что такое сду на истребителе

Что такое сду на истребителе

что такое сду на истребителе. Смотреть фото что такое сду на истребителе. Смотреть картинку что такое сду на истребителе. Картинка про что такое сду на истребителе. Фото что такое сду на истребителе

Прочитав статью Цифровые самолеты, решил написать свой небольшой обзор отечественной разработки — Системы дистанционного управления СДУ-10МК.

С 2007 по 2009 гг я работал на приборостроительном предприятии (Элара, Чебоксары) ведущим инженером по этому изделию. Пишу в большей степени по памяти, так как в данный момент работаю в другом месте и доступа к технической документации не имею. Остался лишь конспект.

Изделие не секретное.

СДУ-10МК (СДУ-10МК сер. 2) — 4-х кратно дублированная аналого-цифровая система управления самолетом в продольном, поперечном и путевом каналах. Система заменяет механическую проводку управления. Эта система устанавливается на самолеты СУ-30МК… (В основном для ВВС Индии)

что такое сду на истребителе. Смотреть фото что такое сду на истребителе. Смотреть картинку что такое сду на истребителе. Картинка про что такое сду на истребителе. Фото что такое сду на истребителе

* 2 сдвоенных блока питания. Энергоснабжение СДУ осуществляется от двух независимых источников постоянного тока с номиналом напряжения 27В, работающих в буфере с аккумуляторными батареями, и двух независимых источников переменного трёхфазного тока напряжением 115В частотой 400Гц. Выдерживает кратковременные скачки напряжения по постоянному току до 50 вольт. СДУ — жизнеобеспечивающая система. Самолет просто упадет если СДУ откажет
* Вычислители. Объединены в несколько блоков и шкаф. В общей сложности, состоят из 60 модулей (читай — печатных плат). Производят обработку сигналов от датчиков и выдают исполнительные сигналы на рулевые машины. Вычислители работают одновременно и формируют средние результирующие сигналы. Система продолжает работать при двух независимых отказах в разных каналах вычислителей. То есть при отказе в одном из вычислителей его выходные сигналы начинают отличаться от сигналов других вычислителей. При превышении (принижении) заданного порога, вычислитель отключается и выдается сигнал в речевой информатор и на пульт управления. Его можно попробовать перезапустить с пульта управления. При нескольких отказах сигналы сравнивать становится не с чем и система переходит в режим жесткой связи (В этом режиме управлять истребителем практически невозможно, так как он имеет несбалансированную аэродинамическую схему и его постоянно уводит). Ни одной катастрофы, связанной с отказом СДУ-10МК не было. Авария вроде была одна.
* Датчики. Преобразуют различные физические параметры полета в электрические сигналы. Датчики в СДУ полностью независимы от других систем. То есть, например, у навигационного комплекса (ПНК) и у СДУ есть аналогичные по функционалу датчики. Все датчики 4-х кратно дублированы. СДУ «снимает» следующие параметры полета:
— Давление статическое и динамическое (ДАД, ДДД — датчик абсолютного давления, датчик дифференциального давления) для измерения скорости и высоты полета. Эти параметры необходимо знать, так как на разных высотах разная плотность воздуха, а на разных скоростях разное сопротивление
— Угловые скорости (ДУС, БДГ — датчик угловых скоростей, блок датчиков гироскопических). Требуется для определения угловой скорости вращения вокруг своих осей. СДУ моментально возвращает самолет в исходное положение при любых отклонениях планера
— Положение ручки управления и педали (ДПР — датчик положения резервированный). Эти датчики преобразуют в электрический сигнал положение ручки управления в двух плоскостях (крен, тангаж) и педали (курс)
* Пульты. ПП, ПУ — пульт проверки, пульт управления. Предназначены для выполнения проверки работоспособности СДУ и управления СДУ во время работы а также для контроля работоспособности и перезапуска системы во время полета
* Рулевые машины. Предназначены для преобразования электрических сигналов СДУ в механические. Механические сигналы предварительно усиливаются гидравлическими машинами которые в состав СДУ не входят

что такое сду на истребителе. Смотреть фото что такое сду на истребителе. Смотреть картинку что такое сду на истребителе. Картинка про что такое сду на истребителе. Фото что такое сду на истребителе

СДУ работает в нескольких режимах: взлет-посадка, полет, дозаправка. Режимы отличаются в основном передаточными коэффициентами и функционированием отдельных отклоняемых поверхностей. Например, в режиме «дозаправка» самолет движется намного плавнее, чем в режиме «полет». Во время полета система постоянно анализирует положение самолета в пространстве, скорость и направление полета и управляет флаперонами, носками, передним горизонтальным оперением, рулями направления и высоты а также углом отклонения сопел в вертикальной плоскости.

В системе имеются ограничители предельных режимов не позволяющие летчику вывести самолет за пределы его возможностей. При приближении к предельным режимам ручка летчика начинает мощно дрожать, так, словно самолет сейчас развалится, хотя на самом деле это имитация.

Технологии производства и контроль качества

Система выполнена полностью на отечественной элементной базе. Предприятие-изготовитель имеет собственные механические цеха, цех по производству печатных плат, цех микроэлектроники. Система не герметичная. Все печатные платы имеют влагозащитное покрытие в виде 3-х слоев лака. Особо чувствительные платы покрывают компаундом. Несущие конструкции изготавливаются на станках с ЧПУ.

Качество контролируется на всех этапах производства самими цехами, ОТК и военным представительством. Протокол испытаний изделия соизмерим с 96 листовым журналом. После изготовления систему испытывают примерно 2 недели.

На 3 рисунке — Блок питания БП-58 из состава СДУ-10У, С (СУ-27) после испытаний на пониженной температуре. Это более старая система которая тоже до сих пор выпускается.

Источник

«Энциклопедия мирового вооружения»

Содержание

Система дистанционного управления СДУ

СДУ-10МК (СДУ-10МК сер. 2) — 4-х кратно дублированная аналого-цифровая система управления самолетом в продольном, поперечном и путевом каналах. Система заменяет механическую проводку управления. Эта система устанавливается на самолеты СУ-30МК… (В основном для ВВС Индии)

Состав изделия

* 2 сдвоенных блока питания. Энергоснабжение СДУ осуществляется от двух независимых источников постоянного тока с номиналом напряжения 27В, работающих в буфере с аккумуляторными батареями, и двух независимых источников переменного трёхфазного тока напряжением 115В частотой 400Гц. Выдерживает кратковременные скачки напряжения по постоянному току до 50 вольт. СДУ — жизнеобеспечивающая система. Самолет просто упадет если СДУ откажет
* Вычислители. Объединены в несколько блоков и шкаф. В общей сложности, состоят из 60 модулей (читай — печатных плат). Производят обработку сигналов от датчиков и выдают исполнительные сигналы на рулевые машины. Вычислители работают одновременно и формируют средние результирующие сигналы. Система продолжает работать при двух независимых отказах в разных каналах вычислителей. То есть при отказе в одном из вычислителей его выходные сигналы начинают отличаться от сигналов других вычислителей. При превышении (принижении) заданного порога, вычислитель отключается и выдается сигнал в речевой информатор и на пульт управления. Его можно попробовать перезапустить с пульта управления. При нескольких отказах сигналы сравнивать становится не с чем и система переходит в режим жесткой связи (В этом режиме управлять истребителем практически невозможно, так как он имеет несбалансированную аэродинамическую схему и его постоянно уводит). Ни одной катастрофы, связанной с отказом СДУ-10МК не было. Авария вроде была одна.
* Датчики. Преобразуют различные физические параметры полета в электрические сигналы. Датчики в СДУ полностью независимы от других систем. То есть, например, у навигационного комплекса (ПНК) и у СДУ есть аналогичные по функционалу датчики. Все датчики 4-х кратно дублированы. СДУ «снимает» следующие параметры полета:
— Давление статическое и динамическое (ДАД, ДДД — датчик абсолютного давления, датчик дифференциального давления) для измерения скорости и высоты полета. Эти параметры необходимо знать, так как на разных высотах разная плотность воздуха, а на разных скоростях разное сопротивление
— Угловые скорости (ДУС, БДГ — датчик угловых скоростей, блок датчиков гироскопических). Требуется для определения угловой скорости вращения вокруг своих осей. СДУ моментально возвращает самолет в исходное положение при любых отклонениях планера
— Положение ручки управления и педали (ДПР — датчик положения резервированный). Эти датчики преобразуют в электрический сигнал положение ручки управления в двух плоскостях (крен, тангаж) и педали (курс)
* Пульты. ПП, ПУ — пульт проверки, пульт управления. Предназначены для выполнения проверки работоспособности СДУ и управления СДУ во время работы а также для контроля работоспособности и перезапуска системы во время полета
* Рулевые машины. Предназначены для преобразования электрических сигналов СДУ в механические. Механические сигналы предварительно усиливаются гидравлическими машинами которые в состав СДУ не входят.

Режимы работы

СДУ работает в нескольких режимах: взлет-посадка, полет, дозаправка. Режимы отличаются в основном передаточными коэффициентами и функционированием отдельных отклоняемых поверхностей. Например, в режиме «дозаправка» самолет движется намного плавнее, чем в режиме «полет». Во время полета система постоянно анализирует положение самолета в пространстве, скорость и направление полета и управляет флаперонами, носками, передним горизонтальным оперением, рулями направления и высоты а также углом отклонения сопел в вертикальной плоскости.

В системе имеются ограничители предельных режимов не позволяющие летчику вывести самолет за пределы его возможностей. При приближении к предельным режимам ручка летчика начинает мощно дрожать, так, словно самолет сейчас развалится, хотя на самом деле это имитация.

Технологии производства и контроль качества

Система выполнена полностью на отечественной элементной базе. Предприятие-изготовитель имеет собственные механические цеха, цех по производству печатных плат, цех микроэлектроники. Система не герметичная. Все печатные платы имеют влагозащитное покрытие в виде 3-х слоев лака. Особо чувствительные платы покрывают компаундом. Несущие конструкции изготавливаются на станках с ЧПУ.

Качество контролируется на всех этапах производства самими цехами, ОТК и военным представительством. Протокол испытаний изделия соизмерим с 96 листовым журналом. После изготовления систему испытывают примерно 2 недели.

Остальное

Источник

Электрическая система дистанционного управления без резервной механической системы

Переход на “чисто” электрическое дистанционное управление (без механической проводки управления) стал возможным благодаря достижению высокого уровня надежности электрических систем, соизмеримого с уровнем надежности механической системы управления. На основе применения совершенной элементной базы, эффективных методов резервирования, глубокого контроля состояния системы, надежного электропитания можно обеспечить сохранение работоспособности СДУ при практически любых возможных отказах ее элементов и взаимодействующих подсистем.

Как уже упоминалось, основное достоинство СДУ состоит в том, что она позволяет достаточно легко сформировать любой закон управления и при необходимости его модифицировать без существенных материальных затрат. Например, известно, что летчик управляет самолетом в соответствии с общепринятой техникой пилотирования, основанной на устойчивом объекте пилотирования. Этот стереотип должен быть сохранен и при неустойчивом объекте. Это позволяет сделать автоматическая система, которая с учетом команд летчика формирует нужный сигнал управления самолетом.

Следует отметить, что как и при механической системе управления (МСУ) с устройствами автоматизации, так и при СДУ на неустойчивом самолете команда летчика подвергается существенней коррекции с учетом характеристик самолета. Эта операция может быть проще решена в рамках СДУ, чем в МСУ, посколько в последней необходимо механическое суммирование сигналов летчика и исполнительных устройств автоматики.

На основе СДУ (без механической системы) могут быть получены следующие преимущества:

—улучшены динамические характеристики системы управления благодаря исключению механической проводки большой протяженности, как несовершенного средства передачи сигналов управления (люфты, трение, упругость, инерционность);

—улучшены характеристики управляемости по усилиям вследствие существенного уменьшения сил трения в системе. Уровень усилий в СДУ без механической системы позволяет применить в качестве рычагов управления боковые ручки или другие небольшие рычаги управления, что практически невозможно сделать при наличии резервного механического управления;

—существенно может быть расширен диапазон режимов полета, который ограничивался возможностями МСУ в обеспечении характеристик управляемости (например, при неустойчивом самолете);

—при переходе к аэродинамически неустойчивым компоновкам или компоновкам с малыми запасами устойчивости (т£*

0) может быть получен выигрыш в весе конструкции самолета;

—СДУ является хорошей основой для комплексирования автоматических систем, для осуществления требуемой координации в

www. vokb-la. spb. ru — Самолёт своими руками?!

отклонении имеющихся на самолете органов управления с целью получения максимального эффекта при управлении самолетом (например, для управления вертикальной и боковой силами), для проведения реконфигурации системы управления в случае отказов части поверхностей управления, направленной на сохранение требуемого уровня характеристик управляемости в условиях отказов, и т. д.

Первые СДУ были аналоговыми (АСДУ). По мере развития цифровой техники аналоговые системы все больше вытесняются цифровыми (ЦСДУ), которые имеют более широкие возможности в решении задач, связанных с пилотированием самолета, в реализации сложных законов управления, в осуществлении многорежимного управления (изменение форм движения простым нажатием кнопки), в обеспечении более высокой точности пилотирования, в более глубокой’ и эффективней организации контроля системы и обмена данными и

Однако слаботочные электронные системы, выполняющие важные с точки зрения безопасности полета функции, к которым как раз и относится СДУ, потребовали поиска путей обеспечения их высокой надежности при различных видах отказов каналов. Практика показала, что в таких системах возможны так называемые отказы общего типа (множественные или лавинные отказы), которые обычно не обнаруживаются системой контроля. Их возникновение во многом связано с наличием скрытых общих точек между каналами на различных уровнях (датчики, вычислители, системы контроля, системы питания и т. д.), а также их чувствительность к внешним и локальным электромагнитным воздействиям.

Эти особенности в известной мере сдерживали внедрение на пассажирских самолетах “чисто” электрической дистанционной системы. В связи с внедрением цифровой техники в системы управления добавились еще проблемы, специфичные для таких систем. Как известно, надежность цифровых систем определяется как аппаратурной надежностью, так и надежностью программного обеспечения (ПО). При этом для создания надежных средств ПО требуются не меньшие усилия и материальные з’атраты, чем при

обеспечении аппаратурной надежности. В связи с этим при применении цифровых систем управления часто для повышения надежности управления используют прямые методы резервирования как программного обеспечения, так и всей цифровой системы (например, использование аналогового резерва). Такие меры осуществлены, например, на самолетах А320, Ту-204.

Подверженность СДУ, в силу своей природы, электромагнитным воздействиям требует принятия специальных мер по их защите. Эффективность этих мер должна быть подтверждена на специальных установках, воспроизводящих возможные электромагнитные воздействия. К сожалению, эти испытания практически должны проводиться уже на самолете с установленным оборудованием, когда внесение изменений в конструкцию в случае неблагоприятных результатов испытаний может быть связано с большими сложностями.

Поэтому в последнее время приобретают все большую актуальность работы по созданию электронных систем с повышенной помехозащищенностью. В частности, к таким системам, как указывалось ранее, относятся СДУ на основе волоконно-оптических линий связи. Через эта связи производится обмен данными между различным оборудованием расположенным в различных местах самолета.

Для обеспечения требований к надежности управления и безопасности полета СДУ без резервной механической системы должна иметь 3-х—4-х кратный уровень резервирования, при котором сохраняется работоспособность системы, как минимум, после двух последовательных отказов ее каналов.

Для обеспечения безопасности полета, особенно на этапе отработки сложных цифровых СДУ (имеющих ограниченные ресурсы по быстродействию вычислителей и программному обеспечению) бывает оправданным применение совместно с ЦСДУ автономной резервной аналоговой СДУ, имеющей свои датчики, вычислители и линии связи. Подключение аналоговой СДУ к рулевым приводам в случае отказа ЦСДУ осуществляется через БУКи приводов.

Учитывая, что надежная работа ЦСДУ непосредственно зависит прежде всего от надежности систем электро-гидропитания и системы воздушных сигналов (СВС),эти взаимодействующие с ЦСДУ системы должны иметь также соответствующий уровень резерви­рования, обеспечивающий сохранение работоспособности ЦСДУ при

указанном числе отказов. Принципы построения надежней системы энергопитания ЦСДУ рассмотрены в разделе 7.3.

Источник

Что такое сду на истребителе

Обзор развития систем управления

что такое сду на истребителе. Смотреть фото что такое сду на истребителе. Смотреть картинку что такое сду на истребителе. Картинка про что такое сду на истребителе. Фото что такое сду на истребителе

В начале развития авиации системы управления летательных аппаратов (ЛA) представляли собой простые механические устройства, соединяющие рычаги управления с управляющими поверхностями.

Однако вскоре возникли идеи об облегчении работы пилота, воплощением которых стал автопилот. Автопилот на самолете с помощью рулевых машин (РМ) перемещает рычаги управления «вместо» пилота (это называется параллельным включением РМ). При включенном автопилоте пилот может управлять самолетом только с помощью миниатюрных ручек-верньеров на пульте управления автопилота.

Системы дистанционного управления самолетов и вертолетов
что такое сду на истребителе. Смотреть фото что такое сду на истребителе. Смотреть картинку что такое сду на истребителе. Картинка про что такое сду на истребителе. Фото что такое сду на истребителе

С увеличением полетного веса и скорости полета стали сильно возрастать усилия, потребные для перемещения рулен самолета. Это привело к созданию гидроусилителей – устройств, с помощью которых пилот управляет машиной, перемещая только входной элемент с очень малым усилием, а усилия на рулях воспринимаются силовой частью. Для питания силовой части применяются гидросистемы с высоким давлением рабочей жидкости. В тех случаях, когда управление самолетом невозможно без гидроусилителей, требуется резервирование (обычно дублирование) гидросистем и гидроусилителей.

Аналогичный путь развития прошли и системы управления вертолетов. Усилия на рычагах управления вертолетов с полетным весом выше 3000 кг стали такими большими, что полет без гидроусилителей стал невозможен.

С появлением реактивной авиации выяснилось, что некоторые самолеты имеют недостаточное демпфирование по рысканию. Так появились демпферы автоматические системы, отклоняющие путевое управление пропорционально угловой скорости рыскания, что придаст самолету увеличенное (искусственное) демпфирование. РМ демпфера рыскания встраивается в управление как «раздвижная тяга» (это называется последовательным включением РМ). При таком включении РМ должна иметь ограниченный ход (примерно 10…20% от полного хода управления) с тем, чтобы обеспечить возможность ручного управления при отказе демпфера, а также уменьшить «рывок» управления при резком уходе РМ на упор. Демпферы рыскания впервые появились на тяжелых самолетах с гидроусилителями в системе управления. Поэтому последовательные РМ выполнялись в виде маломощных электромеханических «раздвижных тяг», воздействующих не на рули непосредственно, а на входной элемент гидроусилителя.

Вертолеты появились позже самолетов. и поэтому на них автоматизация управления происходила с учетом самолетного опыта. Выяснилось, что вертолет прежде всего нуждается в увеличении демпфирования но тангажу,++ по крену, а также и по рысканию. Первыми практически использовавшимися автоматическими системами для вертолетов (если не считать первых неудачных автопилотов с параллельными РМ) явились демпферы тангажа, крена и рыскания с параллельными РМ. Следующим шагом было создание вертолетных автопилотов с последовательными РМ, которые давали не только увеличение демпфирования вертолета по трем осям, но и стабилизацию заданных углов тангажа, крена и курса. В частности, таким явился первый серийный автопилот АП-34Б для вертолета Ми- 8.

Такой автопилот с одними только последовательными РМ имеет недостаток: пилот должен вмешиваться в управление при уходе РМ на упор и постоянно заботиться о центрировании РМ. При дальнейшем развитии вертолетных автопилотов вместе с последовательными РМ стали применяться и параллельные в виде триммерных электромеханизмов. Они перемещают рычаги управления, освобожденные нилотом, в пределах полного хода, но через загрузочную пружину и с малой скоростью (полный ход управления за 15…20 с). Это даст возможность нилоту вмешиваться в управление без каких-либо предварительных действий при необходимости изменения траектории полета, а также для парирования отказа автопилота или параллельной РМ. Последовательные РМ стали выполняться дублированными для повышения надежности и безопасности при отказе.

Параллельно развивались системы управления самолетов. На истребителях с широким диапазоном скоростей и высот полета появились демпферы не только но рысканию, но и по тангажу и крену. Возникла необходимость улучшить управляемость самолета на различных режимах полета. Поэтому демпферы стали «обрастать» дополнительными функциями: в них стали использоваться сигналы перегрузки, угла атаки и др. Эти системы стали называться «автоматами устойчивости» или «системами улучшения устойчивости» (СУУ). При применении на самолетах гидроусилителей стало необходимо создавать искусственные усилия на рычагах управления, зависящие от скорости полета, перегрузки и др. Для этого применяются специальные РМ. создающие усилия на рычагах управления.

Кроме СУУ на самолетах всегда имеются автопилоты с параллельными РМ, служащие для стабилизации режима полета, наведения при стрельбе или при заходе на посадку и т.п.

Таким образом, к настоящему времени системы управления самолетов и вертолетов перестали быть простыми механическими устройствами и превратились в сложные комплексы механических, гидравлических и электрических систем, обеспечивающих кроме ручного управления ЛA еще и выполнение функций улучшения устойчивости и управляемости, стабилизации режима полета и управления траекторным движением ЛА.

Система управления современного вертолета кроме механической проводки включает в себя гидроусилители, гидросистемы, последовательные и параллельные РМ автопилота. Еще более сложна система управления самолета, в которой, кроме того, имеются устройства для искусственного создания усилий на рычагах управления. В ряде случаев на самолете имеются также такие специфические устройства управления как система предотвращения флаттера и т.п.

Системы дистанционного управления (СДУ) для самолетов

Крайняя и все возрастающая сложность систем управления самолетов уже приводила конструкторов к мысли об их замене единой системой, в которой сложные связи между рычагами управления, датчиками и между управляющими поверхностями формировались бы электрическим путем, а исполнительными устройствами были бы электрогидравлические агрегаты управления. Уже в конце 1960-х гг. в ряде стран появились экспериментальные самолеты с такой полностью электрической системой дистанционного управления (СДУ).

В этой связи оказалось проще и надежнее придать СУУ и более простые функции обычного ручного управления. исключив механическую проводку управления полностью.

Первыми серийными самолетами с СДУ стали истребители Су-27 в Советском Союзе и F-16 в США. На них используется 4-кратно резервированная аналоговая СДУ (на Су-27 – в канале тангажа, на F-16 в каналах тангажа, крена и рыскания).

Одновременно похожее развитие имели и системы управления для пассажирских самолетов. Еще на англо-французском самолете Concorde была применена дублированная аналоговая СДУ с резервной механической проводкой управления. В дальнейшем дублированная цифровая СДУ с механическим резервом была успешно применена на аэробусах А-320/330/340. Аналогичная по концепции СДУ применена и на российских самолетах Ил-96 и Ту-204.

СДУ с резервной механической проводкой управления были также применены на истребителях F-18 (США). SAAB JA37 Viggen (Швеция) и на военно-транспортных самолетах С-5А и С-17 (США). Пассажирский самолет последнего поколения Boeing 111 имеет цифровую многократно резервированную СДУ без резервной механической проводки управления.

Применение техники СДУ открыло новые возможности для совершенствования самолетов. Возникла так называемая концепция CCV (Control Configured Vehicles) – J1A, конфигурация которых определяется системой управления. Помимо улучшения устойчивости и управляемости стало возможным сравнительно просто вводить в СДУ дополнительные функции управления: уменьшение перегрузок при полете в турбулентной атмосфере, уменьшение нагрузок при маневре, предотвращение флаттера, предотвращение выхода на опасные режимы полета и др. Для маневренных самолетов появилась возможность непосредственного управления подъемной силой, боковой силой, благодаря чему самолет может выполнять маневры, ранее немыслимые: прямолинейный полет с различными углами тангажа и скольжения.

Применение СДУ позволило также сделать для пилота более комфортное управление: на самолетах F-16 и А-320/330/340 вместо обычных ручки управления и штурвала применена более удобная миниатюрная боковая ручка управления.

что такое сду на истребителе. Смотреть фото что такое сду на истребителе. Смотреть картинку что такое сду на истребителе. Картинка про что такое сду на истребителе. Фото что такое сду на истребителе
СДУ для вертолетов

Сложность системы управления вертолетом, особенно двухвинтовой схемы, побудила еще в 70-х гг. применить СДУ на экспериментальном тяжелом вертолете HLN фирмы Boeing Vertol (США). Этот специализированный двухвинтовой продольной схемы вертолет-кран должен был перевозить контейнеры весом 20 т с корабля на берег и обратно, причем требовалась очень высокая точность стабилизации вертолета в точке виссния над кораблем и простота управления при маневрировании на висении (вертолет при этом пилотирует оператор, находящийся в нижней кабине лицом назад). Все эти требования могли быть выполнены только с помощью СДУ, которая и была разработана. Была применена 4-кратно резервированная аналоговая СДУ по 4 каналам управления: продольное, поперечное, путевое и общий шаг. Вертолет HLN не был запущен в серию, однако СДУ для него была полностью отлажена и прошла летные испытания на вертолете – летающей лаборатории (JU1) СН-47 Chinook.

что такое сду на истребителе. Смотреть фото что такое сду на истребителе. Смотреть картинку что такое сду на истребителе. Картинка про что такое сду на истребителе. Фото что такое сду на истребителе

Затем интерес к СДУ для вертолетов возник вновь в 80-х гг. в связи с повышенными требованиями к устойчивости и управляемости боевых вертолетов. Эксперименты с СДУ проводились на вертолетах-ЛЛ во Франции, в Англии и в США. Дальнейший импульс развитие СДУ получило после объявления Армией США конкурса на легкий разведывательный вертолет LHX. В него включились две группы фирм: Sikorsky/Boeing и McDonnell Douglas/Bell. Требования, выставленные военными (Документ ADS-33), были достаточно жесткими.

Пример 1. Вертолет должен иметь различные типы управляемости на разных режимах полета: в поступательном полете отклонение ручки управления должно вызывать пропорциональную отклонению угловую скорость (тангажа или крена), а в сложных метеоусловиях должна обеспечиваться стабилизация места висения.

Пример 2. Быстрый разворот на висении: при включенной стабилизации места и высоты висения выполнить разворот на 180° за время не более 5 с при ветре не менее 10 м/с с освобожденным управлением циклическим и общим шагом. При этом должны выдерживаться точности: конечный курс ±2°, высота ±1 м, место висения – внутри круга диаметром 3 м.

Очевидно, что выполнение таких требований немыслимо без применения СДУ. Обе группы фирм предусмотрели установку СДУ на своих конкурсных вертолетах. СДУ были уже не аналоговыми, а цифровыми. Фирмы Sikorsky/Boeing разработали СДУ под названием ADOCS, в которой передача сигналов от рычагов управления на вычислители и на рулевые приводы осуществлялась по оптоволоконным линиям для большей помехозащищенности. Была применена боковая ручка управления. Система ADOCS была отработана и испытана на вертолете-ЛЛ Sikorsky UH-60. Фирмы McDonnell Douglas/Bell также разработали СДУ и испытали ее на вертолете-ЛЛ АН-64.

Другое направление развития СДУ для вертолетов открылось в связи с разработкой фирмами Bell Boeing вертолета-самолета с поворотными винтами V-22 Osprey. При испытаниях предшествовавшего ему экспериментального ЛА XV-15 выяснилось, что механическая система управления на такого рода ЛА вообще неприменима ввиду ее крайней сложности, связанной с изменением принципов управления при повороте винтов. Для V-22 была разработана цифровая СДУ.

Конкурс на вертолет LHX выиграли фирмы Sikorsky/Boeing, результатом явился разведывательно-боевой вертолет RAH-66A Comanche, запуск которого в серию отложен на начало 2000-х гг. в связи с изменением финансирования конгрессом. Опытный вертолет на настоящее время все же прошел некоторый цикл испытаний.

СДУ позволяет упростить конструкцию системы управления и связи ее с системами автоматического управления (пилотирования). Но главное – она дает возможность применения более гибких законов управления, обеспечивающих оптимальные устойчивость, управляемость и маневренность вертолета на всех режимах полета. Все это и определило ее выбор при разработке нового транспортного вертолета NH-90, совместного производства фирм Eurocoptcr (Франция и Германия), Agusta (Италия) и Fokker (Нидерланды). В частности, на NH-90 предусмотрена система подавления вибраций с помощью управления несущим винтом по высшим гармоникам через СДУ.

КаналВисение и малые скоростиПоступательный полет
ПродольныйКоманда по углу тангажа/Команда по углу тангажа/
стабилизация постулат, скоростистабилизация воздушной скорости
ПоперечныйКоманда по углу крена/стабилизацияКоманда по угловой скорости крена/
поступательной скоростистабилизация угла крена
ПутевойКоманда по угловой скорости рыскания/стаб. угла курсаКоординированный разворот
ВысотаКоманда по вертикальнойКоманда по вертикальной скорости/
скорости/стабилизация высотыстабилизация высоты

Основы построения СДУ для современных самолетов и вертолетов

Дадим неполный перечень современных ЛА. имеющих СДУ:

Серийные истребители: Су-27, F-16, F-18, JA37 и их модификации.

Серийные транспортные самолеты: С-5 А. С-17.

Серийные магистральные пассажирские самолеты: А-320 330/340, Boeing 777.

Опытные истребители: F-22, Rafalle, Eurofighter, некоторые опытные Миг и Су.

Опытные вертолеты: RAH-66, NH-90, V-22, Ансат(Казанский вертолетный завод).

Опытные магистральные пассажирские самолеты: Ил-96, Ту-204.

СДУ всех упомянутых ЛА можно разделить на две группы: СДУ с резервной механической проводкой и «чистые» СДУ, без механического резерва (отметим, что СДУ с механическим резервом для вертолетов практически неприменимы). Механический резерв имеют самолеты: F-18, JA37, С-5А, С-17. А-320/330/340.Ил-96Б. Ту-204.

СДУ с механическим резервом обычно имеют небольшую кратность резервирования электрической части, например, дублирование для самолетов А-320/330/340. Иногда и в этом случае применяют 4-кратное резервирование (Ил-96).

Первоначально все СДУ были аналоговыми. в настоящее время происходит переход к цифровым системам. СДУ без механического резерва всегда имеют высокую кратность резервирования. Истребители Су-27 и F-16 имеют 4-кратно резервированные аналоговые СДУ. На NH-90 применена 4-кратно резервированная цифровая СДУ. Система дистанционного управления последней разработки для вертолетов RAH-66, V-22 и для самолета F-22 имеют во всех каналах по 3 цифровых вычислителя, каждый из которых дублирован. Для повышения надежности системы каждая половина цифрового вычислителя программируется различными группами программистов.

В качестве примера принципа реализации современной СДУ рассмотрим (рис. 1) структурную схему СДУ ADOCS (но материалам доклада на 39-м Форуме Американского вертолетного общества в 1983 г.). Система имеет 3 уровня:

– аварийный, обеспечивающий непосредственную связь ручки управления с электрогидравлическими приводами (ЭГП);

– основной: управление от ручки с формированием сигналов, обеспечивающих приемлемое управление с разложением сигналов по ЭГП («развязанное» управление) и со вводом сигналов балансировочных положений рулей;

– высший: прямые и обратные связи, обеспечивающие оптимальные законы управления. Сигналы высшего уровня подаются на основной уровень через ограничители для обеспечения безопасности полета при отказе датчиков высшего уровня.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *