что такое сигма в сопромате
ПроСопромат.ру
Технический портал, посвященный Сопромату и истории его создания
Архив рубрики: Обозначения Сопромата
Изменения обозначений, принятых в сопромате, в соответствии с рекомендациями ИСО
Изменение русских индексов на латинские, соответствующие первым буквам аналогичного английского слова
Прочностные характеристики материала:
Напряжения:
Деформации:
Допускаемое значение величины обозначено не с помощью квадратных скобок, а с помощью индекса adm от англ. admissible — допускаемое
Применяемые индексы сокращений в сопромате
Применяемые индексы в обозначениях сопромата
Обозначения
Какие обозначения приняты в сопромате?
А – площадь поперечного сечения брутто, м 2 ;
а – размер стороны прямоугольника, м;
а – расстояние между параллельными осями, м;
а – длина силового участка, м;
а – ордината эпюры изгибающих моментов, Нм;
b – расстояние между параллельными осями, м;
b – ширина сечения, м;
b – ордината эпюры изгибающих моментов, Нм;
С – центр тяжести сечения;
с – размер сечения или его части, м;
с – длина силового участка, м;
с – ордината эпюры изгибающих моментов, Нм;
D – диаметр наружный сечения, м;
d– ордината эпюр изгибающих моментов, м;
d– диаметр внутренний сечения, м;
Е – модуль упругости I рода, модуль Юнга, Па;
F – сила, Н;
— 1 единичная сила, н;
G – модуль сдвига, Па;
g – ускорение свободного падения (м/с 2 );
Н – высота падения ударяющего тела, м;
Ix, Iy – осевые моменты инерции сечения, м 4 ;
Iρ – полярный момент инерции сечения, м 4 ;
Imax, Imin – главные центральные моменты инерции сечения, м 4 ;
i – индекс у сил и усилий;
kσ, kτ– эффективные коэффициенты концентрации напряжений, безразмерные;
ℓ — длина стержня или силового участка, м;
М – сосредоточенный момент, Нм;
Мх, Му – изгибающие моменты (внутренние), Нм;
Мк – крутящий момент (внутренний, может обозначаться Т (фр.)).
Мк, Мн – значения внутренних изгибающих моментов в конце и начале силового участка, Нм;
— единичная пара сил,
N – нормальная или продольная сила (внутренняя), н;
n – коэффициент запаса прочности (может быть обозначен как k);
[n] или nadm – допускаемый коэффициент запаса прочности;
[nуст ] или nуст adm– допускаемый коэффициент запаса на устойчивость;
nв – скорость вращения вала, об/мин;
Р – полное напряжение, Па;
Q (Qx, Qy) – поперечная сила (внутренняя), н;
q – погонная нагрузка, н/м;
qσ,qτ – коэффициенты чувствительности к концентрации напряжений, безразмерная;
R – равнодействующая сил, н;
Sx, Sy – статические моменты площади сечения, м 3 ;
ti – усилие в ветви ремня (ременной передачи), н;
u – удельная потенциальная энергия деформирования;
uр – удельная потенциальная энергия изменения формы;
umax, umin – главные центральные оси;
u – перемещение в направлении оси Х, м;
v – перемещение в направлении оси у, м;
v – скорость ударяющего тела. м/с 2 ;
w – перемещение в направлении оси z, м;
Wi – мощность, передаваемая шестерней, колесом и т.п., кВт;
Wx, Wy – осевые моменты сопротивления, м 3;
Wρ – полярный момент сопротивления, м 3 ;
Wк – момент сопротивления при кручении, м 3 ;
х – горизонтальная ось сечения;
у – вертикальная ось сечения;
х0, у0 – центральные оси сечения;
ymax – координата точки, наиболее удаленной от нейтральной линии;
[σ] или σadm – допускаемое напряжение, Па;
σк – критическое напряжение, Па;
τ (τху, τуz, τzx) – касательное напряжение, Па;
φ – угол поворота сечения при кручении, град;
φ – коэффициент понижения допускаемого напряжения, безразмерный;
α – угол, определяющий положение осей, град;
α0 – угол, определяющий положение главных центральных осей, град;
βσ βτ – коэффициент, учитывающий влияние качества поверхности на усталость, безразмерная;
γ – удельный вес, н/м 3 ;
∆ – перемещение (линейное, м; угловое, рад);
∆ℓ – абсолютная линейная деформация (удлинение или укорочение), м;
∆b – абсолютная поперечная деформация, м;
∆S – абсолютный сдвиг, м;
ε – относительная линейная деформация, безразмерная;
εпр, εпоп – относительные продольная и поперечная деформации, безразмерные;
εσ ετ – коэффициенты, учитывающие влияние размеров деталей на предел выносливости, безразмерные;
θ – относительный (погонный) угол поворота, рад/м;
λ – гибкость стержня, безразмерная;
μ – коэффициент Пуассона, безразмерная;
ν – коэффициент приведения длины, безразмерная;
σ (σх, σу, σz) – нормальное напряжение, Па;
σ1, σ2, σ3 – главные напряжения, Па;
σпр или σpr– предел пропорциональности, Па;
σт илиσу – предел текучести, Па;
σпр или σu– предел прочности, Па.
ПроСопромат.ру
Технический портал, посвященный Сопромату и истории его создания
Обозначения
Какие обозначения приняты в сопромате?
А – площадь поперечного сечения брутто, м 2 ;
а – размер стороны прямоугольника, м;
а – расстояние между параллельными осями, м;
а – длина силового участка, м;
а – ордината эпюры изгибающих моментов, Нм;
b – расстояние между параллельными осями, м;
b – ширина сечения, м;
b – ордината эпюры изгибающих моментов, Нм;
С – центр тяжести сечения;
с – размер сечения или его части, м;
с – длина силового участка, м;
с – ордината эпюры изгибающих моментов, Нм;
D – диаметр наружный сечения, м;
d– ордината эпюр изгибающих моментов, м;
d– диаметр внутренний сечения, м;
Е – модуль упругости I рода, модуль Юнга, Па;
F – сила, Н;
— 1 единичная сила, н;
G – модуль сдвига, Па;
g – ускорение свободного падения (м/с 2 );
Н – высота падения ударяющего тела, м;
Ix, Iy – осевые моменты инерции сечения, м 4 ;
Iρ – полярный момент инерции сечения, м 4 ;
Imax, Imin – главные центральные моменты инерции сечения, м 4 ;
i – индекс у сил и усилий;
kσ, kτ– эффективные коэффициенты концентрации напряжений, безразмерные;
ℓ — длина стержня или силового участка, м;
М – сосредоточенный момент, Нм;
Мх, Му – изгибающие моменты (внутренние), Нм;
Мк – крутящий момент (внутренний, может обозначаться Т (фр.)).
Мк, Мн – значения внутренних изгибающих моментов в конце и начале силового участка, Нм;
— единичная пара сил,
N – нормальная или продольная сила (внутренняя), н;
n – коэффициент запаса прочности (может быть обозначен как k);
[n] или nadm – допускаемый коэффициент запаса прочности;
[nуст ] или nуст adm– допускаемый коэффициент запаса на устойчивость;
nв – скорость вращения вала, об/мин;
Р – полное напряжение, Па;
Q (Qx, Qy) – поперечная сила (внутренняя), н;
q – погонная нагрузка, н/м;
qσ,qτ – коэффициенты чувствительности к концентрации напряжений, безразмерная;
R – равнодействующая сил, н;
Sx, Sy – статические моменты площади сечения, м 3 ;
ti – усилие в ветви ремня (ременной передачи), н;
u – удельная потенциальная энергия деформирования;
uр – удельная потенциальная энергия изменения формы;
umax, umin – главные центральные оси;
u – перемещение в направлении оси Х, м;
v – перемещение в направлении оси у, м;
v – скорость ударяющего тела. м/с 2 ;
w – перемещение в направлении оси z, м;
Wi – мощность, передаваемая шестерней, колесом и т.п., кВт;
Wx, Wy – осевые моменты сопротивления, м 3;
Wρ – полярный момент сопротивления, м 3 ;
Wк – момент сопротивления при кручении, м 3 ;
х – горизонтальная ось сечения;
у – вертикальная ось сечения;
х0, у0 – центральные оси сечения;
ymax – координата точки, наиболее удаленной от нейтральной линии;
[σ] или σadm – допускаемое напряжение, Па;
σк – критическое напряжение, Па;
τ (τху, τуz, τzx) – касательное напряжение, Па;
φ – угол поворота сечения при кручении, град;
φ – коэффициент понижения допускаемого напряжения, безразмерный;
α – угол, определяющий положение осей, град;
α0 – угол, определяющий положение главных центральных осей, град;
βσ βτ – коэффициент, учитывающий влияние качества поверхности на усталость, безразмерная;
γ – удельный вес, н/м 3 ;
∆ – перемещение (линейное, м; угловое, рад);
∆ℓ – абсолютная линейная деформация (удлинение или укорочение), м;
∆b – абсолютная поперечная деформация, м;
∆S – абсолютный сдвиг, м;
ε – относительная линейная деформация, безразмерная;
εпр, εпоп – относительные продольная и поперечная деформации, безразмерные;
εσ ετ – коэффициенты, учитывающие влияние размеров деталей на предел выносливости, безразмерные;
θ – относительный (погонный) угол поворота, рад/м;
λ – гибкость стержня, безразмерная;
μ – коэффициент Пуассона, безразмерная;
ν – коэффициент приведения длины, безразмерная;
σ (σх, σу, σz) – нормальное напряжение, Па;
σ1, σ2, σ3 – главные напряжения, Па;
σпр или σpr– предел пропорциональности, Па;
σт илиσу – предел текучести, Па;
σпр или σu– предел прочности, Па.
Многочисленные учебники «Cопромат для чайников» создают для развенчания мифа о непостижимой сложности дисциплины. Этой наукой пугают на первых курсах вузов. Для начала расшифруем грозный термин «сопротивление материалов».
На деле – проста и решение почти не выходит за рамки школьной задачи о растяжении и сжатии пружины. Другое дело – найти слабое звено конструкции и свести расчет к несложной постановке. Так что не стоит зевать на лекциях по основам механики. При подготовке к урокам можно пользоваться решениями онлайн, но на экзаменах помогут только свои знания.
Что такое сопромат
Это методика расчета деталей, конструкций на способность выдерживать нагрузки в требуемой степени. Или хотя бы для предсказания последствий. Не более, хотя почему-то относят руководство к наукам.
Этой «наукой» прекрасно владели древнегреческие и древнеримские инженеры, сооружавшие сложнейшие механизмы. Понятия не имея о структуре, уравнении состояния вещества и прочих теориях, египтяне строили исполинские плотины и пирамиды.
Основные задачи по сопротивлению материалов
Задача следует напрямую из определения. А вот каковы критерии упомянутого слова «выдерживать»? Неясно, что скрывается под «материалом» и как реальные вещи схематизировать.
Требования
Перечислены далеко не все, но для статики и базовой программы хватит:
Прочность – способность образца воспринимать внешние силы без разрушения. Слегка мнущаяся под весом оборудования подставка никого не интересует. Основную-то функцию она выполняет.
Жесткость – свойство воспринимать нагрузку без существенного нарушения геометрии. Гнущийся под силой резания инструмент даст дополнительную погрешность обработки. К ошибке приведет деформация станины агрегата.
Устойчивость – способность конструкции сохранять стабильность равновесия. Поясним на примере: стержень находится под грузом, будучи прямым – выдерживает, а чуть изогнется – характер напряжения изменится, груз рухнет.
Материал и силы
Как всякая методика, сопромат принимает массу упрощений и прямо неверных допущений:
материал однороден, среда сплошная. Внутренние особенности в расчет не берутся;
свойства не зависят от направления;
образец восстанавливает начальные параметры при снятии нагрузки;
поперечные сечения не меняются при деформации;
в удаленных от места нагрузки местах усилие распределяется равно по сечению;
результат воздействия нагрузок равен сумме последствий от каждой;
деформации не влияют на точки приложения сил;
отсутствуют изначальные внутренние напряжения.
Схемы
Служат для создания возможности расчета реальных конструкций:
тело – объект с практически одинаковыми «длина х ширина х высота»;
брус (балка, стержень, вал) – характеризуется значительной длиной.
На рисунке показаны опоры с воспринимаемыми реакциями (обозначены красным цветом):
Рис. 1. Опоры с воспринимаемыми реакциями:
в) жесткая заделка (защемление).
Силы в сопромате
Приложенные извне, уравновешиваются возникающими изнутри. Напомним, рассматривается статическая ситуация. Материал «сопротивляется».
Разделим нагруженное тело виртуальным сечением P (см. рис. 2).
Заменим хаос равнодействующей R и моментом M (см. рис. 3):
Распределив по осям, получим картину нагрузки сечения (см. рис. 4):
Нагрузки и деформации, изучаемые в сопромате
Изучим несколько принятых терминов.
Напряжения
В теле приложенные силы распределяются по сечению. Нагружен каждый элементарный «кусочек». Разложим силы:
Элементарные усилия таковы:
σ – «сигма», нормальное напряжение. Перпендикулярно сечению. Характерно для сжатия / растяжения;
τ – «тау», касательное напряжение. Параллельно сечению. Появляется при кручении;
p – полное напряжение.
Просуммировав элементы, получим:
N – нормальная сила;
A – площадь сечения.
В принятой в России системе СИ сила измеряется в ньютонах (Н). Напряжения – в паскалях (Па). Длины в метрах (м).
Деформации
Различают деформацию упругую (с индексом «e») и пластическую (с индексом «p»). Первая исчезает по снятии растягивающей / сжимающей силы, вторая – нет.
Полная деформация будет равна:
Деформация относительная обозначается «ε» и рассчитывается так:
Под «сдвигом» понимается смещение параллельных слоев. Рассмотрим рисунок:
Здесь γ – относительный сдвиг.
Виды нагрузки
Растяжение и сжатие – нагрузка нормальной силой (по оси стержня).
Кручение – действует момент. Обычно рассчитываются передающие усилия валы.
Изгиб – воздействие направлено на искривление.
Основные формулы
Базовый принцип сопромата единственный. В упомянутой задаче о пружине применим закон Гука:
E – модуль упругости (Юнга). Величина зависит от используемого материала. Для стали полагают равным 200 х 10 6 Па.
Сопротивление материала прямо пропорционально деформации:
Закон верен не всегда и не для всех материалов. Как уже упоминалось, принимается как одно из допущений.
Реальная диаграмма
Растяжение стержня из низкоуглеродистой стали выглядит следующим образом:
График (б) относится к большей части конструкционных материалов: подкаленные стали, сплавы цветных металлов, пластики.
Расчеты обычно ведут по σт (а) и σ0.2 (б). С незначительными пластическими деформациями конструкции или без таковых.
Пример решения задачи
Какой груз допустимо подвесить на пруток из стали 45 Ø10 мм?
σ0,2 для стали 45 равна 245 МПа (из ГОСТ).
Площадь сечения прутка:
Допустимая сила тяжести:
Для получения веса следует разделить на ускорение свободного падения g:
Ответ: необходимо подвесить груз массой 1950 кг.
Как найти опасное сечение
Наиболее простой способ – построение эпюры. На закрепленную балку действуют точечные и распределенные силы. Считаем на характерных участках, начиная с незакрепленного конца.
Усилие положительно, если направлено на растяжение.
На схеме показано, что:
Зачем и кому нужен сопромат
Даже не имеющий отношения к прочностным расчетам инженер-универсал должен иметь понятие о приблизительных (на 10-20%) значениях. Знать конструкционные материалы, представлять свойства. Чувствовать заранее слабые места агрегатов.
Совершенно необходим разработчикам различных конструкций, машиностроительных изделий. Будущим архитекторам в вузах преподается в виде предмета «Строительная механика».
Методика помогает на стадии проектирования обеспечивать необходимый запас прочности изделий. Стойкость к постоянным и динамичным нагрузкам. Это сберегает массу времени и затрат в дальнейших изготовлении, испытании и эксплуатации изделия. Обеспечивает надежность и долговечность.