что такое рельсовая пушка
Принцип действия и ограничения
Одна из проблем рельсотрона заключается в том, что для изготовления его снарядов необходим материал с максимально возможной проводимостью, т.к. для создания движущей силы по рельсам пускается очень мощный моментальный разряд тока. Если материал снаряда обладает недостаточной проводимостью, он может испариться в рельсотроне под воздействием силы тока еще до выхода из пушки.
Второй ограничитель — источник питания. В ближайшее время ВМФ США планируют провести испытания рельсотрона на базе корабля (только корабль на сегодняшний день может выдержать выстрел из этого оружия). Для залпа из современного рельсотрона требуется импульс в 25 (!) мегаватт. Один из кораблей ВМФ США, который проектировался специально с учетом возможности комплектации рельсотроном, оснащен силовыми установками на 78 мегаватт, а самым распространенным значением эл. мощности установки на корабле является цифра в 9 мегаватт. Для одного выстрела рельсотрона требуется почти 30% мощности установки спец. корабля флота. Об использовании данного типа вооружения на рядовых судах и думать не стоит.
Видео с экспериментальной установки ВМС США:
Вопрос в зал: откуда взялась огненная вспышка на выходе? 🙂
Непроводящий снаряд
Не путать с пушкой Гаусса
Так почему же такой сложный рельсотрон такой вкусный для военных?
Ученым осталось решить вопрос только с источником питания, т.к. строить корабли конкретно под «рельсу» очень затратно (энергоустановка в 70 мегаватт — это энергопотребление небольшого города). Как только будет решен вопрос питания мы сможем увидеть рельсотроны на вооружении. И как бороться с трехкилограммовой болванкой, летящей на скорости в 7 Махов и способной потопить корабль — не понятно.
Электромагнитная пушка: рельсотрон и его перспективы.
Рельсы — дорогие и уязвимые
Название «рельсотрон» в 50-е годы прошлого века придумал академик Л. Арцимович, мировой специалист в области термояда и физики высокотемпературной плазмы. Изобретенный им ускоритель плазмы был выдвинут на Нобелевскую премию, но СССР снял кандидатуру ученого с обсуждения из-за секретности разработки.
Однако не только быстрый износ рельсов мешает рельсотрону превратиться в супероружие, есть и другие препятствия. Прежде всего это источники питания. Рельсотрон требует мощной системы электропитания в виде униполярных генераторов, компульсаторов, мегаваттных конденсаторов-ионисторов. Эти устройства позволяют формировать очень мощный короткий электрический импульс, передаваемый на рельсы. В лабораторных условиях можно мириться с солидными по размеру и весу блоками аппаратуры. На флоте фактор веса и объема тоже не столь существен: у корабля вполне хватит водоизмещения, чтобы упаковать 130 т оборудования вдобавок к самим стволам пушек.
Рейлган Blitzer производства компании General Atomics (США) размещен на двух трейлерах — на одном собственно пушка, на другом — энергетическая установка. Разработка ЭМП началась в 2005 году и завершилась в 2011-м.
Для наземных же армейских рельсотронов проблема представляется более сложной. Если разместить оборудование на танковых шасси, пришлось бы вести в бой 78-тонного монстра. Выходом стало распределение установки между двумя автомобильными трейлерами (на одном сама пушка, на другом — «энергетика»), этот вариант был реализован в американской армейской пушке Blitzer. Еще один тягач с прицепом отдали станции управления. Для питания корабельных рельсотронов (на напичканных хай-теком эсминцах проекта Zumwalt их предположительно будет два) предусмотрен запас мощности судовой установки (зарезервированный только для рельсотронов) не менее 35−45 МВт. Энергии должно хватить, чтобы обеспечить разгон снаряда до 2000−2500 м/с. Тогда он, получив дульную энергию в 64 МДж, сможет улететь на расстояние до 400 км и, сохранив 20 МДж энергии, поразить цель мощным кинетическим ударом. Уже подсчитано, что попадание такого снаряда весом 18−20 кг в авианосец произведет эффект ядерного удара.
Серьезными препятствиями на пути широкого использования рейлганов являются резонансные явления в рельсовой системе и эффект расталкивания рельсов от действия сил Лоренца, электромагнитная совместимость с электронными системами пушки, необходимость охлаждения ствола и блоков электроники и др.
В процессе натурных испытаний была выявлена также необходимость в быстром перезаряжании пушки для увеличения темпа стрельбы по крайней мере до 6−10 выстрелов в минуту. В этом году работающая в кооперации с американским ВПК британская компания BAE Systems провела огневые испытания на полигоне ВМС США в штате Виргиния. Как заявляют британцы, они рассчитывают в ближайшие пару лет увеличить скорострельность своей установки до 10 выстрелов в минуту при весе снаряда 16 кг, так что эта проблема постепенно находит решение.
США с 2012 года ведет разработку унифицированного гиперзвукового снаряда HVP, сегодня он уже проходит испытания стрельбой. Унифицированный он потому, что будет использоваться не только в рельсотронах, но и в обычных корабельных пушках разных калибров, которые хотят оставить в смешанном составе с рельсотронами на эсминцах Zumwalt. Эти же боеприпасы будут применяться и в наземных пушках.
Снаряд помещается между двух токопроводящих рельсов. Арматура защищает рельсы от непосредственного соприкосновения со снарядом
Снаряды HVP планируют сделать корректируемыми в полете, для чего их оснастят модулем точного наведения, работающим с системой GPS. Американцы заявили, что у них уже имеются работоспособные электронные системы управления, выдерживающие перегрузки 30 000 — 40 000 g при разгоне, воздействие плазмы температурой 20 000 — 25 000 градусов и электромагнитные поля сверхвысокой мощности. Есть данные об успешных испытаниях подобных снарядов в 2016 году. Ожидается, что полная отработка HVP завершится к 2020 году, а в серию они будут переданы к 2025 году. Блок управления приведет к удорожанию снаряда, который и в исходном (без электроники) варианте стоит 25 тысяч долларов. Но все равно это существенно дешевле корабельных управляемых ракет ценой 0,5−1,5 млн.
Три грамма чудовищной мощи
Особенность американского подхода к разработке рельсотрона состоит в поэтапном наращивании возможностей с последовательным достижением улучшенных параметров: скорости разгона снаряда от 2000 до 3000 м/с, дальности стрельбы с 80−160 до 400−440 км, дульной энергии снаряда от 32 до 124 МДж, веса снаряда от 2−3 до 18−20 кг, скорострельности от 2−3 выстрелов в минуту до 8−12, мощности источников энергии от 15 до более чем 40−45 МВт, ресурса ствола от промежуточных 100 выстрелов к 2018 году до 1000 выстрелов к 2025 году, длины ствола от начальной 6 м до конечной 10 м.
Китай, по сообщениям прессы, находится на стадии НИР и НИЭР, которые сосредоточены в специально созданной корпорации CASIC в научном центре Ухань (WUHAN). Представители КНР заявили, что разрабатывают наземный рельсотрон наподобие американского Blitzer и обещают по проекту 055А к 2020 году создать орудие калибра 130 мм.
Статья «Магнитные войны» опубликована в журнале «Популярная механика» (№7, Июль 2017).
Как потратить полмиллиарда долларов впустую? Построить рейлган лучше, чем в Quake
Содержание
Короткий экскурс в историю
Под концепцией рельсотрона, к слову, объединены различные технологии и их комбинации: нельзя однозначно утверждать, что существует единственный способ запуска снаряда, — упоминаются семь базовых типов.
В определенный момент казалось возможным дополнительно применять твердые и жидкие виды топлива для получения более мощного импульса, а под конец Второй мировой войны в Германии предложили задействовать плазму в качестве компонента для разгона снаряда.
Во время экспериментов немецким инженерам якобы удалось запустить 10-граммовый алюминиевый цилиндр с начальной скоростью 1210 м/с.
Тогда же появился концепт аналога пушки Гаусса, однако построить его не удалось. Как выяснилось уже после войны (когда ученые провели более подробные изыскания), для запуска снарядов потребовалось бы невероятное по тем временам количество энергии. С тех пор мало что изменилось.
В 60-х годах ученые смогли сконструировать рейлган для научных целей — благо появился мощнейший униполярный генератор. Вышел массивный, потребляющий много энергии эксперимент. Военные пока оставались ни с чем.
Что касается термина «рельсотрон», то его автором называют советского физика Льва Арцимовича.
Как это работает?
На запуск легкого снаряда с высокой скоростью требуется сравнительно мало энергии, однако миниатюрные шарики диаметром в несколько миллиметров или сантиметров интересны ученым, а не военным. Может, когда придумают ручные рейлганы, такие «пули» как раз и понадобятся, но пока речь об этом не идет.
С зарядами потяжелее, обладающими необходимой для уничтожения защиты массой, начинаются проблемы, но ведь именно благодаря накопленной кинетической энергии летящая «гиря» способна нанести серьезный ущерб (или, если судить по демонстрационным роликам, сделать набор аккуратных дырок). Сейчас говорят о 15—25 МВт на установку. Это очень много — больше, чем может обеспечить средних размеров военный корабль.
Зачем военным нужен рельсотрон?
Эффективная дальность стрельбы из рейлганов, говорят реалисты, в теории может достигать 200 км, а скорость полета снаряда в 7 махов значительно затруднит защиту от него. Расчет, обслуживающий рельсотрон, находится далеко за линией фронта. Плюс высокая точность. Если цель неподвижна.
Рейлганы, лелеют надежду американские военные, смогут использоваться и в составе систем ПВО — вероятно, любой пилотируемый самолет из существующих имеет скорость ниже, чем у железной чушки, выпущенной из «оружия будущего». Впрочем, то же касается и беспилотных летательных аппаратов, а также ракет разных типов, но на сравнительно небольшой дистанции (остается вопрос точности на большом расстоянии).
Минусы рейлганов
В первую очередь — чрезвычайно высокое энергопотребление. Да, эскадренный миноносец класса Zumwalt имеет запас на 58 МВт, половину которого заберет рельсотрон, но таких кораблей мало (3 вместо 32) и вряд ли их повально будут оснащать рейлганами.
Кроме того, существующие установки имеют значительные габариты. Дальность (гипотетическая) стрельбы хоть и впечатляющая, однако траектория полета болванки не корректируется — на снаряде нельзя разместить какие-либо системы управления. По этой причине выстрел за горизонт может оказаться неточным, ведь придется учитывать больше факторов, в том числе рельеф — выстрелить по прямой не получится. Нельзя и «навесить» на болванку взрывчатое вещество для увеличения ее поражающей силы.
Но самый главный минус рейлганов — существующие прототипы способны сделать лишь пару выстрелов до выхода «ствола» из строя.
Что уже существует сегодня?
Само собой, такими пушками размером с целое здание никого не заинтересуешь. По такому поводу DARPA недавно привлекли к работам компанию Raytheon. Контракт на 10 миллиардов требует от нее создание и постройку опытного образца новой энергетической установки, способной обеспечить электропитание рельсотрона. Кроме того, задание подразумевает, что энергоустановка будет иметь размеры и массу, пригодные для размещения на кораблях. Если Raytheon удастся сделать систему, получившую название PFN (Pulse Forming Network – Сеть формирования импульса), то в перспективе ее можно будет использовать не только в паре с рейлганами, но и, например, с боевыми лазерами. На разработку и изготовление первого экземпляра PFN у Raytheon не так много времени, ведь начать испытания рельсотрона, установленного на корабль, планируется уже в 2018 году. Тем не менее, нельзя исключать изменения сроков, может быть, даже неоднократного.
К тому же времени от BAE Systems и General Atomics (эту фирму привлекли к проекту для «дублирования» работ) требуют сделать пушку с дульной энергией около 64 МДж, прицельной дальностью запуска девятикилограммового снаряда не меньше 450-500 километров и скорострельностью от 6-7 выстрелов в минуту. По понятным причинам натурные испытания на дальность пока не проводились, но расчеты показывают, что 32-мегаджоульный рельсотрон «закидывает» боеприпас в 10 кг километров на 350-400. Требований к повышению скорости снаряда пока нет: вероятно, в DARPA более приоритетными задачами считают дальность полета и вес болванки. Однако куда большие проблемы ждут разработчиков пушки в сфере «ствола». Дело в том, что огромное начальное ускорение снаряда приводит к полному износу имеющихся рельс за 8-10 выстрелов. Соответственно, помимо улучшения непосредственно боевых качеств BAE Systems и General Atomics должны будут серьезно доработать конструкцию.
Сейчас в качестве срока принятия на вооружение «Зумволта» с рельсовой артиллерией называется середина 20-х годов. Однако для этого требуется продолжение работ, а проект рельсотрона недавно оказывался под угрозой закрытия. Напомним, осенью прошлого года сенат США требовал, как минимум, сократить расходы на «футуристические» программы, а то и вовсе отказаться от них. Военным удалось сохранить в полном объеме проект по созданию рейлганов, а вот лазеру воздушного базирования (Boeing YAL) не было суждено продолжить испытания.
Гиперзвуковая электромагнитная пушка: все плюсы и минусы
Рельсы – дорогие и уязвимые
Однако не только быстрый износ рельсов мешает рельсотрону превратиться в супероружие, есть и другие препятствия. Прежде всего это источники питания. Рельсотрон требует мощной системы электропитания в виде униполярных генераторов, компульсаторов, мегаваттных конденсаторов-ионисторов. Эти устройства позволяют формировать очень мощный короткий электрический импульс, передаваемый на рельсы. В лабораторных условиях можно мириться с солидными по размеру и весу блоками аппаратуры. На флоте фактор веса и объема тоже не столь существен: у корабля вполне хватит водоизмещения, чтобы упаковать 130 т оборудования вдобавок к самим стволам пушек.
Для наземных же армейских рельсотронов проблема представляется более сложной. Если разместить оборудование на танковых шасси, пришлось бы вести в бой 78-тонного монстра. Выходом стало распределение установки между двумя автомобильными трейлерами (на одном сама пушка, на другом – «энергетика»), этот вариант был реализован в американской армейской пушке Blitzer. Еще один тягач с прицепом отдали станции управления. Для питания корабельных рельсотронов (на напичканных хай-теком эсминцах проекта Zumwalt их предположительно будет два) предусмотрен запас мощности судовой установки (зарезервированный только для рельсотронов) не менее 35–45 МВт. Энергии должно хватить, чтобы обеспечить разгон снаряда до 2000–2500 м/с. Тогда он, получив дульную энергию в 64 МДж, сможет улететь на расстояние до 400 км и, сохранив 20 МДж энергии, поразить цель мощным кинетическим ударом. Уже подсчитано, что попадание такого снаряда весом 18–20 кг в авианосец произведет эффект ядерного удара.
32 «Гольфа» по цели
Серьезными препятствиями на пути широкого использования рейлганов являются резонансные явления в рельсовой системе и эффект расталкивания рельсов от действия сил Лоренца, электромагнитная совместимость с электронными системами пушки, необходимость охлаждения ствола и блоков электроники и др.
В процессе натурных испытаний была выявлена также необходимость в быстром перезаряжании пушки для увеличения темпа стрельбы по крайней мере до 6–10 выстрелов в минуту. В этом году работающая в кооперации с американским ВПК британская компания BAE Systems провела огневые испытания на полигоне ВМС США в штате Виргиния. Как заявляют британцы, они рассчитывают в ближайшие пару лет увеличить скорострельность своей установки до 10 выстрелов в минуту при весе снаряда 16 кг, так что эта проблема постепенно находит решение.
Неубиваемая электроника
США с 2012 года ведет разработку унифицированного гиперзвукового снаряда HVP, сегодня он уже проходит испытания стрельбой. Унифицированный он потому, что будет использоваться не только в рельсотронах, но и в обычных корабельных пушках разных калибров, которые хотят оставить в смешанном составе с рельсотронами на эсминцах Zumwalt. Эти же боеприпасы будут применяться и в наземных пушках.
Снаряды HVP планируют сделать корректируемыми в полете, для чего их оснастят модулем точного наведения, работающим с системой GPS. Американцы заявили, что у них уже имеются работоспособные электронные системы управления, выдерживающие перегрузки 30 000 – 40 000 g при разгоне, воздействие плазмы температурой 20 000 – 25 000 градусов и электромагнитные поля сверхвысокой мощности. Есть данные об успешных испытаниях подобных снарядов в 2016 году. Ожидается, что полная отработка HVP завершится к 2020 году, а в серию они будут переданы к 2025 году. Блок управления приведет к удорожанию снаряда, который и в исходном (без электроники) варианте стоит 25 тысяч долларов. Но все равно это существенно дешевле корабельных управляемых ракет ценой 0,5–1,5 млн.
Три грамма чудовищной мощи
Особенность американского подхода к разработке рельсотрона состоит в поэтапном наращивании возможностей с последовательным достижением улучшенных параметров: скорости разгона снаряда от 2000 до 3000 м/с, дальности стрельбы с 80–160 до 400–440 км, дульной энергии снаряда от 32 до 124 МДж, веса снаряда от 2–3 до 18–20 кг, скорострельности от 2–3 выстрелов в минуту до 8–12, мощности источников энергии от 15 до более чем 40–45 МВт, ресурса ствола от промежуточных 100 выстрелов к 2018 году до 1000 выстрелов к 2025 году, длины ствола от начальной 6 м до конечной 10 м.
Китай, по сообщениям прессы, находится на стадии НИР и НИЭР, которые сосредоточены в специально созданной корпорации CASIC в научном центре Ухань (WUHAN). Представители КНР заявили, что разрабатывают наземный рельсотрон наподобие американского Blitzer и обещают по проекту 055А к 2022 году создать орудие калибра 130 мм.
Кстати, у нас есть канал в Telegram, где можно почитать о самых свежих и интересных новостях из мира науки и техники.