что такое реакция опоры
Как определить реакции в опорах?
Автор: Константин Вавилов · Опубликовано 03.02.2016 · Обновлено 15.05.2018
Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.
Что такое реакция опоры?
Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.
В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!
Что вы должны уже уметь?
В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.
Должны уметь находить сумму проекций сил
Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!
Должны уметь составлять сумму моментов относительно точки
Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:
На изображении показано, как определить момент силы F, относительно точки O.
Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:
Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.
Должны разбираться в основных видах опор
Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.
Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.
Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.
Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.
Примеры определения сил реакций опор
Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.
Определение реакций опор для балки
Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:
Для этой расчетной схемы, выгодно записать такое условие равновесия: То есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.
Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:
Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:
Из полученного уравнения выражаем реакцию RB.
Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:
После нахождения реакций, делаем проверку:
Определение реакций опор для балки с распределенной нагрузкой
Теперь рассмотрим балку, загруженную распределенной нагрузкой:
Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:
Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:
Определение опорных реакций для плоской рамы
Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:
Проводим ряд действий с расчетной схемой рамы:
Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:
Составив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:
Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:
И, наконец, третье уравнение, позволит найти реакцию RA:
Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.
Расчет же показал, что RA, направленна в другую сторону:
В итоге, получили следующие реакции в опорах рамы:
Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:
Как видим, расчет реакций выполнен правильно!
На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!
Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂
Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.
iSopromat.ru
Опорными называют реакции связей, возникающие в опорах под действием внешних нагрузок и удерживающие рассматриваемый элемент или конструкцию в статическом равновесии.
При расчете элементов конструкций реакции опор также выступают в качестве внешних усилий приложенных к рассматриваемому телу.
Подрообнее о реакциях в различных типах опор смотрите в нашем видео:
При этом некоторые задачи в сопромате можно решить без их определения. Это возможно в случаях, когда за расчетную схему принимается брус, закрепленный в жесткой опоре (заделке) без дополнительных опор, например, статически определимые консольные балки, стержни либо стержневые системы.
Реакции в шарнирных опорах
Реакции в шарнирных опорах могут возникать только по тем направлениям, в которых перемещение исключено:
нормально к опорной поверности и вдоль неё.
Моменты в шарнирных опорах не возникают.
Реакции в шарнирно-неподвижных опорах
В плоской шарнирно-неподвижной опоре исключены линейные перемещения во всех направлениях и возможен только поворот относительно шарнира.
Поэтому в таких опорах могут иметь место реакции, направленные нормально к поверхности и вдоль нее:
Они являются проекциями полной реакции R на вертикальную и горизонтальную оси.
Реакции в шарнирно-подвижных опорах
В шарнирно-подвижной опоре возможно поступательное перемещение вдоль одной из осей, следовательно в данном направлении реакции быть не может.
В данном случае, оставшаяся реакция по величине и направлению, будет равна полной.
Реакции в шарнире
В трехмерном шаровом шарнире аналогично, осевые проекции полной реакции R направляются вдоль всех трех осей:
При этом, в зависимости от схемы нагружения, некоторые из проекций могут быть равны нулю.
Расчет реакций в опорах
Количество и направление реакций зависит как от вида опор, так и от способа нагружения бруса и для статически определимых систем определяются из уравнений равновесия конструкции или ее элементов.
Для общего случая нагружения (пространственных систем), при котором может возникать до 6 реакций опор, требуется соответствующее количество уравнений.
Например, из условия, что заданная система относительно опор не перемещается в пространстве (вправо-влево, вверх-вниз, и вперед-назад) можем приравнять к нулю сумму проекций всех сил на оси x, y и z.
Из условия, что система не вращается, приравниваем к нулю суммы моментов всех нагрузок относительно соответствующих осей.
Совместное решение системы полученных уравнений позволяет определить величину и направление реакций в опорах.
Для плоской системы нагружения можно составить максимум три уравнения равновесия для определения до трех искомых усилий в опорах.
Линейно нагруженные элементы позволяют записать лишь одно уравнение равновесия.
Для расчета реакций опор статически неопределимых систем помимо уравнений статики требуются дополнительные зависимости, связывающие усилия с соответствующими им деформациями.
В некоторых случаях опорные реакции могут быть равны нулю. Это говорит лишь о том, что внешние нагрузки и остальные реакции взаимно уравновешены таким образом, что система может оставаться статичной и без соответствующего усилия в данной точке.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Некоторые физические явления сложны для понимания школьников. К таковым относится и сила реакция опоры. Скорее всего причина тут кроется в том, что этот тип взаимодействия между физическими предметами и телами противоречит житейской логике.
Между тем, достаточно немного усидчивости и терпения, чтобы убедиться, что это совсем не так.
Что такое сила реакции опоры
Прежде всего дадим определение данной силе. Сила реакции опоры (N) представляет собой взаимодействие на молекулярном уровне.
Это сила, приложенная к телу и направленная вертикально вверх.
Сила реакции опоры — сила упругости, возникающая при малых деформациях опоры, всегда перпендикулярна опоре, N = P.
Книга, положенная на стол, давит на ее поверхность с определенной нагрузкой, но молекулы, сжатые ею, хотят снова прийти в равновесие и поэтому давят на книгу ровно с такой же силой. Если бы в природе не существовало этого взаимодействия, то тела не выдерживали бы нагрузки. Из этого можно заключить, что сила реакции опоры представляет собой разновидность силы упругости.
Примеры решения задач
Задача 1
Определить реакции опор горизонтальной балки от заданной нагрузки.
Перед тем, как начать составлять систему уравнений, необходимо несколько преобразовать систему балки:
Опора А покоится на подвижной опоре, которая может двигаться в горизонтальной плоскости, поэтому имеет только вертикальную составляющую реакции опоры – RA.
Опора В абсолютно неподвижна, и ее реакция опоры состоит из двух взаимодействий, направленных вдоль линий оси: XB и YB.
Распределенную нагрузку q для простоты можно заменить одиночной нагрузкой Q. Она будет располагаться ровно посередине отрезка. Находится по формуле: Q = (q × a). Делаем расчет и узнаем, чему равна Q = 2 × 2 = 4 кН.
Сила P не принадлежит ни к одной из плоскостей, а находится как бы между ними. Поэтому ее раскладывают на две составляющие: Px и Py. Это не значит, что они делят ее пополам. Для ее разложения понадобится вспомнить закон Пифагора. Px = P × cos α, Py = P × sin α.
После всех этих преобразований схема балки примет следующий вид:
Теперь можно выписывать силы по принадлежности:
Как видно из уравнения момента сил, за точку вращения балки принята опора B. Поэтому значение воздействия в килоньютонах умножается на расстояние до этой точки в метрах.
Теперь в каждом уравнении есть одна неизвестная, поэтому, подставив известные значения, можно их найти:
XB = P × cos α = 20 × cos 30 0 = 20 × 0,866 = 17,32 кН;
RA = М + P × sin α × b – G × (b + 0,5 × a) + Q × (a + b) × (1,5 × a + b) = 4 + 20 × sin 30 0 × 3 – 10 × (3 + 0,5 × 2) + 4 × (2 + 3) × (1,5 × 2 + 3) = 2,33 кН;
Задача 2
Для заданной плоской рамы определить реакции опор. Значения сил возьмем из задачи №1, несколько изменим их распределение. Схема балки показана на рис. 3.
В этом примере существует только одна опора в точке А, распределенная нагрузка имеет сложную форму. Остальные силы, а точнее их проекции на оси х и у не претерпевают каких-либо изменений.
Чтобы правильно разложить нагрузку q, ее разделяют на две: Q1 в виде треугольника от В до Д и на Q2, представляющей собой прямоугольник.
Соответственно, определяться они тоже будут по-разному:
Q1 = (q × a) / 2 = (2 × 2) / 2 = 2 кН;
Q2 = q × a = 2 × 2 = 4 кН.
Обе эти силы будут расположены посередине своих отрезков (Q1 из характера нагрузки на 1/3 от точки Д).
В предыдущем примере шаровая опора могла вращать балку вокруг себя, поэтому не имела момента вращения. В данном случае опора представляет собой жестко закрепленную опору, поэтому имеет ко всему прочему еще и момент МА.
После всех преобразований схема балки будет следующей:
Теперь можно приступать к выписыванию сил:
∑МВ = MA – G × 0.5 × b – Q1 × 2/3 × a – Q2 ×1,5 × a + M + P × sin α × 2b – P × cos α × 2a.
Две силы Р в последнем уравнении связаны с формой самой балки, которая может испытывать момент вращения от каждой из них.
Теперь можно подставлять уже известные значения:
XA – 2 – 4 – 20 × cos 30 0 = 0 → XA = 23,32 кН;
YA – 10 + 20 × sin 30 0 = 0 → YA = 0 кН;
MA – 10 × 0,5 × 3 – 2 × 2/3 × 2 – 4 ×1,5 × 2 + 4 + 20 × sin 30 0 × 2 × 3 – P × cos 30 0 × 2 × 2 = 0 → MA = 34,95 кН.
Сила реакции опоры
Сила реакции опоры — это сила, с которой опора действует на тело. Она направлена перпендикулярно поверхности, поэтому такую силу называют силой нормальной реакции. Обозначают ее символом N и измеряют в Ньютонах.
Тело находится на выпуклой или вогнутой поверхности
Рассмотрим рисунок 1. Тело находится на опоре и давит на нее своим весом. Опора реагирует на воздействие тела и отвечает ему силой \(\vec
Примечания:
\(\vec
Когда тело находится на выпуклой поверхности (рис. 1а), реакция направлена вдоль радиуса от центра сферы наружу, за ее пределы.
Если же тело находится на вогнутой части (рис. 1б) поверхности, реакция \(\vec
Тело опирается на поверхность в двух точках
На рисунках 2а и 2б изображено продолговатое тело (к примеру, стержень), опирающееся на поверхности двумя своими точками.
В точках соприкосновения поверхность отвечает телу силой \(\vec
Cилы реакции \(\vec
Примечание: Сила — это вектор. Между векторами можно ставить знак равенства, только, когда совпадают характеристики векторов.
Как рассчитать силу нормальной реакции
Пусть тело давит на опору своим весом. В местах соприкосновения тела с опорой наблюдается упругая деформация. При этом опора стремится избавиться от возникшей деформации и вернуться в первоначальное состояние. Силы, с которыми опора упруго сопротивляется воздействию тела, имеют электромагнитную природу. Когда сближаются электронные оболочки атомов тела и опоры, между ними возникает сила отталкивания. Она и является силой реакции опоры на воздействие тела.
Примечание: Сила реакции \(\vec
Для того, чтобы рассчитать силу реакции, нужно понимать законы Ньютона, уметь составлять силовые уравнения и знать, что такое равнодействующая.
На рисунке 3 изображены тела, находящиеся на горизонтальной – а) и наклонной – б) поверхностях.
Рассмотрим подробнее рисунок 3а. Тело на горизонтальной поверхности находится в покое. Значит, выполняются условия равновесия тела.
По третьему закону Ньютона, сила, с которой тело действует на опору, равна по модулю весу тела и направлена противоположно весу.
\(m \vec
\(\vec
Рисунок 3б иллюстрирует тело на наклонной поверхности. Перпендикулярно соприкасающимся поверхностям проведена ось Oy. Проекция силы \(m \vec
Примечание: Выражение «численно равна» нужно понимать, как «длины векторов равны».
\(\alpha \left(\text <рад>\right) \) – угол между силой \(mg\) и осью Oy.
Силы в механике
1. Сила тяжести.
На любое тело, находящееся вблизи поверхности земли или лежащее на земле действует сила, равная произведению массы тела на ускорение свободного падения:.
2. Сила реакции опоры (нормальной реакции, упругости опоры)
Сила, действующая о стороны опоры на лежащее на ней тело. Всегда направлена перпендикулярно поверхности соприкосновения тела и опоры.
\vec
Если тело лежит на внутренней поверхности сферы, сила \vec
Если тело лежит на внешней поверхности сферы, сила \vec
3. Сила натяжения нити
Сила, действующая со стороны нити (веревки, каната, троса, стержня и т.п.) на тело, которое висит на нити (веревке и т.п.). Направлена вдоль нити (и т.п.).
\vec
4. Вес тела
Определение: – это сила, с которой тело давит на опору или растягивает подвес.
Вес тела равен по модулю силе реакции опоры или силе натяжения нити, направлен в противоположную сторону и приложен к другому телу: либо опоре, либо нити.
\vec
5. Сила трения
a) Сила трения скольжения
Сила трения скольжения направлена противоположно относительной скорости тел и не зависит от площади соприкосновения поверхностей.
\vec
Модуль силы трения равен произведению коэффициента трения скольжения на модуль силы реакции опоры:
\mu –коэффициент трения скольжения.
b) Сила трения качения
Действует на тело, которое не скользит, а катится по некоторой поверхности.
\vec
\mu _ <1>–коэффициент трения качения.
Коэффициент трения качения много меньше коэффициента трения скольжения
c) Сила трения покоя
Действует на тело, лежащее неподвижно на некоторой поверхности, которое мы пытаемся сдвинуть с места. Противоположно направлена внешней силе и равна ей по модулю.
\vec
\vec
6. Схема решения задач
a) Нарисовать все силы, приложенные ко всем телам системы;
b) Выбрать системы отсчета (можно свою для каждого тела);
c) Спроектировать силы на оси;
d) Записать уравнения для второго закона Ньютона в проекциях для всех тел системы;
e) Записать кинематические связи, то есть связи между скоростями и ускорениями различных тел системы;