Что такое праймер в биологии
Праймер
Примечания
См. также
Это заготовка статьи по молекулярной биологии. Вы можете помочь проекту, исправив и дополнив её. |
Пререпликационный комплекс
Хеликазы ( DnaA [en] • DnaB • T7 [en] )
Пререпликационный комплекс
Комплекс распознавания Ori [en] ( ORC1 [en] • ORC2 [en] • ORC3 [en] • ORC4 [en] • ORC5 [en] • ORC6 [en] ) • Cdc6 [en] • Cdt1 [en]
Комплекс обслуживания минихромосом [en] ( MCM2 [en] • MCM3 [en] • MCM4 [en] • MCM5 [en] • MCM6 • MCM7 [en] )
Разрешающий фактор [en]
Автономно реплицирующаяся последовательность
Белки, связывающие одноцепочечную ДНК ( SSBP2 [en] • SSBP3 [en] • SSBP4 ) • РНКаза Н [en] ( RNASEH1 [en] • RNASEH2A [en] )
Хеликазы : Mcm2-7
Праймаза : ДНК-полимераза α
Точка начала репликации / Репликон
Репликационная вилка ( отстающая и лидирующая цепи) • Фрагменты Оказаки • Праймер
Холофермент ДНК-полимеразы III ( dnaC • dnaE [en] • dnaH [en] • dnaN [en] • dnaQ [en] • dnaT [en] • dnaX [en] • holA [en] • holB [en] • holC [en] • holD [en] • holE [en] ) • реплисома [en] • лигаза • Белки скользящей застёжки • Топоизомераза ( ДНК-гираза )
ДНК-полимераза I [en] ( фрагмент Кленова )
Репликационный фактор С [en] RFC1 • колеблющиеся эндонуклеазы [en] ( FEN1 [en] ) • Топоизомераза • Репликативный белок А ( RPA1 [en] )
ДНК-полимераза δ [en] ( POLD1 [en] • POLD2 [en] • POLD3 [en] • POLD4 [en] )
Белки скользящей застёжки ( PCNA [en] )
Выделить Праймер и найти в:
Комментарии читателей:
Категории: Компоненты репликационной вилки Методы молекулярной биологии
Значение слова «праймер»
В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент РНК (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющий в норме функции репарации.
Многие лабораторные методы в биохимии и молекулярной биологии, которые предполагают использование ДНК-полимеразы, такие, как секвенирование или полимеразная цепная реакция, требуют наличие коротких олигонуклеотидов (праймеров). Такие праймеры обычно длиной от 6 до 50 оснований, химически синтезированные олигонуклеотиды.
пра́ймер
1. генет. короткий фрагмент нуклеиновой кислоты, служащий затравкой для синтеза комплементарной цепи с помощью ДНК-полимеразы (при репликации ДНК) ◆ Первичная транскрипция с образованием мРНК инициируется гуанинтерминированным праймером, имеющим клеточное происхождение… А. E. Деконенко, E. А. Ткаченко, «Хантавирусы и хантавирусные инфекции», 2004 г. // «Вопросы вирусологии» (цитата из НКРЯ)
2. космет. жидкий крем которым заполняют поры и морщины создавая идеально ровную базу под мэйкап ◆ Прежде чем нанести подводку (или любое средство для глаз, если уже на то пошло), я всегда использую праймер. В течение дня мои веки становятся жирными, мейкап растекается. Праймер закрепляет косметику для глаз на весь день. Дженнифер Скотт, «Уроки мадам Шик. 20 секретов стиля, которые я узнала, пока жила в Париже» / перевод Ирины Крупичевой, 2017 г. (цитата из библиотеки Google Книги)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: злобствование — это что-то нейтральное, положительное или отрицательное?
Праймер
Примечания
См. также
Полезное
Смотреть что такое «Праймер» в других словарях:
праймер — сущ., кол во синонимов: 1 • феромон (16) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
ПРАЙМЕР — (англ. primer), феромон, действие которого проявляется не сразу, а через определенный и необходимый промежуток времени (например, “царское вещество” пчел). Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь
праймер — Короткая последовательность молекулы ДНК, использующаяся для инициации синтеза специфического фрагмента при полимеразной цепной реакции [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN primer … Справочник технического переводчика
Праймер — специальный дисперсионный лак, при помощи которого покрывают запечатанные слои обычных (традиционных) масляных офсетных красок, если предполагается нанести на слой этих красок слой УФ лака. П. служит буфером и разделяет слой краски от слоя лака,… … Реклама и полиграфия
праймер — poklijai statusas T sritis chemija apibrėžtis Suklijavimą gerinantis gruntas. atitikmenys: angl. primer rus. адгезионный грунт; праймер … Chemijos terminų aiškinamasis žodynas
праймер — pradmuo statusas T sritis chemija apibrėžtis Oligomeras, įeinantis į biopolimero sudėtį ir būtinas jo sintezei. atitikmenys: angl. primer rus. затравка; праймер … Chemijos terminų aiškinamasis žodynas
праймеріз — множинний іменник первинні вибори партійних кандидатів у США … Орфографічний словник української мови
Праймер произвольный — * праймер адвольны * arbitrary primer короткий олигонуклеотидный праймер, используемый в определенных ПЦР методах для инициации синтеза ДНК в случайных (произвольных) участках взятой для эксперимента ДНК мишени … Генетика. Энциклопедический словарь
Праймер затравка — Праймер, затравка * праймер, затраўка * primer короткий олигонуклеотид ДНК или РНК, комплементарный участку более длинной молекулы ДНК или РНК. К его 31 OH концу ДНК полимераза (см.) может добавлять нуклеотиды в растущую цепь ДНК в 51 31… … Генетика. Энциклопедический словарь
Праймер битумно-полимерный — ТЕХНОНИКОЛЬ № 03 (ТУ 5775 042 17925162 2006) – однокомпонентный материал холодного применения. Предназначен для обработки поверхности стальной ортотропной плиты и железобетонной плиты пролетных строений мостовых сооружений перед укладкой… … Энциклопедия терминов, определений и пояснений строительных материалов
Что такое полимеразная цепная реакция и как она работает?
ДНК (дезоксирибонуклеиновая кислота) составляет основу бесчисленных исследований с участием живых организмов. Из кода ДНК мы можем определить генетическую основу заболеваний, разработать лекарства, провести судебно-медицинскую экспертизу, идентифицировать микробы и многое другое.
Самое главное, что нужно для такого исследования, — это большое количество исследуемого фрагмента ДНК. Однако ДНК, выделенной из клеток, тканей или любого другого биологического источника, часто бывает недостаточно для анализа. Таким образом, ученым нужно делать больше копий ДНК.
Именно здесь и проявляется решающая роль «полимеразной цепной реакции».
Что такое полимеразная цепная реакция?
ПЦР использует способность ферментов полимеразы создавать копии генетического материала в лабораторных условиях.
До появления ПЦР копии ДНК создавались путем выделения определенного фрагмента ДНК и вставки его в геном живых клеток. Живые клетки реплицировали вставленную ДНК, одновременно реплицируя свою собственную ДНК. Этот метод был трудоемким и длительным способом получения копий ДНК, достаточных для дальнейшего изучения.
Однако теперь это уже не так. Основная заслуга в этом принадлежит Кэри Маллису, который в 1983 году изобрел «полимеразную цепную реакцию» (ПЦР), положив начало «биотехнологической революции». Сегодня ПЦР является очень распространенной лабораторной техникой даже в небольших лабораториях и используется для создания копий ДНК на регулярной основе.
ПЦР может избирательно создавать копии интересующей ДНК посредством процесса, часто называемого «молекулярным фотокопированием». После синтеза нескольких копий ДНК с помощью ПЦР ДНК подвергается «амплификации».
Каковы компоненты реакции ПЦР?
Ключевыми компонентами реакции ПЦР являются матричная ДНК, праймеры, нуклеотиды и термостойкая ДНК-полимераза. Давайте кратко узнаем о каждом из этих компонентов.
Для ПЦР можно использовать ДНК от простейших бактерий до самых сложных животных и растений. Однако вся ДНК (шаблонная ДНК) не проходит ПЦР; в ходе процесса будет амплифицирована только небольшая часть.
Нуклеотиды, используемые для реакции ПЦР, представляют собой смесь всех четырех азотистых оснований, обнаруженных в ДНК. Это аденин (A), тимин (T), гуанин (G) и цитозин (C).
ДНК-полимераза, используемая в ПЦР, представляет собой термостабильную ДНК-полимеразу (часто называемую полимеразой Taq), выделенную из термофильных организмов, способных выдерживать высокие температуры.
Каковы этапы реакции ПЦР?
Активность полимеразы зависит от наличия одноцепочечной ДНК, с которой могут связываться праймеры. Этого можно добиться, нагрев образец ДНК при температуре 94-98 °C.
На следующем этапе праймеры связываются (отжигаются) с шаблонной ДНК в определенных местах. Прямой праймер связывается с началом шаблонной ДНК (одна нить двухцепочечной ДНК) на 3 п.н. нуклеотидной последовательности ATG (стартовый кодон). Обратный праймер связывается с концом комплементарной ДНК (второй нити двухцепочечной ДНК) на 3 п.н. нуклеотидных последовательностей TAG, TAA или TGA (стоп-кодоны). ДНК между стартовым и стоп-кодонами амплифицируется.
Успех этого этапа зависит от последовательности праймеров и температуры, выбранной для отжига, обычно 50-65 °C.
Последним и завершающим этапом является элонгация или терминация, которая происходит при 72 °C, оптимальной температуре для активности Taq-полимеразы. ДНК-полимераза распознает связанный с праймером участок ДНК и добавляет нуклеотиды, комплементарные нити шаблонной ДНК. Это происходит до тех пор, пока она не встретит второй праймер.
После успешной реакции терминации вместо одной спирали ДНК, использовавшейся на начальном этапе, образуются две спирали ДНК. В каждой из двух спиралей ДНК одна нить будет исходной нитью, полученной из образца ДНК. Другая нить будет комплементарной нитью, синтезированной ДНК-полимеразой в ходе ПЦР.
В чем заключается принцип амплификации ДНК с помощью ПЦР?
Этапы денатурации, отжига и полимеризации составляют один цикл ПЦР. Типичная реакция ПЦР может потребовать 25-35 циклов для оптимальной амплификации ДНК.
В конце одного цикла из одного шаблона ДНК образуются две молекулы ДНК. В конце двух циклов две ДНК образуют четыре молекулы ДНК, которые затем амплифицируются до восьми молекул ДНК в конце трех циклов. В конце n циклов будет 2n копий исходного шаблона ДНК.
После каждого цикла количество молекул ДНК, которые могут служить шаблонами для следующего цикла, увеличивается экспоненциально. Это увеличение числа шаблонов цикл за циклом является основой амплификации молекул ДНК в ПЦР.
Экспоненциальная амплификация молекул ДНК с помощью метода ПЦР
Каковы плюсы и минусы ПЦР?
Основные плюсы метода ПЦР заключаются в том, что он способен создавать миллионы и миллиарды копий ДНК всего за несколько часов. Этот метод быстр, относительно прост в освоении и может быть выполнен в базовых лабораторных условиях.
Основным недостатком является высокая чувствительность метода, поэтому образец, используемый для амплификации, должен быть свободен от загрязнений. Даже небольшие следы нежелательной ДНК могут амплифицироваться вместе с интересующей ДНК, что дает ложные результаты.
Другим недостатком является требование информации о последовательности ДНК для разработки праймеров. Кроме того, праймеры могут иногда отжигать не на тех участках ДНК. Такой неспецифический отжиг праймеров может привести к амплификации неправильного фрагмента ДНК.
В редких случаях ДНК-полимераза может включить неправильное основание, что приведет к изменению последовательности интересующей ДНК, что может повлиять на последующий процесс.
Для успешного проведения реакции ПЦР необходимо иметь чистый генетический материал, соответствующий набор праймеров и подходящую температуру отжига.
Где можно использовать эту технологию?
Он составляет основу большинства приложений, связанных с молекулярной биологией, клонированием генов, технологией рекомбинантной ДНК и мутагенезом.
Практическое развитие простой и универсальной техники ПЦР, предложенной Кэри Маллис, радикально изменило биологические исследования. Все, что нам нужно сделать, это смешать все компоненты ПЦР в соответствующих концентрациях в маленькой пробирке, загрузить ее в ПЦР-машину (термоциклер) и подождать несколько часов. После периода ожидания исследователи получат от миллионов до миллиарда копий интересующей вас ДНК. Разве это не удивительно?
Вот почему ПЦР всегда будет быстрым и надежным методом создания копий ДНК по сравнению с методами, использовавшимися до этого революционного открытия.
ДНК и гены
ДНК ПРОКАРИОТ И ЭУКАРИОТ
Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года
Дезоксирибонуклеиновая кислота. Общие сведения
Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.
В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.
С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С) и фосфатной (Ф) группы (фосфодиэфирные связи).
Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы
В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.
В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т), гуанин — только с цитозином (Г-Ц). Именно эти пары и составляют «перекладины» винтовой «лестницы» ДНК (см.: рис. 2, 3 и 4).
Рис. 2. Азотистые основания
Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.
Рис. 3. Репликация ДНК
Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.
Образование новой ДНК (репликация)
По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.
Более подробная информация:
СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ
Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты – это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.
НУКЛЕОТИДЫ состоят из азотистого основания, соединенного с пятиуглеродным углеводом (пентозой) – дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H2PO3–).
Азотистые основания бывают двух типов: пиримидиновые основания – урацил (только в РНК), цитозин и тимин, пуриновые основания – аденин и гуанин.
Рис. 5. Структура нуклеотидов (слева), расположение нуклеотида в ДНК (снизу) и типы азотистых оснований (справа): пиримидиновые и пуриновые
Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:
Рис. 6. Выделение 3’ и 5’-концов цепи ДНК
Две цепи ДНК образуют двойную спираль. Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей. Аденин всегда соединяется с тимином, а цитозин – с гуанином. Это называется правилом комплементарности (см. принцип комплементарности ).
Правило комплементарности:
A–T G–C |
Например, если нам дана цепь ДНК, имеющая последовательность
3’– ATGTCCTAGCTGCTCG – 5’,
то вторая ей цепь будет комплементарна и направлена в противоположном направлении – от 5’-конца к 3’-концу:
5’– TACAGGATCGACGAGC– 3’.
Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей
РЕПЛИКАЦИЯ ДНК
Репликация ДНК – это процесс удвоения молекулы ДНК путем матричного синтеза. В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент РНК (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (ДНК-праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющей в норме функции репарации (исправления химических повреждений и разрывов в молекле ДНК).
Репликация происходит по полуконсервативному механизму. Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.
Рис. 8. Репликация (удвоение) молекулы ДНК
ДНК-синтез – это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:
Рис. 9. Схематическое изображение процесса репликации ДНК: (1) Отстающая цепь (запаздывающая нить), (2) Ведущая цепь (лидирующая нить), (3) ДНК-полимераза α ( Polα ), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза δ ( Polδ ), (9) Хеликаза, (10) Однонитевые ДНК-связывающие белки, (11) Топоизомераза.
Далее описан синтез отстающей цепи дочерней ДНК (см. Схему репликативной вилки и функции ферментов репликации)
Нагляднее о репликации ДНК см. видео →
5) Непосредственно сразу после расплетания и стабилизации другой нити материнской молекулы к ней присоединяется ДНК-полимераза α (альфа) и в направлении 5’→3′ синтезирует праймер (РНК-затравку) – последовательность РНК на матрице ДНК длиной от 10 до 200 нуклеотидов. После этого фермент удаляется с нити ДНК.
СТРОЕНИЕ РНК
Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.
Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.
Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.
Рис. 10. Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.
ТРАНСКРИПЦИЯ
Транскрипция – это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК – эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ – 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.
Рис. 11. Схематическое изображение транскрипции
Например, если нам дана последовательность кодирующей цепи
3’– ATGTCCTAGCTGCTCG – 5’,
то, по правилу комплементарности, матричная цепь будет нести последовательность
5’– TACAGGATCGACGAGC– 3’,
а синтезируемая с нее РНК – последовательность
3’– AUGUCCUAGCUGCUCG – 5’.
ТРАНСЛЯЦИЯ
Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:
Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок
ГЕНЕТИЧЕСКИЙ КОД
Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′ к 3′ концу мРНК.
Таблица 1. Стандартный генетический код
Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:
Свойства генетического кода
1. Триплетность. Каждая аминокислота кодируется последовательностью из трех нуклеотидов – триплетом или кодоном.
2. Непрерывность. Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.
3. Неперекрываемость. Один нуклеотид не может входить одновременно в два триплета.
4. Однозначность. Один кодон может кодировать только одну аминокислоту.
5. Вырожденность. Одна аминокислота может кодироваться несколькими разными кодонами.
6. Универсальность. Генетический код одинаков для всех живых организмов.
Пример. Нам дана последовательность кодирующей цепи:
3’– CCGATTGCACGTCGATCGTATA– 5’.
Матричная цепь будет иметь последовательность:
5’– GGCTAACGTGCAGCTAGCATAT– 3’.
Теперь «синтезируем» с этой цепи информационную РНК:
3’– CCGAUUGCACGUCGAUCGUAUA– 5’.
Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:
5’– AUAUGCUAGCUGCACGUUAGCC– 3’.
Теперь найдем старт-кодон AUG:
5’– AU AUG CUAGCUGCACGUUAGCC– 3’.
Разделим последовательность на триплеты:
Найдем стоп-кодон и согласно таблице генетического кода запишем последовательность аминокислот:
Центральная догма молекулярной биологии звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК – на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.
Рис. 13. Центральная догма молекулярной биологии
ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ
Термин «геном» был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.
Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК
За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.
В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент». Позднее эта концепция была расширена до определения «один ген — один полипептид», поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.
Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.
Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.
Мы можем приблизительно рассчитать минимальный размер гена, кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350 аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.
Сколько генов в одной хромосоме?
ДНК прокариот устроена более просто: их клетки не имеют ядра, поэтому ДНК находится непосредственно в цитоплазме в форме нуклеоида.
Как известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру – нуклеоид. Хромосома прокариота Escherichia coli, чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.
Прокариоты (Бактерии).
Бактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).
Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.
Эукариоты.
Таблица 2. ДНК, гены и хромосомы некоторых организмов