что такое резистор в машине
Реле, резисторы и диоды для авто,описание.
Реле, резисторы для авто,описание.
При подключении реле полярность включения катушки не имеет значения, если только нет защитного диода, соединяющего контакты катушки. Если его нет, вы можете подключать провод положительного напряжения (плюсовой) к любому из контактов катушки, а провод отрицательного к оставшемуся из них, в противном случае нужно подключать плюсовой провод к тому контакту, к которому подключен катод диода (он помечен полоской на его корпусе), а провод отрицательного напряжения (минусовой) к его аноду.
Диоды чаще всего используются для защиты реле от перегрузок возникающих в момент размыкания цепи катушки. При наличии диода ток катушки через него свободно стекает предотвращая возникновения пиков напряжения в момент размыкания и защищая таким образом контакты от искрения и другие чувствительные цепи от этих толчков.
Это свойство реле позволяет управлять такими устройствами, как фары, парковочные огни, гудки и т.п. используя слаботочные выходы сигнализаций, центральных замков или других систем. В некоторых случаях необходимо одновременно включить несколько устройств используя один выход. Тогда подключают этот выход к множеству реле которые в свою очередь одновременно замыкают и размыкают множество цепей одновременно.
Существует огромное множество задач которые требуют применения реле, далее мы рассмотрим лишь самую простую из них в качестве примера.
Смена полярности с отрицательной на положительную
Если у вас имеется отрицательный выход на каком-нибудь устройстве, таком как сигнализация или центральный замок, и вы хотите использовать его для управления устройством которое требует +12 вольт для работы (например фары или замок люка в крыше) вам потребуется подключить реле как показано ниже для смены полярности управляющего напряжения.
Смена полярности с положительной на отрицательную
Если Вам наоборт необходимо использовать положительный выход сигнализации с устройством которое требует замыкания на «землю», подключите реле следующим образом для смены полярности управляющего сигнала на отрицательную.
Резисторы
Таблица цветной кодировки резисторов
Цвет | 1-ая полоска | 2-ая полоска | 3-я полоска* | Множитель | Погрешность ± % |
Черный | 0 | 0 | 0 | 1 | |
Коричневый | 1 | 1 | 1 | 10 | ± 1% |
Красный | 2 | 2 | 2 | 100 | ± 2 % |
Оранжевый | 3 | 3 | 3 | 1000 | |
Желтый | 4 | 4 | 4 | 10,000 | |
Зеленый | 5 | 5 | 5 | 100,000 | ± 0.5 % |
Синий | 6 | 6 | 6 | 1,000,000 | ± 0.25 % |
Фиолетовый | 7 | 7 | 7 | 10,000,000 | ± 0.10 % |
Серый | 8 | 8 | 8 | 100,000,000 | ± 0.05 % |
Белый | 9 | 9 | 9 | 1,000,000,000 | |
Золотой | 0.1 | ± 5 % | |||
Серебряный | 0.01 | ± 10 % | |||
Отсутствует | ± 20 % |
* Если резистор марикирован 5 полосками, то значение до использования множителя будет 3-х значным и третью цифру надо взять из третьей колонки таблицы. Если используется только 4 полоски, то просто игнорируйте эту колонку.
Начинать изучение инсталляторского дела следует непременно с основ электроники и электротехники.
Испольуя закон Ома, легко подсчитать правильный номинал плавкого предохранителя в цепи, или подсчитать полное сопротивление нагрузки из нескольких колонок на усилитель а также многое другое.
Диоды
Ток через диод течет лишь в том случае, когда потенциал на аноде больше чем на катоде.
С другой стороны, если Вы просто соедините оба выключателся с соответствующим входом блока сигнализации, то некоторые полезные функции, такие как звуковая сигнализация открытия дверей или индикаторы открытия дверей на прибороной панели могуть пропасть или выдавать неверную информацию (например неправильно отображать, какая именно дверь открылась, одна из пассажирских или водительская).
Чтобы изолировать два и более положительных концевых выключателей дверей просто соедините их через диоды, таким образом, чтобы анод каждого диода был соединен с соответсвующим триггером, а катоды всех диодов были соединены с положительным входом блока сигнализации.
По такой-же схеме можно подключать несколько датчиков с отрицательными выходами, например несколько датчиков удара и к одному входу сигнализации.
Обычно, если не указано особо, подразумевается что используемые диоды рассчитаны на максимальный ток в 1 ампер.
Сопротивление определяет насколько большой ток может протекать через какой-либо компонент. Резисторы используются для ограничения уровней тока и напряжения. Большое сопротивление определяет что ток уменшится до малых величин, малое сопротивление, наоборот позволяет течь токам больших величин. Сопротивление обозначают R и измеряют в омах (ом.)
Мощность определяет скорость передачи или преобразования электрической энергии. Ее обозначают P и измеряют в ваттах (вт.). Мощность равна произведению значений тока и напряжения.
На диаграмме показаны соотношения этих четырех величин, следующие из закона Ома.
Что такое резистор и для чего он нужен?
При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.
Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.
Что такое резистор?
Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.
Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.
Применение
Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.
Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.
Без резисторов не работает ни один электронный прибор.
Устройство и принцип работы
Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.
Устройство таких элементов можно понять из рисунка 2 ниже.
В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.
Рис. 2. Строение резистора
Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.
Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.
Для непроволочных резисторов используются следующие резистивные материалы:
Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.
Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.
Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.
Рис. 3. Регулировочные резисторы
Рис. 4. Подстроечные резисторы
Принцип действия.
Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.
Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.
Рис. 5. Принцип работы
Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.
Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:
За видом резистивного материала классификация может быть следующей:
Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.
В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.
По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:
Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.
Номиналы резисторов
Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.
Компоненты ряда Е6 имеют допуск отклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.
Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.
Маркировка
Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).
Если на корпусе присутствует 3 кольца, то первые два обозначают величину сопротивления, третье – множитель, а допустимое отклонение составляет 20%.
Если на корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущем примере, а четвёртое кольцо указывает на величину отклонения.
Пять колец: первые 3 указывают величину сопротивления, на четвёртой позиции – множитель, а на пятой – допуск.
На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.
Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).
Рис. 9. Таблица цветов
В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.
Маркировка SMD-резисторов
Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.
Рис. 10. Цифровая маркировка
Код на рисунке расшифровывается так: номинальное сопротивление 120×10 6 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).
Обозначение на схемах
Традиционно резисторы на схемах обозначают в виде прямоугольника (по ГОСТ 2.728-74) или ломаной линии (рис. 12 — в основном на схема западного образца). В прямоугольнике иногда указывают мощность, используя для этого условные обозначения в виде вертикальных, косых или горизонтальных чёрточек (см. рисунок ниже):
Возле значка проставляют букву R и номинал резистора.
Рис. 12. Обозначение на схемах
В отличие от постоянных деталей, обозначение переменных резисторов имеет особенность: над прямоугольником добавляется стрелка, указывающая, что в конструкции детали есть скользящий контакт (бегунок).
Например, УГО потенциометра выгляди так:
Характеристики и параметры
Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.
Сопротивление высокоомных деталей составляет порядка 10 13 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.
Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 10 11 Ом.
Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.
В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 10 6 Ом.
Кроме основных характеристик иногда важно знать уровень напряжений шума, зависимость сопротивления реальных резисторов от нагревания (температурный коэффициент сопротивления) и некоторые другие.
Соединение резисторов
Сопротивления можно соединять двумя способами – параллельно либо последовательно.
Для расчета последовательно и параллельно соединенных резисторов удобно воспользоваться нашими калькуляторами:
Основы автоэлектрики. Часть2. Резисторы. Провода. Подробнее о сопротивлении
Ранее мы изучили самые базовые основы электротехники:
Основы автоэлектрики. Часть1. Основные законы
Сегодня мы поговорим о таком простом и популярном электронном компоненте как резистор, немного о проводах и о законах сопротивления.
Оглавление сегодняшнего материала:
1. Резистор постоянный.
2. Провод как резистор.
3. Последовательное включение резисторов.
4. Параллельное включение резисторов.
5. Смешанное (последовательно-параллельное) включение резисторов.
6. Преобразование «звезда-треугольник».
7. Маркировка резисторов.
Данный материал служит продолжением описания некоторой фундаментальной базы знаний по автоэлектрике. Не обязательно приведённые формулы и правила маркировки элементов автоэлектрик должен знать наизусть. Но иметь представление об этом материале, знать, где искать эту информацию и как ей правильно пользоваться, должен каждый электрик или электронщик.
1. Резистор постоянный.
Резистор постоянный — это электронный компонент с постоянным сопротивлением.
Его основными характеристиками являются:
— Номинальное значение сопротивление, Ом
— Допускаемое производителем отклонение от номинального значения, %
— Максимально допустимая мощность рассеяния (о мощности мы погорим позже), Вт
Его обозначение на схемах (условное графическое обозначение) выглядит следующим образом:
Резисторы могут иметь несколько видов корпусов:
2. Провод как резистор
Во многих идеализированных схемах провод имеет сопротивление, равное 0 Ом. На практике же это не совсем так (или даже: сосем нетак). Если постоянно принимать значение провода, равным нулю, можно попасть в очень неприятные ситуации, особенно, когда речь идёт об автоэлектрике. Дело в том, что проводник обычно подбирают таким, чтобы его значение было значительно ниже сопротивление цепи, тогда можно будет принимать значение его сопротивления, равным нулю.
Сопротивление проводника считается по формуле, которую мы изучили в прошлый раз:
, где l — длины проводника, S — площадь поперечного сечения проводника, р — удельное сопротивление.
Основные выводы из данной формулы:
— чем длиннее провод, тем выше его сопротивление.
— чем больше сечение (толще провод), тем ниже сопротивление.
Когда проводник выполняет функцию провода (кабеля, шнура), то с точки зрения электротехники работает правило «Чем меньше сопротивление, тем лучше». И идеальный провод — это проводник с сопротивлением 0 Ом. Но мы живём в реальном мире, в котором такого проводника не существует.
По этой причине провод следует рассматривать как резистор с неким сопротивлением.
О том, почему горят провода, как правильно подбирать провод и почему помогает в некоторых вопросах элементарная замена, казалось бы, целого провода или переобжимка его клемм, мы поговорим более детально дальше, когда будем касаться вопроса мощности. Но сразу скажу, что связь с сопротивлением провода тут прямая.
3. Последовательное включение резисторов
Первый из законов сопротивлений, который мы сегодня рассмотрим, связан с последовательным включением резисторов и проводов.
Последовательное включение резисторов приводит к суммированию сопротивлений.
На схеме это может выглядеть так:
Если, к примеру, мы имеем три резистора сопротивлением 10 кОм, то суммарное сопротивление всей цепи от начала до конца будет равно 30 кОм.
4. Параллельное включение резисторов
Второй закон сопротивлений связан с параллельным включением резисторов и проводов:
Общее сопротивление цепи, состоящей из параллельных резисторов, считается по формуле:
1/R = 1/R1 + 1/R2 + … + 1/RN.
Пусть мы имеем три резистора сопротивлением 3 кОм, включенных параллельно. Тогда общее сопротивление полученной цепи вычисляется по следующей формуле:
1/R = 1/R1 + 1/R2 + 1/R3
1/R = 1/3000 + 1/3000 + 1/3000 = 3/3000 = 1/1000
Откуда:
R = 1000 Ом, или же R = 1кОм.
Когда все резисторы в параллельной цепи имеют одинаковое сопротивление (т.е. R1=R2=…=RN), суммарное сопротивление высчитывается легко:
R = R1/N, где N — количество резисторов.
При параллельном включении ВСЕГДА суммарное сопротивление всей цепи ниже, чем сопротивление любого из включенного в цепь резистора. Отсюда следует вывод, что параллельное включение — это один из способов снижения суммарного сопротивления цепи. Данное применение можно увидеть в многожильном кабеле:
Следует отметить, что обламывание отдельных жил в таком кабеле приводит к увеличению сопротивления провода.
5. Смешанное (последовательно-параллельное) включение резисторов.
Если существует два изученных типа включений, то возникает вопрос, почему не может существовать смешанное включение? Ответ на вопрос очевиден: может и, более того, существует.
Представим себе одну из таких цепей, состоящей из двенадцати резисторов:
И нам необходимо понять, какое сопротивление всей цепи, если подключимся Омметром к точкам «a» и «b».
Неподготовленному зрителю картинка может показаться ужасающей. Но не всё так сложно, когда мы знаем правила параллельных и последовательных включений.
Смотрим на схему:
Первое, что следует отметить — это последовательное включение трёх резисторов: R10, R11 и R12.
Значит их суммарное сопротивление будет равно:
R’ = R10 + R11 + R13.
Эквивалентно на схеме эти три резистора можно заменить на одно с сопротивлением R’:
Далее мы видим, что R9 и R’ включены параллельно. Т.е. их суммарное сопротивление будет равно:
Далее опять можно заменить резисторы R9 и R’ на одно эквивалентное сопротивление R»:
Ну, а дальше все аналогичным образом:
Ну, и в конечном счете:
Как видно, ничего сложного в задачах подобного рода нет. Кроме того, на втором курсе университета с упоением считал настолько сложные конфигурации из решебника, даже те, что не задавались на дом=)
Это напоминает своего рода игру — лабиринт или судоку=)
6. Преобразование звезда-треугольник.
Представьте ситуацию: вы смотрите на смешанное включение резисторов, но понять как вести расчет, используя правила для последовательного и параллельного включения, вы не можете:
Тут не видно явных параллельных и последовательных включений.
В таких случаях на помощь приходит замечательный механизм преобразований «звезда-треугольник»:
Возвращаемся к нашему рисунку и мы видим, что R5, R6 и R7 образуют звезду.
Преобразовав в треугольник, мы получим следующее:
R56 = R5 + R6 + R5*R6/R7
R67 = R6 + R7 + R6*R7/R5
R75 = R7 + R5 + R7*R5/R6
Ну, а дальше схема приобретает вид, который спокойно решается правилами последовательного и параллельного включения:
R’ = 1/(1/R3 + 1/R56)
R» = 1/(1/R4 + 1/R67)
R»’ = R’ + R»
R»» = 1/(1/R75 + 1/R»’)
7. Маркировка резисторов
Решать задачи, конечно, хорошо. Кому очень хочется порешать задачи такого рода, может обратиться в любой книжный магазин и приобрести задачник по электротехнике или скачать таковой с просторов сети.
Но мы опять же с Вами возвращаемся в реальность — в наши квартиры, офисы, гаражи, где перед нами появилось устройство с резисторами. Как же определить номинал? Напомню (об этом упоминалось в прошлой части курса), что для проверки сопротивления Омметром необходимо не только обесточить цепь, но и извлечь и цепи резистор (хотя бы отпаять одну ножку). Почему необходимо извлекать резистор (лампочка накала, кстати, тоже отчасти резистор), ясно из проведённых схемных преобразований. Попытка проверить Омметром приведет к значению на неких двух точках А и В, которое нужно высчитать, зная значения всех сопротивлений цепи.
Если на выводном (т.е. с ножками) резисторе имеются буквы, то гадать долго не придётся:
12Ω, 12J, 12 — означают 12 Ом
12kΩ, 12k — означают 12 кОм
1k2Ω, 1k2 — означают 1,2 кОм
R12 — означает 0,12 Ом
И так далее.
Также для выводных резисторов характерно обозначение цветами:
Тогда читать их нужно так:
Для чип-резисторов характерно трехзначное цифровое обозначение, типа 123, 560 и так далее:
123 — это 12*10^3 Ом, т.е. 12 кОм.
560 — это 56*10^0 Ом, т.е. 56 Ом
Если на чип-резисторе 4 цифры, типа 7122, то считается это так:
7122 = 712*10^2 = 71,2 кОм
Если же маркировка на чипе буквено-цифровая (две цифры и буква или буква и две цифры), то тут всё гораздо сложнее и для получения значения потребуется воспользоваться специальными таблицами типа EIA-96).
Логике особой сходу значения не поддаются, поэтому гадать даже не пытайтесь.
К примеру,
D12 — это 300 кОм,
12D — это 130 кОм
B51 — это 1,5 кОм
51B — это 3320 Ом