что такое протокол 101
Что такое протокол 101
ГОСТ Р МЭК 60870-5-101-2006
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
УСТРОЙСТВА И СИСТЕМЫ ТЕЛЕМЕХАНИКИ
Обобщающий стандарт по основным функциям телемеханики
Telecontrol equipment and systems.
Part 5. Transmission protocol.
Section 101. Companion standard for basic telecontrol tasks
ОКС 33.200
ОКП 42 3200
Дата введения 2006-09-01
Сведения о стандарте
1 ПОДГОТОВЛЕН ОАО «Научно-исследовательский институт электроэнергетики» (ОАО ВНИИЭ) на основе собственного аутентичного перевода стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 396 «Автоматика и телемеханика»
4 Настоящий стандарт идентичен международному стандарту МЭК 60870-5-101:2003 «Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 101. Обобщающий стандарт по основным функциям телемеханики» (IEC 60870-5-101:2003 «Telecontrol equipment and systems. Part 5. Transmission protocol. Section 101. Companion standard for basic telecontrol tasks»).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении А
1 Область применения
Настоящий стандарт определяет ASDU* с метками времени СР24Время2а, которые включают три байта времени в двоичном коде от миллисекунд до минут. Кроме того, в настоящем стандарте определены ASDU с метками времени СР56Время2а, которые включают семь байтов времени в двоичном коде от миллисекунд до лет (см. пункт 6.8 МЭК 60870-5-4 и 7.2.6.18 настоящего стандарта).
ASDU с метками времени СР56Время2а используются, если пункт управления (ПУ) не может добавить время от часов до лет однозначно к получаемым ASDU с метками от миллисекунд до минут. Это может случиться при использовании сетей с неопределенными задержками или когда возникает временный сбой в сети.
Несмотря на то, что настоящий стандарт определяет наиболее важные пользовательские функции, кроме актуальных функций связи, он не может гарантировать полную совместимость и возможность совместной работы аппаратуры различных изготовителей. Обычно требуется дополнительное взаимное соглашение между заинтересованными компаниями в отношении методов использования определенных функций связи, принимая во внимание работу всей аппаратуры телемеханики.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие международные стандарты и документы:
МЭК 60870-1-1:1988 Устройства и системы телемеханики. Часть 1. Основные положения. Раздел 1. Общие принципы
МЭК 60870-5-1:1990 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров
МЭК 60870-5-2:1992 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 2. Процедуры в каналах передачи
МЭК 60870-5-3:1992 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 3. Общая структура данных пользователя
МЭК 60870-5-4:1993 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 4. Определение и кодирование элементов пользовательской информации
МЭК 60870-5-5:1995 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 5. Основные прикладные функции
МЭК 60870-5-103:1997 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщенный стандарт по информационному интерфейсу для аппаратуры релейной защиты
ИСО/МЭК 8824-1:2000 Информационная технология. Абстрактная синтаксическая нотация версии один (АСН.1). Часть 1. Спецификация основной нотации
Рекомендация МСЭ-Т V.24:1993 Перечень определений линий стыка между оконечным оборудованием данных (ООД) (DTE) и аппаратурой окончания канала данных (АКД) (DCE)
Рекомендация МСЭ-Т V.28:1993 Электрические характеристики несимметричных цепей стыка, работающих двухполюсным током
Рекомендация МСЭ-Т Х.24:1988 Перечень определений цепей стыка между ООД и АКД в сетях данных общего пользования
Рекомендация МСЭ-Т Х.27:1988 Электрические характеристики симметричных цепей стыка, работающих двухполюсным током, используемых в аппаратуре на интегральных схемах в области передачи данных
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 обобщающий стандарт (companion standard): Стандарт, добавляющий семантику к определениям базового стандарта или функционального профиля; это может выражаться определением конкретного использования объектов информации или определением дополнительных объектов информации, сервисных процедур и параметров базовых стандартов.
3.2 группа (объектов информации) [group (for information objects)]: Это выборка из ОБЩИХ АДРЕСОВ или АДРЕСОВ ИНФОРМАЦИИ, которая специально определяется для конкретных систем.
3.3 направление управления (control direction): Направление передачи от контролирующей станции к контролируемой станции.
3.4 направление контроля (monitor direction): Направление передачи от контролируемой станции к контролирующей станции.
3.5 параметр системы (system parameter): Параметр, действительный для всей системы телемеханики, использующей настоящий обобщающий стандарт; система телемеханики состоит из нескольких контролирующих и контролируемых станций, которые могут быть соединены сетями различной конфигурации.
3.6 параметр, характерный для сети (network-specific parameter): Параметр, определяющий сеть и действительный для всех станций, соединенных сетями определенной конфигурации.
3.7 параметр, характерный для станции (station-specific parameter): Параметр, определяющий станцию и действительный для определенных станций.
3.8 параметр, характерный для объекта (object-specific parameter): Параметр, определяющий объект и действительный для отдельного объекта информации или определенной группы информационных объектов.
4 Основные правила
Настоящий пункт представляет основные правила построения обобщающих стандартов для протоколов передачи систем телемеханики, использующих протоколы стандартов серии МЭК 60870-5. Эти правила приведены в нижеследующих подпунктах.
4.1 Структура протокола
Протоколы стандартов серии МЭК 60870-5 основаны на трехуровневой модели «Структура повышенной производительности» (ЕРА), определенной в пункте 4 МЭК 60870-5-3.
Физический уровень использует рекомендации МСЭ-Т, что соответствует модели двоичного симметричного канала без памяти в требуемой среде, чтобы сохранить высокий уровень достоверности данных при блочном кодировании на канальном уровне.
Канальный уровень содержит ряд процедур передачи по каналу, в явной форме использующих УПРАВЛЯЮЩУЮ ИНФОРМАЦИЮ КАНАЛЬНОГО ПРОТОКОЛА (LPCI), что дает возможность передавать БЛОКИ ДАННЫХ ПРИКЛАДНОГО УРОВНЯ (ASDU) как данные пользователя канала. Канальный уровень использует выбор форматов кадра, чтобы обеспечить требуемую достоверность, эффективность и удобство передачи.
Прикладной уровень содержит ряд «Прикладных функций», включающих передачу БЛОКОВ ДАННЫХ ПРИКЛАДНОГО УРОВНЯ между источником и получателем.
Прикладной уровень настоящего обобщающего стандарта не использует в явном виде УПРАВЛЯЮЩУЮ ИНФОРМАЦИЮ ПРОТОКОЛА ПРИКЛАДНОГО УРОВНЯ (APCI). Эта информация содержится в составе поля ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ ASDU и в типе используемого канального сервиса.
На рисунке 1 показана модель структуры повышенной производительности (ЕРА) и выбранные стандартные определения настоящего обобщающего стандарта.
Выбранные прикладные функции по МЭК 60870-5-5
Выбранные прикладные элементы информации по МЭК 60870-5-4
Прикладной (уровень 7)
Выбранные блоки данных прикладного уровня по МЭК 60870-5-3
Выбранные процедуры передачи по каналу по МЭК 60870-5-2
Канальный (уровень 2)
Выбранные форматы кадра передачи по МЭК 60870-5-1
Выбранные рекомендации МСЭ-Т
Физический (уровень 1)
4.2 Физический уровень
Стандартным интерфейсом между ООД и АКД является асинхронный интерфейс по рекомендациям МСЭ-Т V.24 и МСЭ-Т V.28. Использование требуемых сигналов интерфейса зависит от режима работы используемого канала передачи. Настоящий стандарт определяет выбор цепей (сигналов) обмена, которые могут быть использованы, но не все из них являются необходимыми.
4.3 Канальный уровень
МЭК 60870-5-2 предлагает выбор процедур передачи по каналу с использованием поля управления и необязательного поля адреса. Канал между станциями может работать в балансном или небалансном режиме. Соответствующие функциональные коды для поля управления определяются для обоих режимов работы.
Если каналы от ПУ к нескольким КП используют общий физический канал, то эти каналы должны работать в небалансном режиме, чтобы исключить возможность попыток более чем одного КП передавать по каналу одновременно. Последовательность, с которой различным КП разрешен доступ к передаче по каналу, определяется процедурой прикладного уровня на ПУ (см. подпункт 6.2 «Сбор данных при помощи опроса» МЭК 60870-5-5).
Настоящий стандарт определяет, используется ли небалансный или балансный режим передачи; какие канальные процедуры (и соответствующие функциональные коды) должны применяться.
Настоящий стандарт определяет однозначный адрес (номер) для каждого соединения. Каждый адрес может быть единственным внутри данной системы или единственным внутри группы каналов, использующих общий канал. Последнее требует меньшего адресного поля, но ПУ должен устанавливать соответствие между адресами и номером канала.
Настоящий стандарт дает возможность определить один формат кадра, выбранный из нескольких форматов, предлагаемых стандартом МЭК 60870-5-1. Выбранный формат должен обеспечивать требуемую достоверность вместе с максимальной эффективностью, возможной при приемлемом уровне удобства выполнения. Кроме того, настоящий стандарт определяет выдержку тайм-аута на первичной станции и максимально допустимое время реакции на вторичной станции для всех каналов [см. МЭК 60870-5-2 (приложение А, пункт А.1 в части деталей выбора временных параметров канала)].
4.4 Прикладной уровень
Настоящий стандарт определяет соответствующие ASDU из общей структуры, заданной МЭК 60870-5-3. Эти ASDU построены с применением определений и кодовых обозначений для прикладных элементов информации, заданных МЭК 60870-5-4.
Что такое протокол 101
Канальный уровень добавляет к APDU контрольную информацию протокола канального уровня (LPCI), образовывая блок данных протокола канального уровня (LPDU). Этот уровень также подготавливает каждый октет в LPDU к отправке в виде асинхронных серийных символов, имеющих один стартовый бит (значение = 0), восемь битов данных (октет данных), один бит контроля четности и один бит окончания (значение = 1).
Для скорости передачи до 1,2 кбит/с используется модуляция FSK (кодирование со сдвигом широт), симметричная и требующая меньше памяти. Она подходит для большинства аналоговых каналов со звуковой частотой на линии передачи основного диапазона, высокочастотной линии ЛЭП и средств радиопередачи.
Для скорости передачи, превышающей 1,2 кбит/с, используются синхронные модемы. Более быстрые передачи, до 19,2 кбит/с, также возможны на линиях передачи данных прямого соединения, использующих концентраторы цифровых сигналов.
Кадр LPDU обеспечивает очень высокую целостность данных (целостность класса 12 стандарта IEC). В полученном кадре должно быть, по крайней мере, четыре ошибочных бита для того, чтобы произошла не диагностируемая ошибка кадра. Благодаря контролю четности не диагностируемая ошибка символа может произойти только при появлении как минимум двух ошибочных бит. Благодаря проверке контрольной суммы не диагностируемая ошибка контрольной суммы может произойти только при появлении как минимум двух ошибочных символов. Таким образом, для не диагностируемой ошибки кадра требуются четыре ошибочных бита.
Этот протокол может быть реализован в двух физических конфигурациях:
· многоточечная (шинная) конфигурация с передачей данных по принципу «клиент-сервер», где применяемый метод доступа к среде передачи данных это опрос;
· индивидуальные соединения со всеми удаленными станциями в типичной звездообразной конфигурации. Индивидуальные соединения позволяют устанавливать сбалансированный (полнодуплексный) доступ к среде обмена данными для канального протокола, делая возможным спонтанную отправку данных в обоих направлениях.
Этот протокол выполняет канальные функции. Однако практические соображения, в том числе более высокая стоимость, могут ограничить его использование.
В основу протокола, как и в предыдущем случае, положен обмен таблицами сигналов, причем типы данных, которыми осуществляется обмен, жестко фиксированы.
В целом протокол хорошо подходит для решения описанного выше спектра задач, однако обладает рядом недостатков:
· Передача данных осуществляется в два этапа:
1) Назначение индексированных коммуникационных объектов на прикладные объекты;
2) Назначение прикладных объектов на переменные в прикладной базе данных или программе. Таким образом, отсутствует семантическая связь (полностью или частично) между передаваемыми данными и объектами данных прикладных функций.
· Протоколы не предусматривают возможность передачи сигналов реального времени. При этом под сигналами реального времени понимаются данные, которые должны передаваться в темпе процесса с минимально возможными выдержками времени, к которым относятся, например, команды отключения, передача мгновенных значений токов и напряжений от измерительных трансформаторов. При передаче таких сигналов задержки в канале связи являются критическими.
Что такое протокол 101
ГОСТ Р МЭК 870-5-101-2001
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
УСТРОЙСТВА И СИСТЕМЫ ТЕЛЕМЕХАНИКИ
Часть 5. Протоколы передачи
Раздел 101. Обобщающий стандарт по основным функциям телемеханики
Telecontrol equipment and systems.
Part 5. Transmission protocols.
Section 101. Companion standard for basic telecontrol tasks
Дата введения 2002-01-01
1 РАЗРАБОТАН АО «Научно-исследовательский институт электроэнергетики» (ВНИИЭ)
ВНЕСЕН Российским акционерным обществом энергетики и электрификации РАО «ЕЭС России»
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 13 марта 2001 г. N 120-ст
Настоящий стандарт содержит полный аутентичный текст международного стандарта МЭК 870-5-101-95 «Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 101. Обобщающий стандарт по основным функциям телемеханики»
ВНЕСЕНО Изменение N 1, принятое и введенное в действие Постановлением Госстандарта России от 24.12.2001 N 571-ст с 01.07.2002
Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 3 2002 год
1 Область применения и объект
Настоящий стандарт из серии ГОСТ Р МЭК 870-5 распространяется на устройства и системы телемеханики с передачей данных последовательными двоичными кодами для контроля и управления территориально распределенными процессами. Раздел 101 является обобщающим стандартом по основным функциям телемеханики, что дает возможность взаимодействия различной совместимой аппаратуры телемеханики. Настоящий обобщающий стандарт использует стандарты от ГОСТ Р МЭК 870-5-1 до ГОСТ Р МЭК 870-5-5.
Настоящий стандарт определяет ASDU с метками времени СР24Время2а, которые включают три байта времени в двоичном коде от миллисекунд до минут. Кроме того, в настоящем стандарте определены ASDU с метками времени СР56Время2а, которые включают семь байт времени в двоичном коде от миллисекунд до лет (см. п.6.8 ГОСТ Р МЭК 870-5-4 и п.7.2.6.18 настоящего стандарта).
ASDU с метками времени СР56Время2а используются, если ПУ не может добавить время от часов до лет однозначно к получаемым ASDU с отметками от миллисекунд до минут. Это может случиться при использовании сетей с неопределенными задержками или если возникает временный сбой в сети.
(Измененная редакция, Изм. N 1).
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ Р МЭК 870-1-1-93 Устройства и системы телемеханики. Часть 1. Основные положения. Раздел 1. Общие принципы
ГОСТ Р МЭК 870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров
ГОСТ Р МЭК 870-5-2-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 2. Процедуры в каналах передачи
ГОСТ Р МЭК 870-5-3-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 3. Общая структура данных пользователя
ГОСТ Р МЭК 870-5-4-96 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 4. Определение и кодирование элементов пользовательской информации
ГОСТ Р МЭК 870-5-5-96 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 5. Основные прикладные функции
3 Определения
В настоящем стандарте применяются следующие термины с соответствующими определениями:
3.1 обобщающий стандарт: Обобщающий стандарт добавляет семантику к определениям базового стандарта или функционального профиля. Это может выражаться определением конкретного использования информационных объектов или определением дополнительных информационных объектов, сервисных процедур и параметров базовых стандартов.
3.3 направление управления: Направление передачи от контролирующей станции к контролируемой станции.
3.4 направление контроля: Направление передачи от контролируемой станции к контролирующей станции.
3.5 параметр системы: Параметр системы (или параметр, определенный в системе) действителен для всей системы телемеханики, использующей настоящий обобщающий стандарт. Система телемеханики состоит из нескольких контролирующих и контролируемых станций, которые могут быть соединены сетями различной конфигурации.
3.6 параметр, характерный для сети: Параметр, определяющий сеть, действителен для всех станций, соединенных сетями определенной конфигурации.
3.7 параметр, характерный для станции: Параметр, определяющий станцию, действителен для определенных станций.
3.8 параметр, характерный для объекта: Параметр, определяющий объект, действителен для отдельного информационного объекта или определенной группы информационных объектов.
4 Основные правила
В настоящем пункте приведены основные правила построения обобщающих стандартов для протоколов передачи систем телемеханики, использующих протоколы серии ГОСТ Р МЭК 870-5.
4.1 Структура протокола
Протоколы серии ГОСТ Р МЭК 870-5 основаны на трехуровневой модели «Укрупненная структура» (ЕРА), определенной в пункте 4 ГОСТ Р МЭК 870-5-3.
Физический уровень использует рекомендации МСЭ-Т, что соответствует модели двоичного симметричного канала без памяти в требуемой среде, чтобы сохранить высокий уровень достоверности данных при блочном декодировании на канальном уровне.
Канальный уровень содержит ряд процедур передачи по каналу, в точности использующих УПРАВЛЯЮЩУЮ ИНФОРМАЦИЮ КАНАЛЬНОГО ПРОТОКОЛА (LPCI), что дает возможность передавать БЛОКИ ДАННЫХ НА ПРИКЛАДНОМ УРОВНЕ (ASDU) как данные пользователя канала. Канальный уровень использует выбор форматов кадра, чтобы обеспечить требуемую достоверность/эффективность и удобство передачи.
Прикладной уровень содержит ряд «Прикладных функций», включающих передачу БЛОКОВ ДАННЫХ НА ПРИКЛАДНОМ УРОВНЕ (ASDU) между источником и получателем.
Прикладной уровень настоящего обобщающего стандарта не использует в явном виде УПРАВЛЯЮЩУЮ ИНФОРМАЦИЮ ПРОТОКОЛА ПРИКЛАДНОГО УРОВНЯ (APCI). Эта информация содержится в составе поля ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ ASDU и в типе используемого канального сервиса.
На рисунке 1 показана укрупненная структура модели (ЕРА) и выбранные стандартные определения обобщающего стандарта.
Выбранные прикладные функции по ГОСТ Р МЭК 870-5-5
Выбранные прикладные информационные элементы по ГОСТ Р МЭК 870-5-4
Прикладной (уровень 7)
Выбранные блоки данных прикладного уровня по ГОСТ Р МЭК 870-5-3
Выбранные процедуры передачи по каналу по ГОСТ Р МЭК 870-5-2
Канальный (уровень 2)
Выбранные форматы кадра передачи по ГОСТ Р МЭК 870-5-1
Выбранные рекомендации МСЭ-Т
Физический (уровень 1)
4.2 Физический уровень
Настоящий стандарт определяет рекомендации МСЭ-Т, которые обеспечивают интерфейсы между аппаратурой окончания канала данных (АКД) и оконечным оборудованием данных (ООД) на контролирующей (ПУ)* и контролируемой (КП)* станциях (см. рисунок 2).
Стандартным интерфейсом между ООД и АКД является асинхронный интерфейс по рекомендациям МСЭ-Т V.24/V.28 [1], [2]. Использование требуемых сигналов интерфейса зависит от режима работы используемого канала передачи. Настоящий стандарт определяет выбор цепей (сигналов) обмена, которые могут быть использованы, но не являются необходимыми.
4.3 Канальный уровень
ГОСТ Р МЭК 870-5-2 предлагает выбор процедур передачи по каналу с использованием поля управления и необязательного поля адреса. Канал между станциями может работать в симметричном или несимметричном режиме. Соответствующие функциональные коды для поля управления определяются для обоих режимов работы.
Если каналы от ПУ к нескольким КП используют общий физический канал, то эти каналы должны работать в несимметричном режиме, чтобы исключить возможность более чем одному КП пытаться передавать по каналу одновременно. Последовательность, с которой различным КП разрешен доступ к передаче по каналу, определяется процедурой прикладного уровня на ПУ (см. 6.2 «Сбор данных при помощи опроса» ГОСТ Р МЭК 870-5-5).
Настоящий стандарт определяет, используется ли несимметричный или симметричный режим передачи и какие канальные процедуры (и соответствующие функциональные коды) должны применяться.
Стандарт определяет однозначный адрес (номер) для каждого канала. Каждый адрес может быть единственным внутри данной системы или единственным внутри группы каналов, использующих общий канал. Последнее требует меньшего адресного поля, но ПУ должен устанавливать соответствие между адресами и номером канала.
Стандарт должен определить один формат кадра, выбранный из нескольких предлагаемых ГОСТ Р МЭК 870-5-1. Выбранный формат должен обеспечивать требуемую достоверность вместе с максимальной эффективностью, возможной при приемлемом уровне удобства выполнения. Кроме того, стандарт определяет выдержку тайм-аута ( или ) на первичной станции и максимально допустимое время реакции ( ) на вторичной станции для всех каналов (см. приложение A.1 ГОСТ Р МЭК 870-5-2 в части деталей выбора временных параметров и канала).
4.4 Прикладной уровень
Настоящий стандарт должен определить соответствующие ASDU из общей структуры, заданной ГОСТ Р МЭК 870-5-3. Эти ASDU должны строиться с применением определений и кодовых обозначений для прикладных информационных элементов, заданных ГОСТ Р МЭК 870-5-4.
Стандарт должен определять один выбранный порядок передачи полей прикладных данных (см. 4.10 ГОСТ Р МЭК 870-5-4). Порядок (режим 1 или режим 2) должен быть выбран, чтобы обеспечить максимально общий подход к программированию для различных ЭВМ на телемеханизированных станциях.
4.5 Прикладной процесс
ГОСТ Р МЭК 870-5-5 представляет набор основных прикладных функций. Настоящий стандарт содержит один или несколько примеров таких функций, выбранных, чтобы обеспечить необходимый набор прикладных процедур ввода/вывода, удовлетворяющий требованиям систем телемеханики.
5 Физический уровень
5.1 Выдержки из стандартов ИСО и МСЭ-Т
Имеются следующие фиксированные структуры сети:
Подмножество из рекомендаций МСЭ-Т V.24 и V.28, определенное в ГОСТ Р МЭК 870-1-1, действительно.
В случае цифровой передачи, использующей дискретный мультиплексор, интерфейс по рекомендациям МСЭ-Т Х.24/Х.27 [3], [4] может быть применен для каналов до 64 кбит/с по специальной договоренности (см. 5.1.2).
Становление стандартов передачи телемеханических данных в электроэнергетике (МЭК 101/104) — особенности разработки
Здравствуйте! Меня зовут Юрий.
Преамбула
Проработав несколько лет в энергетической отрасли в теме организации передачи данных, хочу поделиться с сообществом полученными знаниями, в том числе тем, «как это было».
Сразу оговорюсь, что в тексте будут даны названия компаний и продуктов, которые на рынке уже давно, так что рассматривать это как рекламу я бы не стал. Также хочу отметить, что все сроки, связанные с «неразглашением конфиденциальной информации» давно уже прошли, что позволяет мне делиться полученной в процессе работы информацией. Какие-то конкретные фамилии «ответственных за» называться не будут, т.к. все они в той или иной степени развивали это направление.
Ссылки в статье даны для тех, кто желает погрузиться в тему немного глубже.
Как все начиналось
Немного о 603-ем приказе
Полное название документа: О приведении систем телемеханики и связи на генерирующих предприятиях электроэнергетики, входящих в состав холдинга ОАО РАО «ЕЭС России», в соответствие с требованиями балансирующего рынка, Приказ № 603 от 09.09.2005 ОАО РАО «ЕЭС России».
Спорные моменты протокола МЭК
Есть несколько нюансов, которые никак нельзя трактовать однозначно.
Метка времени в формате UTC
В зарубежной реализации протокола сказано, что рекомендуется использовать метку времени в формате UTC. Парадоксально, но для Российской редакции этого документа для нашей много-часовопоясной страны эта сточка отсутствует, хотя она могла бы решить огромное количество проблем, связанных с передачей данных из одного часового пояса в другой!
Отсутствие часовых поясов
В 7-ми байтной метке времени есть большое количество свободного пространства, которое позволяет задать текущий часовой пояс, если уж возникла такая необходимость.
Возможность расширения
Как показала практика применения данного протокола, из всего набора определенных в нем типов кадров реально применяется процентов 20, максимум. Но в самом начале его использования отечественные разработчики постарались использовать кадры, зарезервированные под дальнейшее расширение. Это к вопросу о процессе «развития» протокола.
Немного о продуктах того периода и их возможностях
В связи с тем, что энергетика — это достаточно денежная отрасль, к «кормушке» старались попасть большое количество фирм со своими продуктами или услугами. Соответственно, по распространенности того или иного продукта можно судить насколько близко договорились между собой представители власти и представители того или иного бизнеса.
К счастью, в случае если эти договоренности так или иначе сопровождал какой-то продукт на первом этапе не самого лучшего качества, постепенно он доводился до ума, модернизировался и сейчас уже можно сказать является надежным и не заменимым. Но про сложности этапа внедрения, связанные с «сыростью» и не согласованностью решений между различными участниками все-таки помнить следует.
О косяках особенностях в реализации
Прим.: В связи с тем, что на тот момент моя работа в компании была непосредственно связана с тестированием оборудования тех или иных производителей для выдачи разрешительных документов на внедрение этих систем на объектах сдаваемых ОАО «СО ЕЭС», разработчиков я видел достаточно много, с некоторыми из которых я до сих пор поддерживаю хорошие отношения.
Основные особенности в реализации протоколов были связаны с непониманием процедурной части реализации протоколов. Т.к. МЭК раздел 870-5 регламентирует только форматы передаваемых данных, часть производителей подразумевала, что можно тупо эти данные слать, не выполняя никаких процедур, связанных с установкой соединения на канальном уровне. За процедурную часть отвечал раздел МЭК 870-6, на который почему-то никто из «законодателей» не обращал внимания. Тем не менее, имея в запасе прекрасно сформулированное Норвежское соглашение, со всеми его диаграммами и вычеркнутыми частями, всем производителям удалось придти к какому-то единому пониманию того, как должен строится обмен.
Насколько я знаю, сейчас процедура проверки совместимости протоколов уже не проводится, т.к. все, кто был на этом рынке уже свои реализации протоколов МЭК за эти годы успели отладить, а те, кто не успел — просто покинули рынок (есть и такие компании).