что такое размер физической величины
Физические величины.
Физической величиной называется физическое свойство материального объекта, процесса, физического явления, охарактеризованное количественно.
Значение физической величины выражается одним или несколькими числами, характеризующими эту физическую величину, с указанием единицы измерения.
Размером физической величины являются значения чисел, фигурирующих в значении физической величины.
Единицы измерения физических величин.
Единицей измерения физической величины является величина фиксированного размера, которой присвоено числовое значение, равное единице. Применяется для количественного выражения однородных с ней физических величин. Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин.
Широкое распространение получило всего лишь некоторое количество систем единиц. В большинстве случаев во многих странах пользуются метрической системой.
Основные единицы.
Измерить физическую величину – значит сравнить ее с другой такой же физической величиной, принятой за единицу.
Для каждой физической величины в системе единиц должна быть предусмотрена соответствующая единица измерения. Эталоном единицы измерения является ее физическая реализация.
Эталоном длины является метр – расстояние между двумя штрихами, нанесенными на стержне особой формы, изготовленном из сплава платины и иридия.
Эталоном времени служит продолжительность какого-либо правильно повторяющегося процесса, в качестве которого выбрано движение Земли вокруг Солнца: один оборот Земля совершает за год. Но за единицу времени принимают не год, а секунду.
За единицу скорости принимают скорость такого равномерного прямолинейного движения, при котором тело за 1 с совершает перемещение в 1 м.
Отдельная единица измерения используется для площади, объема, длины и т. д. Каждая единица определяется при выборе того или иного эталона. Но система единиц значительно удобнее, если в ней в качестве основных выбрано всего несколько единиц, а остальные определяются через основные. Например, если единицей длины является метр, то единицей площади будет квадратный метр, объема – кубический метр, скорости – метр в секунду и т. д.
Основными единицами физических величин в Международной системе единиц (СИ) являются: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), кандела (кд) и моль (моль).
Размер физических величин
Размер физических величин. “Истинное значение” физических величин
В настоящее время в метрологии используются следующие понятия для характеристики размера (количественной характеристики) физической величины:
Существует проблема выбора понятия, характеризующего значение физической величины. Рассмотрим, например, измерение с максимально возможной точностью объема цилиндра из измерений его диаметра и высоты. Сначала, по мере увеличения точности измерения, мы столкнемся с проблемой истинной формы цилиндра, поскольку идеально круглых тел не существует, и возникнет вопрос, по какой формуле вести расчет. Затем мы столкнемся с факторами, когда погрешность измерения станет меньше шероховатости поверхности. Тогда встанет проблема влияния качества обработки поверхности на диаметр. Далее, увеличивая точность, мы, в принципе, можем дойти до погрешности порядка размера атома или ядра (такие методы существуют), и тогда встанет вопрос о самом объекте измерения.
Отсюда следует, что еще до измерения нужно определить объект измерения – его теоретическую модель.
Основной постулат и аксиома теории измерений
Как и любая другая наука, теория измерений должна строиться на основе постулатов или аксиом. Основным постулатом в теории измерений будем считать следующий постулат:
измеряемая физическая величина и её “истинное” значение существуют только в рамках принятой теоретической модели объекта измерения
Измеряемая физическая величина определяется как один из параметров этой модели.
Аксиома: модель объекта (в том числе, и условий измерений) можно построить только при наличии априорной информации (предварительного исследования объекта или знаний об объекте).
Теоретические модели материальных объектов,
явлений и процессов
Реальные объекты и явления материального мира чрезвычайно сложны. Человеческое сознание не в состоянии охватить все свойства этих объектов и связи между ними, поэтому в процессе описания и изучения реальных объектов человек вынужден упрощать их свойства, т.е. заменять реальные объекты их моделями.
В широком смысле любой образ какого-либо объекта, в том числе и мысленный, называют моделью.
Моделированием называется целенаправленное исследование явлений, процессов или объектов путём построения и изучения их моделей.
Любой метод научного исследования базируется, по существу, на идее моделирования. При этом различают:
Предметное моделирование предполагает построение макета и проведение реального физического эксперимента с этим макетом. В ряде случаев предметное моделирование требует создания сложных и дорогостоящих установок, что не всегда возможно и не всегда оправданно. Более того, предметное моделирование не всегда позволяет изучить внутренние, скрытые от глаз наблюдателя, свойства реальных систем.
Теоретическое моделирование, начиная от выбора модели и до интерпретации результатов, предполагает прохождение следующих этапов:
Физика как наука о природе, изучающая простейшие, и вместе с тем, наиболее общие свойства материального мира, также базируется на теоретических моделях. Эти модели характеризуются определёнными понятиями и параметрами, которые называют физическими величинами.
Примеры физических понятий и величин: пространство, система отсчета, скорость, электрическое поле, влажность, время, импульс, температура.
При построении физической модели необходимо в системе материальных объектов выделить и описать физические тела, поля, условия движений, взаимодействий, ввести понятия характеризующие свойства объектов, и указать или сформулировать физические законы, описывающие связь между этими понятиями и взаимодействия между этими объектами.
В соответствии с этим при построении физической модели можно выделить 3 этапа:
Этап 1. Моделирование поля и вещества.
Этап 2. Моделирование условий движения и взаимодействий в рамках моделей поля и вещества.
Этап 3. Формулировка физических законов, описывающих состояние, движение и взаимодействие объектов, входящих в рассматриваемую физическую систему.
Таким образом, физическими моделями объекта или процесса будем называть теоретические модели, включающие в себя модели вещества и поля, а также закономерности условий движения и взаимодействий.
Построенные выше физические модели необходимо описать с помощью символов в виде математических формул и уравнений. Эти символы – параметры объектов (они же обозначают физические величины) – связаны между собой в виде выше сформулированных физических законов.
Совокупность формул и уравнений, устанавливающих связь между этими параметрами (физическими величинами) на основе законов физики и полученных в рамках выбранных физических моделей, будем называть математической моделью объекта или процесса.
Следовательно, о физических величинах можно говорить как о параметрах, характеризующих и качественно, и количественно построенные физические модели.
Процесс создания математической модели можно также разделить на 3 этапа:
Этап 1. Составление формул и уравнений, описывающих состояние, движение и взаимодействия объектов в рамках выбранных физических моделей.
Этап 2. Решение и исследование сугубо математических задач сформулированных на первом этапе. Основным вопросом здесь является решение так называемой прямой задачи, т.е. получение теоретических следствий и численных данных. На этом этапе важную роль играет математический аппарат и вычислительная техника (компьютер).
Этап 3. Выяснение того, согласуются ли результаты анализа и вычислений с результатами измерений в пределах точности последних. Отклонение результатов расчётов от результатов измерений свидетельствует:
Выяснение источников ошибок требует большого искусства и высокой квалификации исследователя.
Бывает, что при построении математической модели некоторые её характеристики или связи между параметрами остаются неопределёнными вследствие ограниченности наших знаний о физических свойствах объекта. Например: иногда оказывается, что число уравнений, описывающих свойства объекта и связи между объектами, меньше числа параметров (физических величин), характеризующих объект. В этих случаях приходится вводить дополнительные уравнения, характеризующие объект и его свойства, иногда даже пытаются угадать эти свойства, для того, чтобы задача была решена, а результаты соответствовали результатам опытов в пределах заданной погрешности. Подобного образа задачи называются обратными.
Размерность физической величины
Говоря о размерности, следует различать понятия система физических величин и система единиц.
Связанные понятия
Эта статья о физическом понятии. О более общем значении термина, см. статью СкалярСкалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.Скалярная величина, или скаляр согласно математическому энциклопедическому словарю.
Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.
Статистическим ансамблем физической системы называется набор всевозможных состояний данной системы, отвечающих определённым критериям. Примерами статистического ансамбля являются.
В квантовой механике импульс, как и все другие наблюдаемые физические величины, определяется как оператор, который действует на волновую функцию.
Мультипо́ли (от лат. multum — много и греч. πόλος — полюс) — определённые конфигурации точечных источников (зарядов). Простейшими примерами мультиполя служат точечный заряд — мультиполь нулевого порядка; два противоположных по знаку заряда, равных по абсолютной величине — диполь, или мультиполь 1-го порядка; 4 одинаковых по абсолютной величине заряда, размещённых в вершинах параллелограмма, так что каждая его сторона соединяет заряды противоположного знака (или два одинаковых, но противоположно направленных.
Что такое размер физической величины
Итак, начнем с размерностей. Они делятся на основные и производные.
Сразу оговоримся, раньше официально в качестве основной единицы использовался Кулон (Кл), а не Ампер (А). Теперь же Кулон получается из Ампера, который определяется непосредственно по силе взаимодействия двух определенных проводников с током именно, как сила взаимодействия (притяжения или отталкивания) проводников с током.
Все очень логично – сила тока 1 Ампер есть такой ток (т.е. количество переносимого в единицу времени (с) заряда (Кл) в проводниках), который вызывает силу взаимодействия величиной 1 Ньютон между двумя проводниками с током длиной в 1 метр каждый, которые находятся на расстоянии 1 метр.
Видите, как все взаимосвязано!
Считается, что основные величины размерностей – это некие эталонные величины, которые мы находим экспериментально. Причем в этих экспериментах каждый раз получаются одинаковые значения физических величин при одинаковых условиях измерений.
Например, метр – это, по сути, металлический стержень, который хранится во Франции в специальном институте («Международное бюро мер и весов» — постоянно действующая организация со штаб-квартирой, расположенной в городе Севр недалеко от Парижа) при определенной температуре (и других постоянных условиях), с которым мы должны сравнивать и измерять все остальные «метры».
Секунда, это примерно (1 / 86400) одна восьмидесятишеститысяччетырехсотая средних астрономических суток. И к тому же эти сутки меняются со временем, правда очень медленно. Но зато у нас есть всемирная служба точного времени, которая сообщает нам, когда заканчивается один час и начинается другой.
Метр, что интересно, — это и единица коэффициента трения качения, и единица длины волны излучения, и длины свободного пробега, и оптической длины пути, и фокусного расстояния, и комптоновской длины волны, и длины волны де Бройля и многих других физических величин, имеющих размерность длины.
По определению, метр равен расстоянию, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды. Такое определение метра (в терминах времени и скорости света) было принято на XVII Генеральной конференции по мерам и весам в 1983 году.
С практической точки зрения, для решения физических задач, эти подробности не слишком важны. Важно, что каждой физической величине соответствует своя размерность. И что эти величины с размерностями можно складывать или вычитать, только если они одинаковые.
Но их можно также умножать и делить. И при этом образуются новые физические величины (новые размерности).
Сейчас мы с вами займемся конструированием физических величин.
Дальше можете продолжить сами!
Вопрос: Может быть квадратный килограмм?
Ответ: Может. Но только физического смысла в этом нет никакого.
Ниже приведена таблица размерностей с названиями физических величин.
Таблица размерностей физических величин.
Основная размерность
МАССА
Основная размерность
ДЛИНА
Основная размерность
ВРЕМЯ
Основная размерность
СИЛА ТОКА
Основная размерность
ТЕРМО-
ДИНАМИ-
ЧЕСКАЯ ТЕМПЕРАТУРА
Основная размерность
Количество вещества
Основная размерность
Сила света
Размер величины. Значение величины
Размер физической величины – количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу [3].
Иногда возражают против широкого применения слова «размер», утверждая, что оно относится только к длине. Однако заметим, что каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас физической величины (массы). Рассматривая предметы А и В, можно, например, утверждать, что по длине или размеру длины они отличаются друг от друга (например, А > В). Более точная оценка может быть получена лишь после измерений длины этих предметов.
Часто в словосочетании «размер величины» слово «размер» опускают или заменяют его на словосочетание «значение величины».
Количественная оценка конкретной физической величины, выраженная в виде некоторого числа единиц данной величины, называется «значением физической величины».
Отвлеченное число, входящее в «значение» величины, называется числовым значением.
Между размером и значением величины есть принципиальная разница. Размер величины существует реально, независимо от того, знаем мы его или нет. Выразить размер величины можно при помощи любой из единиц данной величины, другими словами, при помощи числового значения.
Для числового значения характерно, что при применении другой единицы оно изменяется, тогда как физический размер величины остается неизменным.
Если в приведенных выражениях применять q = 1, то размеры единиц
Размеры разных единиц одной и той же величины различны. Так, размер килограмма отличается от размера фунта; размер метра—от размера фута и т. п.
Размерность физических величин
Размерность физических величин— это соотношение между единицами величин, входящих в уравнение, связывающее данную величину с другими величинами, через которые она выражается.
Размерность физической величины обозначается dim A (от лат. dimension – размерность). Допустим, что физическая величина А связана с X, Y уравнением A = F(Х, Y). Тогда величины X, Y, А можно представить в виде
Размерности значений физических величин и их единиц совпадают. Например:
A = X/Y; dim (a) = dim (X/Y) = [Х]/[Y].
Размерность — качественная характеристика физической величины, дающая представление о виде, природе величины, о соотношении ее с другими величинами, единицы которых принимаются за основные.
1.7. Измерительное преобразование
В некоторых случаях, когда нельзя непосредственно сравнить измеряемую величину с воспроизводимой единицей физической величины, используют измерительное преобразование. Это такой вид преобразования, при котором устанавливается однозначное соответствие между значениями двух величин (входной и выходной). Зависимость между этими величинами стремятся сделать линейной. Диапазон преобразования определяется множеством значений входной величины, подвергаемой преобразованию.
Вид измерений
Методы и средства измерений
Под понятием метод измерения подразумевается совокупность процессов использования принципов и средств измерений.
Конкретные методы измерений определяются видом измеряемых величин, их размерами, требуемой точностью результата, быстротой процесса измерения, условиями, при которых проводятся измерения, и рядом других признаков.
Каждую физическую величину можно измерить несколькими методами, которые могут отличаться друг от друга особенностями как технического, так и методического характера. В отношении технических особенностей можно сказать, что существует множество методов измерения и по мере развития науки и техники число их все увеличивается. С методической стороны все методы измерений поддаются систематизации и обобщению по общим характерным признакам. Рассмотрение и изучение этих признаков не только помогает правильному выбору метода и его сопоставлению с другими, но и существенно облегчает разработку новых методов измерения.
Для прямых измерений, при которых искомое значение величины находят непосредственно из опытных данных, можно выделить несколько основных методов: метод непосредственной оценки, дифференциальный метод, нулевой метод, метод совпадений и метод замещений.
При косвенных измерениях, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, широко применяется измерительное преобразование измеряемой величины в процессе измерений.
Меры
физической величины заданного размера.