что такое секвенирование вируса
Секвенирование геномов для «чайников»
Геномика: постановка задачи и методы секвенирования
Сергей Николенко, кандидат физико-математических наук, старший научный сотрудник лаборатории вычислительной биологии Санкт-Петербургского Академического Университета в серии статей говорит о некоторых задачах биоинформатики, связанных со сборкой и анализом геномов, делая акцент на математической, комбинаторной постановке задачи. В данном, вводном, тексте речь идет о том, как выглядят входные данные для сборки геномов и как их получают.
Как выглядит молекула ДНК?
Начнем с того, как выглядит молекула ДНК. Молекулы полимеров характеризуются первичной структурой, под которой понимается просто состав молекулы (в данном случае – последовательность букв A, C, G и T, которые и составляют геном), вторичной структурой, т.е. тем, какие именно химические связи устанавливаются между этими компонентами и какие в результате получаются базовые пространственные структуры (в данном случае – двойная спираль), и третичной структурой, т.е. тем, как вторичная структура «уложена» в пространстве. Вторичная структура ДНК представляет собой двойную спираль, состоящую из четырёх разных нуклеотидов.
Рисунок из Википедии
Нуклеотиды обозначаются по содержащимся в них азотистым основаниям: аденину (A), цитозину (C), гуанину (G) и тимину (T) (есть ещё урацил, который в РНК заменяет тимин), и в дальнейшем мы всегда будем пользоваться этими буквами. В двойной спирали эти нуклеотиды связаны друг с другом водородными связями, и связь устанавливается по принципу комплементарности: если в одной нити ДНК стоит A, то в комплементарной нити будет T, а если в одной нити C, то в другой будет G. Именно это позволяет относительно просто проводить репликацию (копирование) ДНК, например, при делении клетки: для этого достаточно просто разорвать водородные связи, разделив двойную спираль на нити, после чего парная нить для каждого «потомка» автоматически соберётся правильно. Важно понять, что ДНК – это две копии одного и того же «текста» из четырёх «букв»; «буквы» в копиях не идентичны, но однозначно соответствуют друг другу. Например:
Было бы, конечно, удобно, если бы нам удалось аккуратно «вытянуть» одну нить ДНК и спокойно, нуклеотид за нуклеотидом, «прочесть» эту нить от начала до конца. При таком, идеальном, методе секвенирования (чтения ДНК) никаких хитрых алгоритмов не понадобилось бы. К сожалению, на данном этапе такое невозможно, и приходится довольствоваться результатами того секвенирования, которое есть.
Что такое секвенирование?
Секвенирование (sequencing) – это общее название методов, которые позволяют установить последовательность нуклеотидов в молекуле ДНК. В настоящее время нет ни одного метода секвенирования, который бы работал для молекулы ДНК целиком; все они устроены так: сначала готовится большое число небольших участков ДНК (клонируется молекула ДНК многократно и «разрезается» в случайных местах), а потом читается каждый участок по отдельности.
Клонирование происходит либо просто выращиванием клеток в чашке Петри, либо (в случаях, когда это было бы слишком медленно или по каким-то причинам не получилось бы) при помощи так называемой полимеразной цепной реакции. В кратком и неточном изложении работает она примерно так: сначала ДНК денатурируют, т.е. разрушают водородные связи, получая отдельные нити. Затем к ДНК присоединяют так называемые праймеры; это короткие участки ДНК, к которым может присоединиться ДНК-полимераза – соединение, которое, собственно, и занимается копированием (репликацией) нити ДНК.
Рисунок из Википедии
На следующем этапе полимераза копирует ДНК, после чего процесс можно повторять: после новой денатурации отдельных нитей будет уже вдвое больше, на третьем цикле – вчетверо, и так далее.
Все эти эффекты достигаются в основном с помощью изменений температуры смеси из ДНК, праймеров и полимеразы; для наших целей важно, что это достаточно точный процесс, и ошибки в нём редки, а на выходе получается большое число копий участков одной и той же ДНК. Разные методы секвенирования отличаются друг от друга не методами клонирования, а тем, как потом прочесть получившийся «суп» из многочисленных копий одной и той же ДНК.
Секвенирование по Сэнгеру
Первым методом секвенирования, который учёные сумели применить для обработки целых геномов (в том числе генома человека), стало секвенирование по Сэнгеру (Sanger sequencing). Смысл таков: участок ДНК клонируется, после чего полученная смесь делится на четыре части. Каждая часть помещается в активную среду, где присутствуют:
Собственно, процесс практически идентичен клонированию ДНК, с которым мы встретились в предыдущем разделе. Разница только в том, что теперь в один из нуклеотидов подмешаны «ложные» нуклеотиды; они могут образовать точно такую же водородную связь, но не могут продолжить свою нить дальше.
В результате в каждой части образуется большое число копий префиксов исследуемого участка ДНК, которые имеют разную длину, но всегда заканчиваются на одну и ту же букву – в зависимости от того, когда повезёт взять в процесс клонирования «ложный» нуклеотид. Например, в пробирке, где все последовательности заканчиваются на Т, из нашего примера выше получилась бы смесь из следующих префиксов:
ATGCAGAACAGACGATCAGCGACACTTTA (образец)
AT
ATGCAGAACAGACGAT
ATGCAGAACAGACGATCAGCGACACT
ATGCAGAACAGACGATCAGCGACACTT
ATGCAGAACAGACGATCAGCGACACTTT
Как теперь, получив такую смесь, «прочесть» геномную последовательность? Заметим, что в сумме в четырёх пробирках мы получили все возможные префиксы интересующего нас участка. Это значит, что если мы сможем просто измерить длину каждого префикса (точнее говоря, даже не измерить, а просто упорядочить, узнав, кто из них длиннее), то мы сможем узнать и последовательность тоже. Предположим, что мы увидели, что в пробирках лежат префиксы вот такой длины (по порядку, от самого лёгкого 1 до самого тяжёлого 10):A C G T
1, 5, 7, 8, 10 4, 9 3, 6 2
Очевидно, что эта последовательность начинается с А (т.к. самый лёгкий префикс, из одной буквы, заканчивается на A); дальше идёт C, дальше опять A, и так далее. В результате можно прочесть исходный участок: ATGCAGAACA.
А чтобы измерить длину, можно, например, измерить массу всех префиксов во всех пробирках. Чтобы измерить массу, можно, например (разные секвенаторы использовали разные процедуры, но суть от этого не меняется), ионизировать эти молекулы и отправить их наперегонки к заряженному электроду в специальном геле, который создаст трение и замедлит продвижение молекул – этот метод называется электрофорезом. При одинаковом заряде более тяжёлые молекулы будут двигаться медленнее, и в результате получится примерно такая картинка.
Рисунок из Википедии
Видно, что (в идеальном случае) можно просто прочесть последовательность нуклеотидов от самого лёгкого префикса (т.е. префикса из одной буквы) к самому тяжёлому.
Результаты и ошибки сэнгеровского секвенирования
На выходе из сэнгеровского секвенатора получаются короткие участки ДНК, так называемые риды (reads). Для биоинформатики принципиальны две вещи: во-первых, какой длины получаются риды, во-вторых, какие в них могут быть ошибки и как часто (разумеется, на свете нет ничего идеального).
Сэнгеровские риды по этим критериям очень хороши: получаются риды длиной около тысячи нуклеотидов, причём качество начинает заметно падать только после 700-800 нуклеотидов. Сам процесс секвенирования по Сэнгеру, с которым мы познакомились в предыдущем разделе, предопределяет и эффект падения качества (труднее отличить молекулу массой 700 от молекулы массой 701, чем массу 5 от массы 6), и другой неприятный эффект – если в геноме встречается длинная последовательность из одной и той же буквы (…AAAAAAAA…), трудно бывает точно определить, какой она длины – все промежуточные массы попадут в одну и ту же пробирку, некоторые из них могут не встретиться, некоторые слиться друг с другом и т.д. Но всё же сэнгеровское секвенирование даёт отличные результаты с достаточно длинными ридами, которые потом относительно легко собирать. О том, как это делается, мы будем говорить в последующих текстах.
Именно при помощи сэнгеровского секвенирования был впервые расшифрован геном человека. Секвенирование по Сэнгеру применяется и сегодня, но его всё активнее вытесняют другие методы, и применяется оно всё реже. Кому же и почему оно уступило свои позиции?
Секвенаторы второго поколения: Illumina
Современные секвенаторы – это так называемые секвенаторы второго поколения (SGS, second generation sequencing). В них участки ДНК по-прежнему многократно клонируются, но процесс чтения устроен не так, как у Сэнгера. Существует много разных методов, отличающихся довольно существенно, поэтому мы рассмотрим только один из них, один из самых популярных на сегодня – секвенирование по методу Solexa (ныне Illumina; в смене названия не нужно искать глубокий смысл, просто одна компания купила другую).
Процесс секвенирования Illumina проиллюстрирован на рисунке; кроме того, можно посмотреть один из нескольких существующих видеороликов с анимацией этого процесса – в данном случае, действительно, лучше один раз увидеть, чем сто раз прочесть текст. Однако краткие комментарии тоже пригодятся; вот как происходит процесс секвенирования по методу Illumina.
В результате на каждом цикле мы прочитываем одновременно очень большое число нуклеотидов из разных последовательностей. Но за это приходится платить тем, что участки ДНК, которые мы можем прочесть, оказываются гораздо короче, чем в случае секвенирования по Сэнгеру – риды Illumina обычно получаются длиной около 100 нуклеотидов.
Парные риды и постановка задачи
Есть ещё одна важная деталь. Участки ДНК «присасываются» к подложке обоими концами, причём мы можем узнать, какие последовательности соответствуют одному и тому же участку. Это значит, что в реальности мы читаем один и тот же участок, длина которого нам приблизительно известна, сразу с двух сторон. В результате данные получаются примерно такого вида:
причём расстояние между известными строчками (число вопросительных знаков) известно не совсем точно. В зависимости от технологии, можно получить как очень длинные неизвестные фрагменты (около 1000 нуклеотидов), «обрамлённые» двумя ридами длины 100, так и короткие фрагменты, в которых неизвестны буквально два-три десятка нуклеотидов между ридами. И те, и другие могут очень помочь в сборке, и об этом мы тоже будем говорить в следующих сериях.
Итак, теперь мы можем формально поставить задачу сборки геномов. Она звучит так: по большому числу подстрок небольшой длины восстановить исходную длинную строку в алфавите из букв A, C, G, T. В случае секвенирования по методу Illumina – по большому числу пар коротких подстрок, разделённых в исходной строке приблизительно известным расстоянием. Поставив эту задачу, мы можем забыть про биологию, химию и медицину – перед нами чисто алгоритмическая задача. Однако, прежде чем перейти к математике, сделаем ещё несколько замечаний.
Ошибки и показатели качества в секвенаторах второго поколения
Как мы уже знаем, секвенирование всегда содержит ошибки. В секвенаторах Illumina и аналогичных ошибки, как правило, происходят на фазе, когда нужно распознать помеченные нуклеотиды, т.е. понять, каким цветом и с какой силой светятся кластеры из многократно клонированных участков ДНК. На рисунке – типичный пример такой фотографии, порождённой секвенатором Illumina.
Рисунок с сайта medicine.yale.edu
Проблема здесь заключается в том, что из-за неидеальности остальных этапов процесса кластеры никогда не светятся только одним цветом; это всегда смесь всех четырёх цветов с той или иной интенсивностью. Нужно выделить наиболее интенсивную компоненту и оценить, насколько вероятна ошибка в этой букве; эта задача называется base calling (распознавание нуклеотидов). Base calling – это целая наука, в подробности которой мы сейчас вдаваться не будем.
Для нас сейчас важно, что в результате каждому нуклеотиду каждого рида секвенатор ставит в соответствие вероятность того, что этот нуклеотид был распознан правильно. Эти вероятности тоже можно использовать при сборке, и секвенаторы выдают их вместе с собственно ридами.
В итоге типичный рид в так называемом fastq-формате, стандартном для секвенаторов второго поколения, выглядит примерно так:
@EAS20_8_6_1_3_25/1
GCAAAAAACTTACCCCGGAACAGGCCGAGCAGATCAAAACGCTACTGCAATACAGACCATCAAGCACCAACTCCCNNNCGTAGNNNNNNTATGTTNNNNG
+EAS20_8_6_1_3_25/1
HHHHHHHGHHHHHHHHHHHHHHHHHHHHEHHHHHHHHEGHHHHGHHGHEFD?A=A&FFBB>&::===@&@E@E>A#########################
Первая и третья строки содержат имя рида; вторая строка – сама последовательность нуклеотидов. Обратим внимание, что среди букв A, C, G, T встречаются и буквы N – это значит, что секвенатор не смог однозначно определить, какой здесь был нуклеотид, и сдался. А четвёртая строка кодирует, в логарифмическом масштабе, вероятности того, что тот или иной нуклеотид распознан правильно; например, H здесь соответствует вероятности ошибки около одной десятитысячной. Как правило, качество ухудшается к концу рида; в нашем примере, как видите, хвост рида и вовсе не удалось сколь-нибудь надёжно прочитать.
Другие методы секвенирования
Хотя мы подробнее всего рассмотрели секвенатор Illumina (Solexa), на самом деле на этом методе свет клином не сошёлся. Есть и другие секвенаторы второго поколения, с другими свойствами.
В секвенировании лигированием (sequencing by ligation) на фазе, когда уже нужно распознавать нуклеотиды, используют не ДНК-полимеразу и процесс репликации, а специальные короткие «зонды», которые присоединяются к комплементарным нуклеотидам, фиксируются, затем вымываются, и процесс повторяется снова. Так устроен секвенатор SOLiD от Applied Biosystems.
Пиросеквенирование (pyrosequencing) основано на хемилюминесцентных сигналах, которые подают специально модифицированные нуклеотиды, когда соединяются с комплементарным нуклеотидом в прочитываемой нити ДНК; на этом принципе работает, например, секвенатор 454 от 454 Life Sciences.
Принцип работы секвенатора PacBio (от Pacific Biosciences) очень похож на принцип работы Illumina, но у него по-другому устроен метод детектирования – специальные «решётки» позволяют уловить сигналы от отдельных молекул (метод получил название SMRT, single molecule real time sequencing). Это позволяет ускорить процесс, уместить больше ридов на одной подложке (нужно меньше клонировать ДНК, не нужно выращивать большие кластеры) и существенно увеличить длину надёжно прочитываемых ридов.
Недавно появившийся метод ионного полупроводникового секвенирования (на нём основан секвенатор IonTorrent) вместо всего этого просто детектирует соединения (ионы), которые выделяются при присоединении нового нуклеотида к нити ДНК. Это позволяет радикально сократить время и стоимость получаемых ридов, хотя процент ошибок становится больше, и больше становится ошибок в фрагментах из повторяющейся одной буквы.
Человеческая мысль не стоит на месте: методы секвенирования постоянно улучшаются. Однако практически все современные методы выдают относительно короткие риды, от 100 до 400 нуклеотидов; в этом цикле мы будем в основном говорить о том, как собирать именно короткие риды.
Sanger или Illumina?
Человеческий геном был впервые собран на сэнгеровских секвенаторах, причём алгоритмическая сторона того проекта была проработана гораздо меньше, чем сейчас, десять лет спустя. Алгоритмы, которыми собирали первый человеческий геном, значительно проще тех, о которых мы будем говорить в дальнейшем. Однако первый геном всё-таки собрали; может быть, весь алгоритмический прогресс – это никому не нужный миф, и вполне хватило бы старых программ?
Невероятно, но факт: «старые» секвенаторы (первого поколения, сэнгеровские) выдают значительно более подходящие для сборки данные, чем «новые» (второго поколения). Это в основном выражается в длине ридов (reads), тех участков ДНК, которые удаётся последовательно прочесть, и которые, собственно, и нужно собрать в одну большую строчку. Секвенаторы первого поколения выдавали риды длиной более пятисот нуклеотидов, обычно около тысячи. Современные секвенаторы выдают пары ридов, каждый из которых имеет длину около ста нуклеотидов.
На таком уровне становится важной и цена алгоритмической стороны вопроса. Чтобы сборка геномов не занимала дольше и не стоила дороже, чем само их секвенирование, нужно разработать очень быстрые алгоритмы для решения задачи сборки. Об этом пойдет речь в следующей статье.
КЛИНИЧЕСКОЕ СЕКВЕНИРОВАНИЕ
Самый современный метод диагностики наследственных заболеваний.
Точные методы диагностики:
Что такое секвенирование
Секвенирование — это метод определения нуклеотидной последовательности ДНК и РНК. Тестирование используется для определения генетических повреждений (мутаций) в ДНК, которые являются причиной наследственных болезней, наследственных предрасположенностей или особенностей организма. Существует несколько разновидностей секвенирования, которые позволяют выявлять возможные генетические отклонения и редкие генетические варианты, тонко влияющие на появление определенных патологий в человеческом организме.
Показания к проведению анализа с помощью метода секвенирования:
Для получения более подробной информации об исследовании вы можете позвонить по телефону:
либо воспользоваться консультацией врача-генетика
Основные этапы исследованияя
Вне зависимости от типа секвенирования процедура делится на несколько основных этапов:
Таргетное секвенирование
Возможности таргетного секвенирования
Метод таргетного секвенирования позволяет выделять и исследовать конкретные области геномов или отдельные гены. Технологии нового поколения позволяют рассчитывать время и затраты на исследование. Таргетному анализу могут подвергаться отдельные интересующие пациента гены, участки генов и митохондриальные ДНК.
Преимущества таргетного секвенирования
По сравнению с комплексными методами анализа таргетное секвенирование более выгодно. Исследуются лишь отдельные участки генов, в которых могут определяться мутации. В таком случае для диагностики требуется меньше ресурсов, поэтому таргетный поиск отдельных отклонений обойдётся гораздо дешевле, нежели полная диагностика.
Панели генов
Таргетные панели были разработаны в отношении групп заболеваний, объединенных какими-то общими симптомами, например, аутизм, задержка психического развития, онкологические заболевания и т.д. К примеру, если в истории семьи обнаруживаются признаки одного или нескольких различных наследственных опухолевых заболеваний, то семья вполне может быть носителем опухолевого наследственного заболевания. Панель “наследственный рак” объединяет серию генетических мутаций, которые могут приводить к наследственному раку. В некоторых случаях наиболее эффективной может оказаться первоначальная проверка при помощи таргетных панелей нового поколения, таких как CancerNext, с целью добиться полного покрытия задействованных генов.
Мультигенные панели
Группа исследований, предназначенных для диагностики клинически сходных заболеваний. Такие исследования могут включать от 10 до 600 генов. Они могут быть эффективны для уточнения диагноза, дифференциальной диагностики и поиска патогенных мутаций.
Полногеномный анализ
Полногеномное секвенирование дает максимально полный набор данных о структуре генетического материала и позволяет детально оценить все индивидуальные генетические вариации. Секвенатор нового поколения IlluminaNextSeq 500 может определять полную структуру генома человека за 2 дня. Каждый участок генома при этом прочитывается 30 раз для повышения точности полученных данных.
Достоверность диагностики при выборе данного вида анализа повышается, если обследовать всю семью: ребенка и родителей.
Что можно получить при полногеномном секвенировании?
Этот метод позволяет обнаружить целый ряд отклонений.
Когда нужно делать секвенирование генома?
Секвенирование генома проводится в следующих случаях.
Анализ данных
В результате полногеномного секвенирования получается огромный объем данных, который требует специальной обработки. Такая обработка включает несколько этапов.
Секвенирование экзома
Секвенирование экзома – это тест для определения генетических повреждений (мутаций) в ДНК, которые являются причиной наследственных болезней, наследственных предрасположенностей или особенностей организма.
Некоторые нуклеотиды исчезают или наоборот удваиваются или заменяются. Во многих случаях это ведет к неправильному формированию организма. Это может проявляться в виде врожденных пороков или малых аномалий развития, задержке психического развития, аутизме и других формах отклонений.
Ученые считают, что полное секвенирование экзома поможет не только обнаружить болезнь, но и предсказать ход прогрессирования заболевания и вовремя начать необходимое лечение. Выявление наследуемых мутаций также важно для оценки репродуктивных рисков.
Клиническое секвенирование экзома
Полное секвенирование экзома
Этот тест включает в себя глубокий анализ 4800 клинически значимых генов, которые связаны с известными наследственными заболеваниями. Наличие обнаруженных мутаций подтверждается классическим секвенированием по Сэнгеру. При необходимости проводится поиск аналогичных мутаций у родителей.
Цель теста – исследование экзома конкретного пациента. Метод клинического секвенирования экзома подходит для обнаружения точечных мутаций, вставок, делеций, инверсий и перестановок в экзоме. Пациент получает заключение об изменениях, связанных с его заболеванием. В то же время лечащий врач может дополнительно запросить более подробную информацию, включая данные о потенциально патогенных вариантах, локализованных в хорошо изученных областях экзома.
Результаты анализируются и проверяются целой командой специалистов медиков. Отчет об обнаруженных изменениях сопровождается подробными комментариями.
Перед проведением тестирования рекомендуется дополнительная консультация врача-генетика. В таком случае пациент может убедиться в необходимости прохождения того или иного набора тестов. Также в ходе консультации рассказывается о возможных преимуществах и рисках генетического тестирования. Дело в том, что потенциальную опасность может представлять не само тестирование (оно совершенно безвредно для пациента), а информация об обнаруженных в генетическом материале отклонениях. В частности, сведения о врожденной предрасположенности к тому или иному заболеванию обычно не сообщаются лицам, не достигшим совершеннолетия. Каждая лаборатория вырабатывает свою политику поведения в подобных случаях.
Преимущества
Ход анализа
В качестве образца для анализа сдается около 10 мл крови.
Часто задаваемые вопросы
Что включает клиническое секвенирование экзома?
Клиническое секвенирование экзома разделяется на несколько этапов.
Секвенирование: Диагностическое секвенирование экзома (DES) включает секвенирование примерно 20 000 генов. Это отличает его от секвенирования всего генома, поскольку метода нацелен на исследование 1-2% областей генома, кодирующих синтез белков, которые предположительно ответственны за появление примерно 85% от числа известных заболеваний. Целью DES является выявление изменений, которые определяют фенотип пациента.
Анализ и проверка: после завершения секвенирования все полученные данные пропускаются через биоинформационный конвейер и последовательно анализируются коллективом медиков. Для каждой обнаруженной альтерации проводится проверка, является ли она связанной с исследуемыми особенностями фенотипа. Потенциально связанные альтерации отправляются на ко-сегрегационный анализ.
Формирование отчета: каждый отдельный случай проходит несколько уровней медицинской проверки, и только после последней из них формируется отчет. Каждый отчет является специфическим для пробанда (человека, генетика которого исследуется) и включает проверку и анализ в том числе литературных данных. Подготовка отчета может длиться от нескольких дней до нескольких недель в зависимости от сложности исследования.
Доступные варианты секвенирования экзома:
Первый уровень (Клиническое секвенирования): Анализ примерно 4 800 клинически охарактеризованных генов. Полное секвенирование экзома пробанда. Проведение ко-сегрегационного анализа семьи для всех положительных или неоднозначных результатов.
Второй уровень (Полное секвенирование экзома): Анализ всех предоставленных генов с целью проведения поиска новых генов (порядка 20 000 генов по всей базе NCBI RefSeq). Полное секвенирование экзома семейного трио. Семейный ко-сегрегационный анализ для обнаруженных позитивных или неоднозначных результатов. Обязательное требование: минимум три образца от членов семьи. Тестирование на образцах эмбрионов не проводится.
Какие данные входят в отчет?
Общие результаты: положительный, предположительно положительный, отрицательный, неоднозначный.
Первичные сведения могут ограничиваться информацией, напрямую связанной с фенотипом. Это помогает выделить наиболее полезную для диагностики болезни информацию. Дополнительные сведения чаще содержат более подробные данные, относящиеся к экзому в целом, безотносительно связи с фенотипом.
Дополнительные сведения: Они варьируются в зависимости от предпочтений и возраста пациента. Данный отчет обсуждается отдельно. В дополнительные сведения попадают только установленные патогенетические или предположительно патогенетические альтерации. О клинически незначимых и доброкачественных альтерациях не сообщается. Дополнительные сведения передаются только пробанду. Прочие члены семьи не получают отчета с дополнительной информацией, однако носительство может быть предположено на основании результатов пробанда.
Когда следует заказывать таргетное секвенирование (целевая панель генов) вместо полного сквенирования экзома?
Перед тем, как начать клиническое секвенирования экзома, важно определить возможность использования таргетных панелей, которые разработаны в отношении некоторой группы заболеваний, например, аутизм, задержка психического развития и пр. К примеру, если в истории семьи обнаруживаются признаки одного или нескольких различных наследственных опухолевых заболеваний, то семья вполне может быть носителем опухолевого наследственного заболевания.
В таком случае более эффективным подходом может оказаться первоначальная проверка при помощи таргетных панелей нового поколения, таких как CancerNext, с целью добиться полного покрытия задействованных генов, поскольку такая проверка позволяет получить в том числе полностью отрицательный результат и исключить наличие мутаций в основных опухолевых генах.
Можно ли комбинировать секвенирование экзома с проведением иных генетических тестов (к примеру, хромосомным микроматричным анализом) в рамках одного заказа?
Мы рекомендуем вначале делать хромосомный микроматричный анализ, а затем выполнять секвенирование экзома.
Что необходимо предоставить для клинического секвенирование экзома?
Для выполнения секвенирования экзома необходимы:
Принимаются ли для тестирования материалы только пробанда, когда образцы родителей или иных родственников первой степени предоставить невозможно (к примеру, для приемных детей)?
Если для тестирования предоставляются только образцы пробанда либо предоставляется менее трех образцов от родственников первой степени, то можно заказать лишь проведение тестирования первого уровня (FTE).
Есть ли у клинического секвенирования экзома технические ограничения?
Да, ограничения существуют.
Можно ли сделать повторный анализ данных, полученных при секвенировании?
Да, мы предоставляем такую возможность.
Повторный анализ данных без взимания дополнительной платы возможен в течение двух лет после получения образцов.
Можно ли провести полное секвенирование экзома для эмбриональных образцов?
Эмбриональные образцы принимаются только в случае гибели плода. Для эмбриональных образцов доступно тестирование первого уровня (FTE).
Если вариант ДНК был пересмотрен и классифицирован иначе, получит ли врач уведомление об этом, чтобы сообщить обновленную информацию своему пациенту?
Секвенирование экзома в нашей лаборатории предполагает повторную классификацию вариантов. Получение дополнительной информации основанной на больших популяционных исследованиях помогает облегчить интерпретацию и уточнить диагноз. Наша лаборатория, как и все научное сообщество вовлечены в активную работу с целью лучшего понимания человеческого генома. Интерпретации и методы постоянно совершенствуются.
Проверяются ли новые гены?
Новые гены анализируются при условии выбора DES тестирования (клиническая диагностика экзома). Под новыми генами подразумеваются альтерации в генах, которые ранее не связывались с болезнями. В связи со сложностью анализа новых генов, клиническая диагностика экзома (DES) требует больше времени для выполнения заказа по сравнению с тестированием первого уровня экзома (FTE).
Если альтерации в новых генах уже обнаружены и описаны, все усилия направляются на изучение гена, включая координационные исследования и функциональные исследования с группами исследователей, изучающих ген, при наличии таковой возможности.
Предоставляет ли лаборатория полный список вариантов по пациенту?
Да, список предоставляется.
Примечание: не все альтерации из списка вариантов проходят подтверждение другими методами, и потому эти данные должны использоваться лишь в исследовательских целях.
Включает ли проводимое тестирование секвенирование митохондриального генома?
Если было обнаружено, что пациент является носителем мутации (или мутаций), можно ли протестировать членов его семьи?
Да, для членов семьи пациента можно провести односайтовый анализ альтераций, классифицированных как причины болезни.
Родственники первой степени и прочие родственники с тем же фенотипом проверяются в рамках ко-сегрегационного анализа, если соответствующие образцы были получены вместе с образцами пробанда для тестирования.
Биоинформатический анализ экспертного уровня:
Возможен анализ данных, предоставляемых заказчиком. Для уточнения информации свяжитесь с врачом-генетиком.
Биоинформационный анализ включает: