Для изготовления кожухов машин, ограждений станков, вентиляционных устройств, трубопроводов необходимо из листового материала вырезать их развертки.
Разверткой поверхности многогранника называют плоскую фигуру, полученную при совмещении с плоскостью чертежа всех граней многогранника в последовательности их расположения на многограннике.
Чтобы построить развертку поверхности многогранника, нужно определить натуральную величину граней и вычертить на плоскости последовательно все грани. Истинные размеры ребер граней, если они спроецированы не в натуральную величину, находят способами вращения или перемены плоскостей проекций (проецированием на дополнительную плоскость), приведенными в предыдущем параграфе.
Рассмотрим построение разверток поверхности некоторых простейших тел.
Подобным образом можно построить развертки прямых призм с любой фигурой в основании.
Развертка поверхности прямого кругового конуса представляет собой плоскую фигуру, состоящую из кругового сектора и круга (рис. 176, в). Построение выполняют следующим образом. Проводят осевую линию и из точки, взятой на ней, как из центра, радиусом Rh равным образующей конуса sfd, очерчивают дугу окружности. В данном примере образующая, подсчитанная по теореме Пифагора, равна приблизительно
38 мм (L = √l5 2 + 35 2 = √l450 ≈ % 38 мм). Затем подсчитывают угол сектора по формуле
В данном примере α = 360°⋅15/38 ≈ 142,2°.
Этот угол строят симметрично относительно осевой линии с вершиной в точке s. К полученному сектору пристраивают круг с центром на осевой линии и диаметром, равным диаметру основания конуса.
pdf Презентация «Развёртки поверхностей геометрических тел»
pdf Длина окружности и площадь круга
pdf Развёртки многогранников и тел вращения
pdf
Возьмите карандаш и проведите на гранях куба (рис. 1) кратчайший путь из точки А в точку В.
Казалось бы, надо провести линию в переднюю вершину куба, а затем вниз по ребру. Но этот путь, увы, не кратчайший.
Развернём грани куба в одну плоскость, отметим точки А и В и соединим их прямыми, как показано на рисунке 2.
Кратчайший путь, как видим, проходит через середины ребер куба, а не через его вершины. Этот путь обозначен на рисунке 3, сплошными тонкими линиями.
Плоская фигура, полученная нами на рисунке 2, называется разверткой куба.
Развертки имеют большое применение на машиностроительных заводах, обувных фабриках, в швейных мастерских. Для изготовления кожухов машин, ограждений станков, вентиляционных устройств, трубопроводов необходимо из листового материала вырезать их развертки.
Разверткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).
Оформление чертежа развёртки
От линий сгиба на развёртке, которые проводят штрихпунктирной линией с двумя точками, проводят линии-выноски и пишут на полке «Линии сгиба». Над изображением развёртки выносят специальный знак, размеры которого изображены на рисунке 5.
Рис.5. Обозначение развёртки
Разверткой поверхности многогранника называют плоскую фигуру, полученную при последовательным совмещением всех граней поверхности (многогранника) с плоскостью чертежа в последовательности их расположения на многограннике.
При построении развертки надо найти сначала истинные, натуральные размеры и форму отдельных элементов предмета на чертеже. В простейших случаях развертки можно вычертить, не пользуясь проекциями предмета. Например, для построения развертки куба достаточно знать размер одного ребра куба.
Рассмотрим построение разверток поверхности некоторых простейших тел.
Призма
Развертка поверхности прямой призмы представляет собой плоскую фигуру, составленную из боковых граней – прямоугольников и двух равных между собой многоугольников оснований.
Для построения развертки прямой призмы – параллелепипеда, достаточно знать три размера: длину, ширину и высоту призмы (рис. 6).
Рис. 6. Развертка поверхности параллелепипеда
Возьмём правильную прямую шестиугольную призму (рис. 7). Все боковые грани призмы – прямоугольники, равные между собой по ширине а и высоте Н; основания призмы – правильные шестиугольники со стороной, равной а.
Рис. 7. Развертка поверхности прямой шестиугольной призмы
Подобным образом можно построить развертки прямых призм с любой фигурой в основании.
Пирамида
Рис. 8. Развертка поверхности правильной четырёхугольной пирамиды
Решение задачи осложняется тем, что неизвестна величина боковых граней пирамиды, так как ребра граней не параллельны ни одной из плоскостей проекций. Поэтому построение начинают с определения истинной величины наклонного ребра SA. Определив способом вращения (см. рис. 8) истинную длину наклонного ребра SA, равную s’a’1, из произвольной точки О, как из центра, проводят дугу радиусом s’a’1. На дуге откладывают четыре отрезка, равные стороне основания пирамиды, которое спроецировано на чертеже в истинную величину. Найденные точки соединяют прямыми с точкой О. Получив развертку боковой поверхности, к основанию одного из треугольников пристраивают квадрат, равный основанию пирамиды.
Рис. 9. Развертка поверхности правильной пятиугольной пирамиды
Конус
Развертка поверхности прямого кругового конуса представляет собой плоскую фигуру, состоящую из кругового сектора и круга (рис. 10).
Рис. 10. Развертка поверхности прямого кругового конуса
Построение конуса выполняют следующим образом. Проводят осевую линию и из точки, взятой на ней, как из центра, радиусом R1 равным образующей конуса s’a’, очерчивают дугу окружности. В данном примере образующая, подсчитанная по теореме Пифагора (a 2 +b 2 =c 2 ), равна приблизительно 38 мм (L=√15 2 +35 2 =√1450≈ 38 мм). Затем подсчитывают угол сектора по формуле:
где R – радиус окружности основания конуса (15 мм); L – длина образующей боковой поверхности конуса (38 мм).
В данном примере α = 360°⋅15/38 ≈ 142,2°.
Этот угол строят симметрично относительно осевой линии с вершиной в точке S. К полученному сектору пристраивают круг с центром на осевой линии и диаметром, равным диаметру основания конуса.
Цилиндр
Общеизвестно также, что развертка цилиндра представляет собой прямоугольник, одна сторона которого равна высоте цилиндра, а другая – развернутой длине окружности основания 2πR (рис. 11).
Рис. 11. Развертка поверхности прямого цилиндра
В школе на уроках географии вы пользуетесь географическими картами. На картах мира (рис. 12, а) земной шар изображается в виде кругов — восточного и западного полушария.
Но разве развертка шара – круг или, точнее, два круга?
Попытаемся развернуть и совместить с плоскостью шаровую поверхность. Сделать это без складок и разрывов не удастся. Многие геометрические фигуры легко развертываются в плоскость, а шар – нет.
Если поверхность глобуса разрезать вдоль меридианов на маленькие дольки (сегменты) и выпрямить их, то в каждой из этих выпрямленных долек мы можем не заметить никаких видимых искажений. Но развертку мы получим с разрывом (рис. 12, б).
Рис. 12. Географическая карта
Именно такие «дольки» нарезают по контуру и наклеивают одну возле другой на поверхность школьного глобуса. Присмотритесь к глобусу, и вы убедитесь, что это так.
Чтобы получить карту без разрыва, приходится допускать некоторые неточности, которые сводятся к искажению направлений, расстояний и площадей, неодинаковых в разных частях карты.
Развёртки некоторых правильных многогранников представлены на рисунке 13: а) куб, б) тетраэдр, в) октаэдр, г) икосаэдр и д) додекаэдр.
Развертывание цилиндров и конусов основывается на способах развертки гранных поверхностей приведенных выше. В общем случае поверхность цилиндра аппроксимируется призматической поверхностью, а конус – пирамидой и затем строится приближенная развертка кривой поверхности.
Свойства развёрток
Развёрткой криволинейной поверхности Ф называется плоская фигура , полученная путём совмещения поверхности Ф с плоскостью Σ (рис. 5.1). В начертательной геометрии плоскостью Σ является одна из плоскостей проекций.
Развёртывание поверхности
Применение развёрток
Поверхности Ф, которые можно совместить с плоскостью Σ без разрывов и складок, являются, развёртывающимися. К ним принадлежат все многогранники (см. п. 4.1), цилиндрические и конические поверхности (см. п. 3.2.1.3, рис. 3.55 б – в), торсы (см. п. 3.2.1.3, рис. 3.57). Все другие кривые поверхности не развёртываются на плоскость, поэтому при их изготовлении из листового материала они приближённо заменяются развёртывающимися поверхностями (призмами, пирамидами, цилиндрами, конусами). В этих случаях имеют место так называемые условные развёртки (см. п. 5.4.1.3 – 5.4.1.4).
Основные свойства развёрток:
а) прямая l на поверхности Ф отвечает прямой на развёртке
б) параллельные прямые на поверхности Ф отвечают параллельным прямым на развёртке
в) длина (натуральная величина) любой линии s на поверхности Ф равна длине линии на развёртке
г) угол α между линиями r, s на поверхности Ф равен углу между линиями на развёртке
д) площадь S фигуры на поверхности Ф равна плоскости соответствующей фигуры на развёртке
е) если прямая на развёртке отвечает кривой линии s на поверхности Ф, то кривая s является геодезическою линией поверхности Ф. Длина дуги МN геодезической линии является наименьшей из всех возможных дуг MN на поверхности Ф.
Описанные свойства геометрически интерпретированы на рис. 5.3.
Свойства развёрток
Геодезическая линия широко применяется в неэвклидовой геометрии, теоретических и практических задачах геодезии – науки, которая изучает измерения пространства, в том числе размеры и форму Земли, её гравитационное поле и т.д.
Развёртывание поверхности многогранника
Развёрткоймногогранника называется фигура, полученная в результате последовательного совмещения граней многогранника с плоскостью. Развёртка всегда строится наружной (лицевой) стороной к наблюдателю.
Способ натуральных граней
Согласно свойствам развёртки (см. п. 5.1) все грани многогранника Ф сохраняют на развёртке свою длину, для определения которой используются способы начертательной геометрии.
На рис. 5.4 построены горизонтальная и фронтальная проекции треугольной пирамиды SABC. Основа АВС является плоскостью горизонтального уровня, поэтому проецируется на П1 в натуральную величину А1В1С1. Для определения натуральных величин граней SAB, SBC, SCA используется способ вращения вокруг горизонтально-проецирующей оси і, которая проходит через вершину S пирамиды. Отрезки являются натуральными величинами ребер SA, SB, SC пирамиды. По этим ребрам строится развёртка пирамиды. Вырезав плоскую заготовку из контура развёртки и сложив её по линиям сгиба и совмещая одноименные рёбра, можно получить поверхность данной пирамиды SABC.
Способ натуральных граней
Для определения на развёртке произвольной точки D пирамиды применяется способ вспомогательногоотрезка. Точка D принадлежит грани SАС. Через вершину S и точку D проводится отрезок S-1, точка 1 которого принадлежит основе АВС пирамиды. Определяется натуральная величина отрезка S-1, на нём определяется проекция На отрезке развёртки строится отрезок , длина которого равна длине проекции
Способ нормального сечения
Способ нормального сечения применяется для построения развёртки призм, ребра которых являются прямыми уровня.
Суть способа нормального сечения
Призма пересекается в произвольном месте плоскостью Σ, перпендикулярной рёбрам. Определяется натуральная величина линии 1 – 2 – … нормального сечения. Эта линия является плоским многоугольником, количество сторон которого равно количеству граней призмы. Линия 1 – 2 – … разворачивается до формы прямого отрезка … На перпендикулярах, проведенных по обе стороны от точек …, строятся части натуральных величин рёбер пирамиды, которые находятся по разные стороны секущей плоскости Σ.
На рис. 5.5 заданы две проекции треугольной призмы ABCDEF с рёбрами AD, BE, CF горизонтального уровня. Вводится секущая плоскость Σ, перпендикулярная рёбрам призмы (горизонтальный след Σ1 перпендикулярен горизонтальным проекциям рёбер призмы). Плоскость Σ пересекает призму по треугольнику 1 – 2 – 3, точки которого принадлежат, соответственно, рёбрам AD, BE, CF. Способом замены плоскостей проекций определяется натуральная величина нормального сечения (ось параллельна следу Σ1). Треугольник разворачивается до формы прямого отрезка длины частей которого равны соответствующим сторонам треугольника На перпендикулярах, проведенных по обе стороны от точек строятся отрезки длины которых равны длинам проекций На развёртке достраиваются натуральные величины основ АВС, DEF призмы.
Способ нормального сечения
Для определения на развёртке произвольной точки G призмы применяется способвспомогательных отрезков. Точка G принадлежит грани ABDE. Через точку G проводится отрезок 4 – 5, параллельный рёбрам призмы. Точка 4 принадлежит отрезку АВ, точка 5 – отрезку DE. Определяется точка 6 пересечения отрезка 4 – 5 с плоскостью Σ. Точка 6 принадлежит отрезку 1 – 2. Определяется проекция На отрезке развёртки строится отрезок , длина которого равна длине проекции Из точки развёртки призмы проводится отрезок в направлении, перпендикулярном отрезку в сторону точки Длина отрезка равна длине проекции
Способ раскатки
Способ раскатки применяется для развёртывания призмы, основа которой параллельна одной плоскости проекций, а боковые рёбра параллельны другой плоскости проекций.
Из точек 1, 2, … основы … верхней грани призмы проводятся лучи, перпендикулярные боковым рёбрам … На этих лучах строятся точки … так, что длины отрезков … равны натуральным величинам отрезков , …
На рис. 5.6 заданы две проекции треугольной призмы с основой 1 – 2 – 3 и верхней гранью горизонтального уровня и рёбрами фронтального уровня. Из фронтальных проекций проводятся лучи, перпендикулярные фронтальным проекциям На этих лучах по очереди откладываются точки так, что длины отрезков равны натуральным величинам отрезков
Способ раскатки
Для определения на развёртке произвольной точки А призмы применяется способвспомогательного луча. Точка А принадлежит грани Через точку А проводится отрезок параллельный рёбрам призмы, точка 4 которого принадлежит отрезку 1 – 3 основы. Из проекций проводятся лучи перпендикулярные фронтальным проекциям рёбер призмы. Из точки принадлежащей отрезку развёртки, проводится отрезок параллельный отрезку до пересечения с лучом
Развёртывание поверхностей тел вращения
По развертываниюповерхности делятся на два класса: развертываемые, которые можно совместить с плоскостью без разрывов и складок, и неразвертываемые, которые невозможно совместить с плоскостью без разрывов и складок. Развертываются все многогранные поверхности, из кривых поверхностей – только линейчатые, у которых смежные образующие параллельны между собой (цилиндрические) или пересекаются по одной точке (конические).
Из всего разнообразия поверхностей тел вращения точное развёртывание осуществляется только для прямых круговых цилиндра и конуса (рис. 5.7 – 5.8).
Поверхность прямого кругового цилиндра разворачивается в прямоугольник, одна сторона которого равна длине нормального сечения (окружности диаметром d), другая – высоте h цилиндра (рис. 5.7). Развёртка цилиндра при необходимости дополняется нижней и верхней основами – окружностями диаметром d. Для определения точки А на развёртке прямого кругового цилиндра применяется способ образующей линии. Определяется угол α, и строится образующая линия на развёртке. Она размещена на расстоянии Высота точки равна высоте точки А.
Развёртка цилиндра
Поверхность прямого кругового конуса разворачивается в сектор окружности с центром в вершине S конуса. Радиус сектора равен длине l образующей линии конуса; угол φ = 180°·d/l, где d – диаметр основы конуса (рис. 5.8). Развёртка конуса при необходимости дополняется основой – окружностью диаметром d. Для определения точки А на развёртке прямого кругового конуса применяется способ образующей линии. Определяется угол α и строится образующая линия на развёртке, положение которой определяется углом β = 0,5αd/l. Точка расположена на расстоянии равном натуральной величине отрезка SA.
Развёртка конуса
Приближённое и условное развёртывание кривых поверхностей
При построении приближенныхиусловныхразверток используют ап-проксимацию (от approximare (лат.) – приближаться) одной поверхности к другой. Аппроксимацией называют замену одной поверхности другой – аппроксимирующей, которая приближается к заданной по каким-то опре-деленным свойствам (форма, площадь, кривизна) с той или иной степенью точности.
Способ аппроксимирующих поверхностей
Развёртка любой развёртывающейся поверхности (кроме прямых круговых конуса и цилиндра) строится приближённо. Это происходит вследствие того, что при развёртывании кривой поверхности её аппроксимируют гранями вписанных многогранников(рис. 5.9).
Способ призматических поверхностей
Например, цилиндрическая поверхность условно заменяется призмой (рис. 5.9 а), коническая поверхность – пирамидой (рис. 5.9 б).
– Аппроксимация тела вращения многогранником
Для построения приближённой развёртки цилиндрической поверхности используется способ призматических поверхностей
Суть способа призматических поверхностей
В цилиндрическую поверхность вписывается призма, количество граней которой прямо влияет на точность построения развёртки цилиндра. Строится развёртка этой призмы способом нормального сечения или раскатки (см. п. 5.2.2 – 5.2.3). Через точки на развёртке призмы проводятся плавные кривые, являющиеся контуром приближённой развёртки цилиндра. При необходимости развёртка цилиндра дополняется нижней и верхней основами.
На рис. 5.10 изображен комплексный чертёж эллиптического цилиндра, поверхность которого аппроксимируется двенадцатигранной призмой. Развёртка последней строится способом раскатки. Через точки проводятся плавные кривые (синусоиды), образующие контур развёртки цилиндра. Развёртка дополняется нижней и верхней основами цилиндра.
Способ пирамидальных поверхностей
Способ пирамидальных поверхностей используется для построения развёртки боковой поверхности конуса.
Суть способа пирамидальных поверхностей
В коническую поверхность вписывается пирамида. Строится приближённая развёртка этой пирамиды способом натуральных граней (см. п. 5.2.1). Через точки на развёртке пирамиды проводится плавная кривая, являющаяся контуром развёртки конуса. По необходимости развёртка конуса дополняется его основой.
Аппроксимация (от англ. approximation – приближение) – научный метод, состоящий в замене одних объектов другими, более простыми, приближёнными к оригиналу.
Необходимо различать такие понятия, как приближённая и условная развёртка. Приближённая развёртка касается развёртывающихся поверхностей. Условная развёртка строится для поверхностей, которые не развёртываются.
Развёртка эллиптического цилиндра
На рис. 5.11 изображен комплексный чертёж эллиптического конуса, поверхность которого аппроксимируется двенадцатигранной пирамидой. Развёртка последней строится способом натуральных граней. Через точки проводится плавная кривая, которая образует контур развёртки конуса. Развёртка дополняется основой конуса.
Развёртка эллиптического конуса
Способ цилиндрических поверхностей
Для поверхностей, которые не развёртываются. в том числе нелинейчатых, строятся условные развёртки. Основные способы построения условных развёрток такие:
а) способ цилиндрических поверхностей;
б) способ конических поверхностей;
в) метод триангуляции.
Суть способа цилиндрических поверхностей
Кривая поверхность описывается совокупностью цилиндрических поверхностей, которые в дальнейшем развёртываются и совмещаются по точкам и линиям. Полученная развёртка является условной развёрткой кривой поверхности.
На рис. 5.12 построена условная развёртка сферы. Вокруг её поверхности описываются шесть одинаковых цилиндрических поверхностей. Одна из таких поверхностей имеет образующие линии Длины этих образующих равны длинам их горизонтальных проекций .Расстояния между образующими одинаковы и равны длине дуги SA, то есть длине фронтальной проекции Развёрткой одной из шести цилиндрических поверхностей является фигура в форме лепестка, контур которой проходит через концы образующих линий, удалённых одна от другой на одинаковое расстояние, равное длине дуги . Прибавляя к полученной части еще пять, строится условная развёртка сферы.
Условная развёртка сферы.
На рис. 5.13 построена условная развёртка открытого тора. Вокруг его поверхности описываются двенадцать одинаковых цилиндрических поверхностей. Одна из таких поверхностей имеет образующие линии Длины этих образующих равны длинам их фронтальных проекций Расстояния между образующими одинаковы и равны длине дуги SA, то есть, длине горизонтальной проекции S1A1. Развёрткой одной из двенадцати цилиндрических поверхностей является фигура, контур которой проходит через концы образующих линий, удалённых одна от другой на одинаковое расстояние, равное длине дуги S1A1. Прибавляя к полученной части еще одиннадцать, строится условная развёртка тора.
Условная развёртка открытого тора
Способ конических поверхностей
Способ конических поверхностей используется для построения условных развёрток закрытых тел вращения (эллипс, параболоид, эллипсоид, двуполостной гиперболоид, закрытый тор и т.д.).
Суть способа конических поверхностей
Сегменты поверхности описываются совокупностью конических поверхностей, которые развёртываются и совмещаются по точкам и линиям. Полученная развёртка является условной развёрткой кривой поверхности.
На рис. 5.14 построена условная развёртка сферы. Вокруг её поверхности описывается одна цилиндрическая и шесть конических поверхностей с разными вершинами Длины образующих линий одинаковы и равны длине проекции Углы и радиусы развёртывания конусов определяются, как описано в п. 5.3.
Условная развёртка сферы
На рис. 5.15 построена условная развёртка эллипсоида. Вокруг его поверхности описываются одна цилиндрическая и шесть конических поверхностей с разными вершинами Длины образующих линий могут быть разными и определяются по их фронтальным проекциям. Углы и радиусы развёртывания конусов определяются, как показано в п. 5.3.
Условная развёртка эллипсоида
Метод триангуляции
Метод триангуляции (от англ. triangle – треугольник) применяется для развёртывания многогранников, приближенного развёртывания цилиндрических и конических поверхностей и поверхностей с ребром поворота (торсов), а также условного развёртывания поверхностей которые не развёртываются.
Суть метода триангуляции
Кривая поверхность разбивается на треугольники с общими сторонами. Натуральные величины этих треугольников сочетаются по общим сторонам. Внешний контур полученной плоской фигуры является приближенной или условной развёрткой заданной кривой поверхности.
На рис. 5.16 построена приближённая развёртка торса Ф. Последний разбивается совокупностью треугольников с вершинами 1, 2, …, принадлежащими ребру возврата и одной из линий l поверхности Ф. Натуральные величины сторон 1 – 2, 2 – 3, … треугольников определяются способом вращения вокруг проецирующей оси. По найденным отрезкам строятся натуральные величины треугольников 1 – 2 – 3, 2 – 3 – 4, …, которые сочетаются по общим сторонам. Контур полученной плоской фигуры является приближенной развёрткой торса Ф.
Приближённая развёртка торса
На рис. 5.17 построена приближённая развёртка поверхности произвольного пространственного тела. Его поверхность разбивается на треугольники, стороны которых построены по точкам 1, 2, …, А, В, …, принадлежащим соответственно верхней и нижней основам тела. Натуральные величины сторон треугольников определяются способом вращения вокруг горизонтально-проецирующих осей, проходящих через точки В, С. По найденным отрезкам строятся натуральные величины треугольников, которые сочетаются по общим сторонам. Контур полученной плоской фигуры является приближенной развёрткой поверхности тела.
Развёртка поверхности тела методом триангуляции
Примеры и образцы решения задач:
Услуги по выполнению чертежей:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.