве со средней величиной множества; маленькое значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Например, у нас есть три числовых множества: <0, 0, 14, 14>, <0, 6, 8, 14>и <6, 6, 8, 8>. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения — значения внутри множества сильно расходятся со средним значением.

В общем смысле среднеквадратическое отклонение можно считать мерой неопределенности. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

Практическое применение

На практике среднеквадратическое отклонение позволяет определить, насколько значения в множестве могут отличаться от среднего значения.

Климат

Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой внутри континента. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

Спорт

Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

Технический анализ

В техническом анализе среднеквадратическое отклонение используется для построения линий Боллинджера.

См. также

Литература

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике
что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике Статистические показатели
Описательная
статистика
Непрерывные
данные
Коэффициент сдвигаСреднее (Арифметическое, Геометрическое, Гармоническое) · Медиана · Мода · Размах
ВариацияРанг · Среднеквадратическое отклонение · Коэффициент вариации · Квантиль (Дециль, Процентиль/Перцентиль/Центиль)
МоментыМатематическое ожидание · Дисперсия · Асимметрия · Эксцесс
Дискретные
данные
Частота · Таблица контингентности
Статистический
вывод и
проверка
гипотез
Статистический
вывод
Доверительный интервал (Частотная вероятность) · Достоверный интервал (Байесовский вывод) · Статистическая значимость · Мета-анализ
Планирование
эксперимента
Генеральная совокупность · Планирование выборки · Районированная выборка · Репликация · Группировка · Чувствительность и специфичность
Объём выборкиСтатистическая мощность · Мера эффекта · Стандартная ошибка
Общая оценкаБайесовская оценка решения · Метод максимального правдоподобия · Метод моментов нахождения оценок · Оценка минимального расстояния · Оценка максимального интервала
Статистические
критерии
Z-тест · t-критерий Стьюдента · Критерий Фишера · Критерий Пирсона (Хи-квадрат) · Критерий согласия Колмогорова · Тест Вальда · U-критерий Манна — Уитни · Критерий Уилкоксона · Критерий Краскела — Уоллиса · Критерий Кохрена · Критерий Лиллиефорса
Анализ выживанияФункция выживания · Оценка Каплана — Мейера · Логранк-тест · Интенсивность отказов · Пропорциональная модель опасностей
КорреляцияКоэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания
Линейные моделиОсновная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ
РегрессияЛинейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия
Столбчатая диаграмма · Совмещённая диаграмма · Диаграмма управления · Лесная диаграмма · Гистограмма · Q-Q диаграмма · Диаграмма выполнения · Диаграмма разброса · Стебель-листья · Ящик с усами

Полезное

Смотреть что такое «Среднеквадратическое отклонение» в других словарях:

Среднеквадратическое отклонение — мера отклонения опытных данных от выборочного среднего значения или от функциональной зависимости, выражаемая в абсолютных единицах, вычисляется по формулам (4), (12). Источник: ГОСТ 20522 96: Грунты. Методы статистической обработки результатов… … Словарь-справочник терминов нормативно-технической документации

Среднеквадратическое отклонение — показатель связи результатов деятельности взаимного фонда с общей ситуацией на рынке или динамикой соответствующего базового индекса. Если среднеквадратическое отклонение равно 1, то стоимость портфеля фонда в точности повторяет изменения… … Финансовый словарь

Среднеквадратическое отклонение — повторяемости: среднеквадратическое отклонение результатов измерений, полученных в условиях повторяемости (является мерой рассеяния результатов измерений в условиях повторяемости). Источник: ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА… … Официальная терминология

Среднеквадратическое отклонение — * сярэднеквадратычнае адхіленне * mean square deviation or standard deviation описательная статистика (параметр), являющаяся мерой рассеяния для приближенно нормально распределенных данных. Если распределение не соответствует закону нормального… … Генетика. Энциклопедический словарь

среднеквадратическое отклонение — vidutinis kvadratinis nuokrypis statusas T sritis automatika atitikmenys: angl. root mean square deviation vok. mittlere quadratische Abweichung, f rus. среднеквадратическое отклонение, n pranc. écart moyen quadratique, m … Automatikos terminų žodynas

Среднеквадратическое отклонение воспроизводимости — Среднеквадратическое отклонение воспроизводимости: среднеквадратическое отклонение результатов измерений, полученных в условиях воспроизводимости (является мерой рассеяния результатов измерений в условиях воспроизводимости). Источник:… … Официальная терминология

среднеквадратическое отклонение воспроизводимости — 3.6.5.1 среднеквадратическое отклонение воспроизводимости: Среднеквадратическое отклонение результатов измерений, полученных в условиях воспроизводимости (является мерой рассеяния результатов измерений в условиях воспроизводимости). Источник:… … Словарь-справочник терминов нормативно-технической документации

среднеквадратическое отклонение воспроизводимости результатов испытаний — 3.21 среднеквадратическое отклонение воспроизводимости результатов испытаний sR:Среднеквадратическое отклонение результатов испытаний, полученных в условиях воспроизводимости (см. 3.19) [5]. Источник … Словарь-справочник терминов нормативно-технической документации

среднеквадратическое отклонение повторяемости (сходимости) результатов испытаний — 3.24 среднеквадратическое отклонение повторяемости (сходимости) результатов испытаний sr: Среднеквадратическое отклонение результатов испытаний, полученных в условиях повторяемости (сходимости) (см. 3.22) [5]. Источник … Словарь-справочник терминов нормативно-технической документации

среднеквадратическое отклонение (совокупности), стандартное отклонение (совокупности) — 3.13 среднеквадратическое отклонение (совокупности), стандартное отклонение (совокупности) [(population) standard deviation] σ: Положительный квадратный корень из дисперсии совокупности σ2. Источник: ГОСТ Р ИСО 12491 2011: Материалы и изделия… … Словарь-справочник терминов нормативно-технической документации

Источник

Стандартное отклонение

Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.

Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.

Стандартное отклонение обозначается буквой σ (греческая буква сигма).

Стандартное отклонение также называется:

Использование и интерпретация величины среднеквадратического отклонения

Стандартное отклонение используется:

Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.

День 1День 2День 3День 4
Пред.А19211921
Пред.Б15261524

В обеих компаниях среднее количество товара составляет 20 единиц:

Однако, глядя на цифры, можно заметить:

Если рассчитать стандартное отклонение каждой компании, оно покажет, что

Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).

Расчет среднеквадратичного (стандартного) отклонения

Формулы вычисления стандартного отклонения

Разница между формулами S и σ («n» и «n–1»)

Состоит в том, что мы анализируем — всю выборку или только её часть:

Как рассчитать стандартное отклонение?

Пример 1 (с σ)

Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.

День 1День 2День 3День 4
Пред.Б15261524

Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Применяем эти шаги:

1. Найти среднее арифметическое выборки:

μ = (15 + 26 + 15+ 24) / 4 = 20

2. От каждого значения выборки отнять среднее арифметическое:

3. Каждую полученную разницу возвести в квадрат:

4. Сделать сумму полученных значений:

5. Поделить на размер выборки (т.е. на n):

6. Найти квадратный корень:

Пример 2 (с S)

Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.

У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.

Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.

Яблоня 1Яблоня 2Яблоня 3Яблоня 4Яблоня 5Яблоня 6
9254127

Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.

Применяем практически те же шаги:

1. Найти среднее арифметическое выборки:

Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5

2. От каждого значения выборки отнять среднее арифметическое:

X1 – Xср = 9 – 6,5 = 2,5

X2 – Xср = 2 – 6,5 = –4,5

X3 – Xср = 5 – 6,5 = –1,5

X4 – Xср = 4 – 6,5 = –2,5

X5 – Xср = 12 – 6,5 = 5,5

X6 – Xср = 7 – 6,5 = 0,5

3. Каждую полученную разницу возвести в квадрат:

4. Сделать сумму полученных значений:

Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5

5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):

(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1

6. Найти квадратный корень:

S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193

Дисперсия и стандартное отклонение

Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).

Дисперсия — в статистике это «среднее квадратов отклонений от среднего». Чтобы её вычислить нужно:

Ещё расчёт дисперсии можно сделать по этой формуле:

Правило трёх сигм

Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:

Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.

Стандартное отклонение в excel

Вычисление стандартного отклонения с «n – 1» в знаменателе (случай выборки из генеральной совокупности):

1. Занесите все данные в документ Excel.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

2. Выберите поле, в котором вы хотите отобразить результат.

3. Введите в этом поле «=СТАНДОТКЛОНА(«

4. Выделите поля, где находятся данные, потом закройте скобки.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

5. Нажмите Ввод (Enter).

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

что такое сигма в статистике. Смотреть фото что такое сигма в статистике. Смотреть картинку что такое сигма в статистике. Картинка про что такое сигма в статистике. Фото что такое сигма в статистике

Коэффициент вариации

Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.

Стандартное отклонение делится на среднее и умножается на 100%.

Можно классифицировать вариабельность выборки по коэффициенту вариации:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *