что такое рандомные цифры
Подробно о генераторах случайных и псевдослучайных чисел
Введение
Как отличить случайную последовательность чисел от неслучайной?
Чуть более сложный пример или число Пи
Последовательность цифры в числе Пи считается случайной. Пусть генератор основывается на выводе бит представления числа Пи, начиная с какой-то неизвестной точки. Такой генератор, возможно и пройдет «тест на следующий бит», так как ПИ, видимо, является случайной последовательностью. Однако этот подход не является критографически надежным — если криптоаналитик определит, какой бит числа Пи используется в данный момент, он сможет вычислить и все предшествующие и последующие биты.
Данный пример накладывает ещё одно ограничение на генераторы случайных чисел. Криптоаналитик не должен иметь возможности предсказать работу генератора случайных чисел.
Отличие генератора псевдослучайных чисел (ГПСЧ) от генератора случайных чисел (ГСЧ)
Источники энтропии используются для накопления энтропии с последующим получением из неё начального значения (initial value, seed), необходимого генераторам случайных чисел (ГСЧ) для формирования случайных чисел. ГПСЧ использует единственное начальное значение, откуда и следует его псевдослучайность, а ГСЧ всегда формирует случайное число, имея в начале высококачественную случайную величину, предоставленную различными источниками энтропии.
Энтропия – это мера беспорядка. Информационная энтропия — мера неопределённости или непредсказуемости информации.
Можно сказать, что ГСЧ = ГПСЧ + источник энтропии.
Уязвимости ГПСЧ
Линейный конгруэнтный ГПСЧ (LCPRNG)
Распространённый метод для генерации псевдослучайных чисел, не обладающий криптографической стойкостью. Линейный конгруэнтный метод заключается в вычислении членов линейной рекуррентной последовательности по модулю некоторого натурального числа m, задаваемой следующей формулой:
где a (multiplier), c (addend), m (mask) — некоторые целочисленные коэффициенты. Получаемая последовательность зависит от выбора стартового числа (seed) X0 и при разных его значениях получаются различные последовательности случайных чисел.
Для выбора коэффициентов имеются свойства позволяющие максимизировать длину периода(максимальная длина равна m), то есть момент, с которого генератор зациклится [1].
Пусть генератор выдал несколько случайных чисел X0, X1, X2, X3. Получается система уравнений
Решив эту систему, можно определить коэффициенты a, c, m. Как утверждает википедия [8], эта система имеет решение, но решить самостоятельно или найти решение не получилось. Буду очень признателен за любую помощь в этом направлении.
Предсказание результатов линейно-конгруэнтного метода
Основным алгоритмом предсказания чисел для линейно-конгруэнтного метода является Plumstead’s — алгоритм, реализацию, которого можно найти здесь [4](есть онлайн запуск) и здесь [5]. Описание алгоритма можно найти в [9].
Простая реализация конгруэнтного метода на Java.
Отправив 20 чисел на сайт [4], можно с большой вероятностью получить следующие. Чем больше чисел, тем больше вероятность.
Взлом встроенного генератора случайных чисел в Java
Многие языки программирования, например C(rand), C++(rand) и Java используют LСPRNG. Рассмотрим, как можно провести взлом на примере java.utils.Random. Зайдя в исходный код (jdk1.7) данного класса можно увидеть используемые константы
Метод java.utils.Randon.nextInt() выглядит следующим образом (здесь bits == 32)
Результатом является nextseed сдвинутый вправо на 48-32=16 бит. Данный метод называется truncated-bits, особенно неприятен при black-box, приходится добавлять ещё один цикл в brute-force. Взлом будет происходить методом грубой силы(brute-force).
Пусть мы знаем два подряд сгенерированных числа x1 и x2. Тогда необходимо перебрать 2^16 = 65536 вариантов oldseed и применять к x1 формулу:
до тех пор, пока она не станет равной x2. Код для brute-force может выглядеть так
Вывод данной программы будет примерно таким:
Несложно понять, что мы нашли не самый первый seed, а seed, используемый при генерации второго числа. Для нахождения первоначального seed необходимо провести несколько операций, которые Java использовала для преобразования seed, в обратном порядке.
И теперь в исходном коде заменим
crackingSeed.set(seed);
на
crackingSeed.set(getPreviousSeed(seed));
И всё, мы успешно взломали ГПСЧ в Java.
Взлом ГПСЧ Mersenne twister в PHP
Рассмотрим ещё один не криптостойкий алгоритм генерации псевдослучайных чисел Mersenne Twister. Основные преимущества алгоритма — это скорость генерации и огромный период 2^19937 − 1, На этот раз будем анализировать реализацию алгоритма mt_srand() и mt_rand() в исходном коде php версии 5.4.6.
Можно заметить, что php_mt_reload вызывается при инициализации и после вызова php_mt_rand 624 раза. Начнем взлом с конца, обратим трансформации в конце функции php_mt_rand(). Рассмотрим (s1 ^ (s1 >> 18)). В бинарном представление операция выглядит так:
10110111010111100111111001110010 s1
00000000000000000010110111010111100111111001110010 s1 >> 18
10110111010111100101001110100101 s1 ^ (s1 >> 18)
Видно, что первые 18 бит (выделены жирным) остались без изменений.
Напишем две функции для инвертирования битового сдвига и xor
Тогда код для инвертирования последних строк функции php_mt_rand() будет выглядеть так
Если у нас есть 624 последовательных числа сгенерированных Mersenne Twister, то применив этот алгоритм для этих последовательных чисел, мы получим полное состояние Mersenne Twister, и сможем легко определить каждое последующее значение, запустив php_mt_reload для известного набора значений.
Область для взлома
Если вы думаете, что уже нечего ломать, то Вы глубоко заблуждаетесь. Одним из интересных направлений является генератор случайных чисел Adobe Flash(Action Script 3.0). Его особенностью является закрытость исходного кода и отсутствие задания seed’а. Основной интерес к нему, это использование во многих онлайн-казино и онлайн-покере.
Есть много последовательностей чисел, начиная от курса доллара и заканчивая количеством времени проведенным в пробке каждый день. И найти закономерность в таких данных очень не простая задача.
Задание распределения для генератора псевдослучайных чисел
Для любой случайной величины можно задать распределение. Перенося на пример с картами, можно сделать так, чтобы тузы выпадали чаще, чем девятки. Далее представлены несколько примеров для треугольного распределения и экспоненциального распределения.
Треугольное распределение
Приведем пример генерации случайной величины с треугольным распределением [7] на языке C99.
Экспоненциальное распределение
Тесты ГПСЧ
Некоторые разработчики считают, что если они скроют используемый ими метод генерации или придумают свой, то этого достаточно для защиты. Это очень распространённое заблуждение. Следует помнить, что есть специальные методы и приемы для поиска зависимостей в последовательности чисел.
Одним из известных тестов является тест на следующий бит — тест, служащий для проверки генераторов псевдослучайных чисел на криптостойкость. Тест гласит, что не должно существовать полиномиального алгоритма, который, зная первые k битов случайной последовательности, сможет предсказать k+1 бит с вероятностью большей ½.
В теории криптографии отдельной проблемой является определение того, насколько последовательность чисел или бит, сгенерированных генератором, является случайной. Как правило, для этой цели используются различные статистические тесты, такие как DIEHARD или NIST. Эндрю Яо в 1982 году доказал, что генератор, прошедший «тест на следующий бит», пройдет и любые другие статистические тесты на случайность, выполнимые за полиномиальное время.
В интернете [10] можно пройти тесты DIEHARD и множество других, чтобы определить критостойкость алгоритма.
Что такое ГСЧ – как работает генератор случайных чисел
Генератор случайных чисел, как следует из названия, представляет собой процесс получения случайного числа каждый раз, когда это необходимо, без возможности установить шаблон из ранее сгенерированных чисел. Это число может быть сгенерировано либо алгоритмом, либо аппаратным устройством, и очень важно избежать любого предсказуемого результата.
Алгоритм генератора случайных чисел часто используется в видеоиграх, где он устанавливает разные результаты каждый раз, когда его запускают. Возможно, вы заметили, что даже если вы играете на одном уровне в игре, каждый раз, когда вы пытаетесь выполнить миссию, он не будет одинаковым. Различия не будут наблюдаться в локации или требованиях к миссии, но они будут наблюдаться в количестве приближающихся врагов и областях их появления, изменениях климата и различных препятствиях, которые встречаются между ними. Это делает игру более захватывающей и интересной.
В противном случае, после нескольких попыток игра покажется скучной, так как вы сможете предсказать события, которые произойдут дальше. Это может показаться простым, но для компьютера – генерировать случайные числа – это сложная задача, требующая следовать точным инструкциям, закодированным в нём.
Истинный ГСЧ против псевдо ГСЧ
Есть два типа генераторов случайных чисел: истинные и псевдо.
Какие приложения используют ГСЧ
Не во всех играх используется генератор случайных чисел, что делает их менее конкурентоспособными и часто утомительными, однако, новые игры почти всегда идут с генератором случайных чисел. Многие приложения и игры выигрывают от случайности, поскольку они могут приносить интерес и прибыль только в том случае, если они случайны:
Помимо игровых приложений, есть код случайных чисел в JavaScript, используемый разработчиками и кодировщиками во всём мире для включения генератора случайных чисел в их программы. У Google есть свой очень интересный инструмент, который также основан на теории случайных чисел JavaScript и может генерировать случайные числа. Этот инструмент может пригодиться, когда вы играете в игры с друзьями и семьей. Чтобы посмотреть ГСЧ Google, нажмите здесь.
Манипуляции с ГСЧ
Я уже обсуждал различия между истинным ГСЧ и псевдо ГСЧ и тот факт, что в играх используется псевдо ГСЧ, основанный на алгоритме. Некоторые увлеченные геймеры используют утилиты эмуляции для анализа игр и выявления лазеек, которые можно использовать для управления результатами, даже если используется алгоритм генератора случайных чисел.
ГСЧ на основе алгоритма использует начальное число, которое представляет собой комбинацию определенных факторов и генерирует результат в игре. Это применяемые законы математики, и поскольку 1+1 всегда равно 2, аналогично, если известны факторы в игре, которые приносят желаемый результат, то вы всегда можете достичь того же результата.
Например, если игра требует от игрока выбрать определенного персонажа с определенными усилениями, и результатом будет легкая битва с боссом, то этот шаблон будет постоянным, и все, кто выберет одни и те же варианты, будут иметь одинаковые результаты. Но, для обычного игрока это было бы невозможно, и псевдо-ГСЧ всегда казался бы истинным ГСЧ.
Почему геймеры ненавидят ГСЧ
Геймеров можно разделить на соревнующихся игроков, спидраннеров и средних игроков. Любой конкурентоспособный игрок, овладевший техникой игры и движениями, захочет бросить вызов другим игрокам и побеждать на основе навыков и, несомненно, возненавидит игру, если на результат повлияет генератор случайных чисел. Точно так же спидраннер хотел бы завершить игру как можно скорее, но алгоритм генератора случайных чисел включает тормоза, создавая каждый раз неизвестные и неожиданные сценарии в игре.
В идеале геймеры хотели бы уменьшить количество случаев, когда они сталкиваются со средством генерации случайных чисел в игре, чтобы держать весь игровой процесс и результат под своим контролем. Но, это возможно лишь до определенной степени. И когда геймер часами осваивает игрового персонажа и его движения, он больше всего расстраивается, когда случается что-то случайное, и вся стратегия нарушается. Иногда это тоже действует как благословение, но обычно это проклятие.
Кто такой RNGesus?
Обычные игроки, которые играют только для того, чтобы развлечься или скоротать время, не заботятся о результате игры. Но, опытные профессиональные игроки ненавидят проигрывать только потому, что удача была не в их пользу.
Игроки, которые проигрывают, часто винят в своих поражениях злой ГСЧ, который выгоден их противникам. Там где зло, должен быть Бог – RNGesus.
Среди геймеров во всем мире появился новый термин, RNGesus, который больше соответствует игре слов с «Иисусом». Поскольку Иисус Христос считается нашим спасителем в реальном мире, RNGesus – это вообразимая сущность, созданная для спасения игроков от пагубных последствий ГСЧ. Это нигде не доказывается, но началось как миф, а теперь распространилось по игровому сообществу, как лесной пожар.
Окончательный вердикт по ГСЧ – хорошо или плохо?
На этот вопрос сложно ответить, и определенно не может быть одного и того же ответа для всех. В то время как среднестатистические геймеры утверждают, что это хорошо, другим нравится соревновательный дух.
Алгоритм генератора случайных чисел действительно сохраняет непредсказуемость и интересность каждый раз, когда вы играете на одном уровне. Он стал важной частью многих игр, предлагая разнообразие, например, головоломки, карточные игры, ролевые игры и многие другие. Но, для геймеров, которые верят в навыки как в единственный способ пройти игру, ГСЧ подрывает их потенциал, когда вытаскивает что-то случайное из коробки.
Игры предназначены для развлечения и удовольствия. Если у вас хороший ГСЧ, вы сможете получить лучшие варианты, несмотря на низкие шансы. В случае плохого ГСЧ, вы получите худший результат, даже если вы играли в игру именно так, как должно. Правда в том, что это не то, что можно воспринимать так серьёзно, особенно если оно основано на алгоритме генератора случайных чисел.
Как устроены генераторы чисел?
Чтобы понять, как действует генератор случайных чисел, нужно разобраться в его устройстве и в том, на чем он основывается. Генератор чисел создает определенный порядок абсолютно независящих друг от друга чисел, основываясь на определенных параметрах рассматриваемого элемента, процесса, действия и так далее. В связи с тем, что речь идет о случайных числах, то и параметры изменяются хаотично.
Существует много распространенных и достаточно примитивных примеров, на которых можно рассмотреть его устройство: подкидывание любой монеты, бросок игрального кубика и так далее.
Принцип устройства
В работе генератора случайных чисел активно задействован ряд теорий (в частности, теория хаоса). С этим и связана абсолютная непредсказуемость выпадения того или иного шарика в лототроне, определенной грани игральной кости, загаданной до броска стороны монетки. Однако стоит отметить, что и в науке такой аппарат играет важную роль: в первую очередь для статистических исследований.
Что такое случайность и как её создать?
Основным условием, крайне важным для соблюдения правильных и честных принципов работы системы ГСЧ, является абсолютно равная вероятность на выпадение любого из возможных чисел, которые только могут выпасть в созданной системе. При этом соблюдается полная независимость от того фактора, какие еще числа выпали до или после этого.
Это можно объяснить более простым языком: в генераторе истинно случайных чисел просто нельзя выстроить порядок и зависимость выпадающих цифр. Допустим, если вы бросаете первый раз шестигранную игральную кость, то у вас может выпасть абсолютно любое число от 1 до 6 с одинаковой вероятностью 16,(6)%. И независимо от того, какая цифра выпала, она с аналогичной вероятностью может повторно выпасть при втором, сотом, тысячном бросках.
Псевдослучайность
Также существует генератор псевдослучайных последовательностей. Несмотря на то, что на первый взгляд в нем тоже очевидно отсутствие закономерностей, подобный генератор с конечным числом внутренних состояний повторится, хотя это может произойти после очень длительной цепочки чисел.
Случайные числа (random numbers)
Психологи часто пользуются С. ч. для решения разных задач. Напр., можно сформировать случайную выборку, нумеруя потенциальных испытуемых в совокупности, а затем отбирая на основе таблицы С. ч. реальных испытуемых для включения в ее состав. Такой случайный процесс гарантировал бы получение случайной (непредвзятой) выборки — необходимого, по существу, условия всех видов статистического анализа.
С. ч. тж могут использоваться для распределения испытуемых по группам (соответственно условиям) в эксперименте, для выбора уровней предъявления независимой переменной или для эмпирического построения выборочных распределений статистик путем случайного извлечения выборок из совокупности с известным распределением.
См. также Вероятность, Статистика в психологии
Смотреть что такое «Случайные числа (random numbers)» в других словарях:
СЛУЧАЙНЫЕ ЧИСЛА — (random numbers) см. Выборочная совокупность и выборка … Большой толковый социологический словарь
Псевдослучайные числа — Генератор псевдослучайных чисел (ГПСЧ, англ. Pseudorandom number generator, PRNG) алгоритм, генерирующий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному).… … Википедия
Генератор псевдослучайных чисел — (ГПСЧ, англ. Pseudorandom number generator, PRNG) алгоритм, порождающий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному). Современная информатика… … Википедия
Датчик случайных чисел — Генератор псевдослучайных чисел (ГПСЧ, англ. Pseudorandom number generator, PRNG) алгоритм, генерирующий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному).… … Википедия
Криптостойкий генератор псевдослучайных чисел — Генератор псевдослучайных чисел (ГПСЧ, англ. Pseudorandom number generator, PRNG) алгоритм, генерирующий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному).… … Википедия
Псевдослучайное число — Генератор псевдослучайных чисел (ГПСЧ, англ. Pseudorandom number generator, PRNG) алгоритм, генерирующий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному).… … Википедия
Криптографически стойкий генератор псевдослучайных чисел — (англ. Cryptographically secure pseudorandom number generator, CSPRNG) это генератор псевдослучайных чисел с определенными свойствами, позволяющими использовать его в криптографии. Многие прикладные задачи криптографии требуют случайных… … Википедия
Задача о разорении игрока — Задача о разорении игрока задача из области теории вероятностей. Подробно рассматривалась российским математиком А. Н. Ширяевым в монографии «Вероятность»[1] … Википедия
Готовимся к собеседованию: случайные числа в Python
Случайность управляет миром, а вы будете управлять случайностью. С помощью Python, конечно.
Чтобы имитировать бросок кубика в игре или предсказать загруженность интернет-ресурса, нужны случайные числа.
Мы разобрали самые популярные вопросы о случайных числах в Python с собеседований. Чаще всего для ответа достаточно написать код и кратко его прокомментировать. Да пребудет с вами Великий Рандом!
Главное, что нужно помнить
С некоторых пор утверждает, что он data scientist. В предыдущих сезонах выдавал себя за математика, звукорежиссёра, радиоведущего, переводчика, писателя. Кандидат наук, но не точных. Бесстрашно пишет о Data Science и программировании на Python.
Вопрос 1. Что такое случайные числа?
Что нужно помнить: случайные числа — это математическое понятие, и их не следует путать с обыденными, произвольными числами. Случайное число в математике и программировании — это:
Другими словами, существует закон или правило, которое называется «функцией распределения» или просто «распределением». И это самое распределение «раздаёт» каждому числу из диапазона определённую вероятность выпадения.
В качестве диапазона значений математикам и программистам привычнее всего использовать диапазон действительных чисел от 0 до 1, но это могут быть и целые числа от 1 до 6, как в игральном кубике, или от 100 до 1 000 000 — и так далее. Главное, что и распределение, и диапазон известны заранее, а само число нет.
Итого: случайные числа — это искусственно полученная последовательность чисел из определённого диапазона, которая подчиняется одному из законов распределения случайной величины.
Распределения бывают разные. Так, равномерное распределение — это когда любое значение из диапазона имеет одну и ту же вероятность выпадения (как у игрального кубика или монетки). Если же распределение, например, нормальное (гауссиана), то чаще выпадают числа из середины диапазона. Есть даже таблица — она поможет выбрать подходящее распределение.
Вопрос 2. Как получить случайные числа в Python?
Основных способов два: с помощью «родной» библиотеки random и с помощью модуля numpy.random из библиотеки numpy.
Прежде чем интервьюер придерётся, не забудьте сказать, что и random, и numpy.random — генераторы псевдослучайных чисел (о них ниже). Истинно случайные числа можно получить, например, c сайта Random.Org: там они генерируются с помощью атмосферного шума.
Библиотека random имеет меньший объём, чем numpy.random, и проще в использовании. Зато numpy.random содержит дополнительные распределения для научных вычислений, а также функции для генерирования целых массивов случайных данных.
В первой строчке мы импортировали default_rng — это «генератор генераторов» случайных массивов из модуля numpy.random. Во второй — создали экземпляр такого генератора и присвоили ему имя rng. В третьей использовали его метод standard_normal, чтобы получить numpy-массив из 10 случайных чисел, и записали массив в переменную vals.
Вопрос 3. Псевдослучайные числа
Псевдослучайные числа — это, если очень упрощать, последовательность чисел, которая только выглядит случайной, а на самом деле каждое число в ней определяется алгоритмом, то есть вычисляется. Псевдослучайные последовательности цикличны: через какой-то период все числа повторяются в точности в том же порядке.
Библиотека random и модуль numpy.random содержат в себе генератор не истинно случайных, а именно псевдослучайных чисел.
Генерировать истинно случайные числа дорого и сложно. Основная трудность состоит в том, чтобы гарантировать отсутствие какого-либо цикла, правила или алгоритма. Чаще всего истинно случайные числа берут из физического мира: шумов атмосферы, детекторов частиц, колебаний электрического тока или из космического излучения.
То, что псевдослучайная последовательность, в отличие от истинно случайной, воспроизводима, очень удобно для практических задач: часто нужно подать на вход ту же самую последовательность второй раз, чтобы посмотреть, как работает программа после добавления новых фич.
Наиболее популярный современный алгоритм генерирования псевдослучайных чисел разработан в 1997 году и носит красивое название «Вихрь Мерсенна». Он используется и в Python. Последовательность чисел, порождённая им, статистически неотличима от истинно случайной и имеет период, равный числу с шестью тысячами знаков. Этого хватает для задач симуляции и моделирования, но с точки зрения криптографии такая последовательность всё равно небезопасна: для успешной атаки достаточно иметь сравнительно небольшую сгенерированную этим генератором последовательность.
Вопрос 4. Как повторить случайную последовательность?
Истинно случайную последовательность повторить невозможно. Но для повторения псевдослучайных чисел в обеих основных библиотеках — random и numpy.random есть функция seed (), которая отвечает за инициализацию («посев») последовательности.
Передавая аргумент 42 в функцию seed(), мы указываем конкретное место в псевдослучайной последовательности, поэтому команда random.random() в третьей и последней строках выдаёт одинаковое число — оно идёт первым после точки, помеченной как seed (42).
В seed() можно передать целые и дробные числа, а также строки и кортежи. Если оставить скобки пустыми, то в качестве аргумента seed() возьмёт текущее системное время.
Аналогичная функция есть в модуле numpy.random:
Вопрос 5. Красные и зелёные шары
Часто на собеседованиях просят написать программу, связанную с вероятностями. Например, код для численной проверки ответа к задачке «Какова вероятность вытащить зелёный шар из мешка, в котором 1 зелёный и 4 красных шара».
(Ответ ⅕ = 0,2).
Иными словами, если 100 раз вынимать шар из мешка, возвращая его обратно, количество выпадения зелёных шаров должно приближаться к 20. Вариант кода для проверки:
Функция random.choice() случайным образом выбирает значение из заданного диапазона — списка из одного « green» и четырёх « red». Код выведет количество зелёных шаров после 100 попыток.
Вопрос 6. Нечестная монетка
Другой вариант: предположим, у нас есть так называемая «нечестная» монетка, где орёл ( H, «heads») и решка ( T, «tails») выпадают не с вероятностью ½, как положено, а по-другому: орёл с вероятностью p(H) = 0,2, а решка, соответственно, p(T) = 0,8.
Тогда код для проверки будет выглядеть примерно так:
Здесь используется другая функция, choices, в которую вместе со списком значений можно в параметре weights передавать вероятности их выпадения.
Код выведет количество выпавших орлов после 10 000 бросков.
К слову: задачи на нечестные монетки, наряду с поиском n-ного числа Фибоначчи и нахождением угла между часовой и минутной стрелками, кочуют из одного собеседования в другое уже не первый десяток лет. Есть вероятность, что одна из них попадётся и вам.
Вопрос 7. Проиллюстрируйте закон больших чисел
Закон больших чисел (ЗБЧ) говорит, что при увеличении количества попыток случайная величина стремится к своему математическому ожиданию — всё усредняется. Подробнее об этом можно прочитать в нашей статье об основах математики для Data Science.
Код для иллюстрации ЗБЧ на примере честной монетки выглядит так:
Вначале мы импортировали уже знакомый нам модуль random и модуль matplotlib.plt — он нужен для рисования простых графиков. После этого определили переменные: общее количество бросков ( total_flips), список из значений вероятностей ( numerical_probability), количество выпавших орлов ( H_count).
Теперь в цикле мы 5 000 раз «подбрасываем» монетку. Если выпадает орёл (« H»), то делим текущее количество выпавших орлов на текущее количество бросков и добавляем итоговое значение в конец списка numerical_probability. В конце рисуем график.
Чем больше бросков, тем ближе к 0,5 вероятность выпадения орла. Всё, как и предсказывает закон больших чисел.
Вопрос 8. Где применяются случайные числа?
В логистике: при расчётах страховых запасов товара — чтобы склад внезапно не опустел или, наоборот, не пришлось держать избыток товара слишком долго. Принято считать, что поведение покупателей случайно и подчиняется одной из разновидностей нормального распределения. В особо запущенных случаях считается случайным даже поведение поставщиков.
В науке: с помощью метода Монте-Карло учёные моделируют поведение частиц во фрактальном окружении в трёхмерном пространстве. Метод Монте-Карло основан на использовании большого количества генерируемых случайных чисел.
В микроэлектронике: броуновское движение частиц играет важную роль в формировании пористости плёночного покрытия полупроводников при напылении его на поверхность. Просчитать это на компьютере гораздо дешевле, чем экспериментировать с реальным покрытием, поэтому сначала его рассчитывают, а потом запускают в производство.
В криптографии: для генерации шифровальных ключей. Здесь становится особенно важным различие между псевдослучайными и истинно случайными числами.
Случайности не случайны
А чтобы никакая псевдослучайность не помешала вам успешно пройти собеседование, приходите в наш Шаолинь на курс «Профессия Python-разработчик». Вы изучите random, numpy и ещё много приёмов пайтонического кунг-фу, а мы поможем с наставниками, единомышленниками и, конечно, с трудоустройством.
Персонаж мультфильма «Кунг-фу Панда», старая мудрая черепаха, учитель и основоположник кунг-фу.