Что такое правило буравчика
Буравчика правило
Пра́вило бура́вчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока.
Правило правой руки
Правило буравчика: «Если направление поступательного движения буравчика (винта) с правой нарезкой совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».
Правило правой руки: «Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции».
Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».
Правило левой руки
Для определения направления силы Ампера обычно используют правило левой руки: «Если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.»
Полезное
Смотреть что такое «Буравчика правило» в других словарях:
БУРАВЧИКА ПРАВИЛО — определяет направление магн. поля, создаваемого электрич. током: если буравчик с правой резьбой ввинчивать по направлению тока I (рис. ), то направление вращения рукоятки буравчика совпадает с направлением магн. поля Н, возбуждаемого этим током.… … Физическая энциклопедия
БУРАВЧИКА ПРАВИЛО — определяет направление напряженности магнитного поля прямолинейного проводника с током: если буравчик с правой нарезкой ввинчивать по направлению тока, то направление вращения рукоятки совпадет с направлением напряженности магнитного поля … Большой Энциклопедический словарь
Буравчика правило — удобное для запоминания правило для определения направления магнитного поля, создаваемого электрическим током: если буравчик (с правой нарезкой) ввинчивать по направлению тока (I), то направление вращения рукоятки буравчика совпадает с… … Большая советская энциклопедия
буравчика правило — определяет направление напряжённости магнитного поля прямолинейного проводника с током: если буравчик с правой нарезкой ввинчивать по направлению тока I, то направление вращения рукоятки совпадёт с направлением напряжённости магнитного поля H. *… … Энциклопедический словарь
БУРАВЧИКА ПРАВИЛО — определяет направление напряжённости магн. поля прямолинейного проводника с током: если буравчик с правой нарезкой ввинчивать по направлению тока I, то направление вращения рукоятки совпадёт с направлением напряжённости магн. поля Н … Естествознание. Энциклопедический словарь
правило Ампера — правило буравчика — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы правило буравчика EN Ampere s… … Справочник технического переводчика
правило буравчика — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN right hand screw rule … Справочник технического переводчика
ПРАВИЛО — (1) буравчика определяет направление вектора напряжённости магнитного поля прямолинейного проводника с постоянным током. Если буравчик ввёртывается по направлению тока, то направление его вращения определяет направление магнитных силовых линий… … Большая политехническая энциклопедия
Правило буравчика — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (правило винта), или правило правой руки варианты мнемониче … Википедия
Правило винта — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки) мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость … Википедия
Правило буравчика простым языком
Самая простая техника запоминания — это мнемонические правила. Они помогают понять сложное действие путем простого представления или сравнения. Статья даст подробное описание, что такое правило буравчика, кратко и понятно опишет его основное определение.
Также будет дано описание применения этого правила для обоснования различных физических законов. Дополнительно будет дано описание правила левой руки и двух мнемонических алгоритмов для определения направленности электромагнитной индукции.
Определение
Автором правила буравчика является физик-теоретик Петр Сигизмундович Буравчик. С его помощью было определено направление аксиального вектора с известным базисным вектором. Данное правило используется в случае мнемонического определения с применением правой и левой руки.
Такое правило является мнемоническим алгоритмом для установления электромагнитной индукции, на основе установленного направления движения электрического тока, который является возбудителем магнитных полей.
Более кратко и понятно это правило можно объяснить следующим образом:
Общепринятым правилом считается направление движения витка в правую сторону. Принимая этот факт, можно сделать вывод: при движении тока по кратчайшему пути в одном направлении, а именно от положительного значения к отрицательному, линии магнитной индукции будут направлены в правую сторону. Условие актуально для прямого проводника.
Правило буравчика имеет две основные разновидности:
Далее будет дано объяснение и конкретный пример для более простого понимания.
Правая рука
Правило правой руки используется для мнемонического определения направленности движения электромагнитной индукции. Формулировка у этого алгоритма следующая: необходимо сжать ладонь в кулак и поднять вверх большой палец. В этом жесте палец имитирует электрический проводник и направленность движения электрического тока. А 4 сжатых пальца указывают на направление линий магнитной индукции.
В физике принято считать эталоном именно буравчик. Для более легкого понимания этот инструмент можно представить в виде винта, шурупа с правосторонней резьбой или сверла.
Правило буравчика не окончательное определение. Оно может трактоваться совсем по-разному, когда требуется определить угловую скорость, магнитную индукцию, механическое вращение и момент импульса.
Вектор произведения
Буравчик может помочь в следующем вопросе – определение векторного произведения. Трактуется в этом случае такое правило следующим образом:
Это правило так же учитывает правостороннюю направленность резьбы буравчика. Также это правило применимо к направленности по часовой стрелке. Если вращать вектор сомножитель по часовой стрелке до того момента, пока он и второй вектор сомножитель не будут совмещены, то направление движения будет зависеть от того, кто вращает данный вектор. Так же вращение будет осуществляться внутрь плоскости (часов).
Для визуализации необходимо раздвинуть на правой руке большой, средний и указательный пальцы. Когда данное правило применяется в электродинамике, то можно получить следующее:
При смещении всех трех пальцев получаем движение по часовой стрелке, а также сумму произведений всех векторов.
Базис
Базис — несколько векторов, расположенных в пространстве. При этом вектора базиса представляют собой упорядоченный набор. При таком условии любой из векторов может быть один раз представлен в виде линейной комбинации всех векторов из этого набора. Мнемонический алгоритм базиса следующий: буравчик закручивается в правую сторону, при этом базис X движется по короткому пути к базису Y, а значит по направлению к базису Z.
Для правила правой руки это будет выглядеть так:
Для базисов также можно использовать правило часового циферблата, но только с использованием трех стрелок и при направленности вращения в правую сторону. Левая направленность учитывается только при конкретно поставленном условии.
Соленоид
Правило правой руки также позволяет определить, какое направление имеет магнитное поле в соленоидах и катушках индуктивности. Катушки также состоят из провода, но отличие заключается в том, что этот провод смотан в спираль, а значит не имеет прямой направленности. Так же при наличии магнитного сердечника, который взаимодействует с током, значение силы магнитного поля значительно увеличивается. Для того чтобы определить направленность линий магнитного поля в соленоиде, необходимо:
Данное правило трактуется следующим образом: в катушке имеется вектор магнитной индукции «B», направление которого совпадает с направлением большого пальца. 4 удерживающих катушку пальца указывают на направление протекания электрического тока. Данное правило так же основано на правостороннем закручивании буравчика. Такая направленность может использоваться при выполнении различных экспериментов, когда не требуется расчет и использованием левосторонней направленности, которую учитывают предварительно.
Правило для угловой скорости
Принцип правила правой руки можно применить, если требуется определить угловую скорость вращающегося объекта. Для начала необходимо учесть:
Все эти параметры связаны между собой векторным произведением. Формула, которой мы пользуемся для этого произведения будет следующей:
Формулировка угловой скорости, при использовании правила буравчика звучит так. Если вращать буравчик в ту сторону, куда вращается тело, то направление завинчивания покажет направление угловой скорости данного тела. В случае правого вращения буравчика угловая скорость будет направлена в правую сторону и наоборот.
С помощью правила правой руки эта формулировка трактуется более просто: если зажать в правую руку вращающееся тело, то большой палец укажет вектор направления угловой скорости, а 4 остальных пальца укажут на направление вращения.
Момент силы
Правило буравчика применимо для определения момента силы. Расчет момента силы производится по следующей формуле:
В данном выражении используются следующие величины:
Правило для буравчика применяемое к моменту силы трактуется так: если буравчик вкручивается по направлению, в котором силы пытаются провернуть тело, он будет вкручиваться именно по направлению момента действующих сил. Например, при завинчивании шурупа, он будет вкручиваться по направлению вращения рукоятки отвертки, так как это направление создается силой движения руки человека.
Момент силы можно определить визуально. Применяемый в таком случае вариант правила правой руки будет следующим: если взять в правую руку предмет, сдавить его и выставить вперед большой палец, то 4 пальца укажут на направление кругового движения тела, а большой палец на направление момента силы.
Левая рука
Правило левой руки сильно отличается от правила буравчика. При помощи его определяют силу, действующую на проводник. Данный принцип применяет физика для следующих физических законов:
Далее будет дана трактовка двух правил левой руки.
Закон Ампера
Принцип левой руки для закона Ампера гласит: если проводник находится между двумя магнитами, на него действует электромагнитная сила, выталкивающая заряд или смещающая проводник с заданного положения.
При помощи левой руки можно проще описать это правило: ладонь принимает горизонтальное положение. В этот момент магнитная индукция будет перпендикулярна ладони. В таком положении отогнутый на 900 большой палец показывает направленность действующей силы, а остальные пальцы показывают направление электротока в проводнике.
При расчете силы Ампера используем следующую формулу:
В этой формуле используются следующие величины:
Данный закон применяется при конструировании электрических двигателей и генераторов переменного тока.
Сила Лоренца
Правило левой руки позволяет отобразить направление силы Лоренца. Данный параметр определяет величину воздействия магнитного поля на заряженные частицы в проводнике. С помощью простых слов данное физическое явление можно трактовать следующим образом: на движущиеся заряженные частицы оказывает воздействие магнитная индукция. Направление действия этих сил строго перпендикулярно направлению движения частиц.
Используя левую руку можно визуально определить направленность воздействия линий магнитной индукции. Делается это следующим образом:
Сила Лоренца рассчитывается по следующей формуле:
При расчете учитывается параметр частиц, которые протекают по проводнику. Также, учитывается направление движения частиц.
Заключение
Буравчик и его правило вращения помогают визуально представить многие физические законы. Для этого правила основополагающим является направление движения, на которое указывает большой палец. Эти простые правила можно легко использовать в повседневной жизни. Они облегчат понимание физических законов школьникам, помогут решить многие задачи.
Видео по теме
Правило буравчика кратко и понятно — формула и как пользоваться
Тем, кому в школе плохо давалась физика, правило буравчика и сегодня — самая настоящая «терра инкогнита». Особенно если попытаться найти определение известного закона в Сети: поисковые системы тут же выдадут множество мудрёных научных объяснений со сложными схемами. Однако вполне возможно кратко и понятно объяснить, в чём же оно состоит.
В чём состоит правило буравчика
Буравчик — инструмента для сверления отверстий
Оно звучит так: в случаях, когда направление буравчика совпадает с направлением тока в проводнике во время поступательных движений, то одновременно идентичным ему будет и направление вращения ручки буравчика.
В поисках направления
Чтобы разобраться, придётся всё-таки вспомнить школьные уроки. На них учителя физики рассказывали нам о том, что электроток — это движение элементарных частиц, которые при этом несут свой заряд по проводящему материалу. Благодаря источнику движение частиц в проводнике — направленное. Движение, как известно, жизнь, а потому вокруг проводника возникает не что иное, как магнитное поле, и оно тоже вращается. Но как?
Ответ даёт именно это правило (без использования каких-либо специальных инструментов), и результат оказывается весьма ценным, ведь в зависимости от направления магнитного поля парочка проводников начинает действовать по совершенно разным сценариям: либо отталкиваться друг от друга, либо, напротив, устремляться навстречу.
Использование
Самый простой способ определения пути движений линий магнитного поля — применение правила буравчика
Представить это можно и так — на примере собственной правой руки и самого обычного провода. Провод кладём в руку. Четыре пальца крепко сжимаем в кулак. Большой палец указывает вверх — наподобие жеста, которым мы демонстрируем, что нам что-то нравится. В данной «раскладке» большой палец чётко укажет направление движения тока, тогда как остальные четыре — путь движений линий магнитного поля.
Правило вполне применимо в жизни. Физикам оно необходимо для того, чтобы определить направление магнитного поля тока, рассчитать механическое вращение скорости, вектор магнитной индукции и момент сил.
Кстати, о том, что правило применимо к самым разным ситуациям говорит и то, что существует сразу несколько его толкований — в зависимости от рассматриваемого каждого конкретного случая.
Правило буравчика
Правило буравчика — это техника запоминания, которая помогает определить направление магнитных стрелок в зависимости от тока.
Алгоритм кратко, точно и понятно показывает, куда ориентированы линии магнитного поля.
Определение
Учёный, открывший данный закон, — настоящая загадка истории: про него известно лишь то, что фамилия у него была Буравчик.
Большинство склоняются к тому, что звали его всё-таки Пётр Сигизмундович.
Про него сочиняют немало баек.
Даже с появлением закона буравчика связана забавная полушутка-полулегенда: якобы когда Буравчик смог сформулировать это правило (правда, название было не в честь его автора, а в честь тех предметов, которые действовали согласно данному закону), он отправился прямиком в Москву, на поклон к Михаилу Васильевичу Ломоносову.
Простота метода несколько смутила великого учёного, и он, погрузившись в размышления, отвернулся и начал, извините за выражение, ковыряться в носу.
На что Пётр Сигизмундович ехидно заметил, что Михаил Васильевич, используя свой палец как буравчик, в точности следует его закону.
После этого Ломоносов уже не колебался в принятии решения относительно изысканий Буравчика: правилу — быть!
Каждый физик формулирует это правило своими словами, однако суть всегда такова: если направление движения штопора будет проходить в одну и ту же сторону с направлением тока внутри проводника, то его ручка продемонстрирует сторону, в которую будет обращён вектор магнитной индукции.
В свою очередь, штопор интерпретировался в правило правой руки, которое, в свою очередь, послужило основой для другого мнемонического закона, правила левой руки, благодаря коим физика кажется намного проще. Всех их активно применяют во многих её областях — в этом немалую роль играет их простота вкупе с эффективностью, которые были отмечены ещё Ломоносовым, а также то, что звучат они кратко и понятно: с помощью правила буравчика можно определить, к примеру, сторону, в которую направлены угловая скорость, магнитная индукция, параметры индукционного тока и многое другое, что позволяет решать задачи.
В этой статье мы подробно рассмотрим все случаи этих правил и правила винта.
Общее главное правило
У правила есть несколько вариаций, используемых для частных случаев.
Однако главный вариант может применяться для многих случаев.
Удобнее всего использовать в векторном произведении положительный вектор и в базисе правую упорядоченную тройку.
При таком подходе у сомножителей будет положительный знак и не придется учитывать, где ставить минус, а где нет.
Правым базисом называется упорядоченная тройка векторов, расположенных так, что кратчайший путь по порядку осуществляется против часовой стрелки.
Если три пальца (кроме мизинца и безымянного) расставить перпендикулярно друг другу и принять их за оси Ox, Oy, Oz для среднего, указательного и большого пальцев соответственно, то получится правый базис.
Предпочтителен выбор положительного вектора или базиса в силу удобства подсчетов. Но возможно использование и левого базиса.
К примеру, его выбирают для задач, в которых применение положительного значения невозможно.
Для векторного произведения
Для него это правило:
Нетрудно заметить, как сильно изменилась формулировка: она заметно усложнилась и её намного тяжелее воспринимать без картинки, чем все остальные.
Однако можно несколько упростить себе задачу и переформулировать с использованием часовой стрелки:
Использование стрелок делает всё намного проще, не правда ли?
Этого материала хватит для полного понимания темы.
В следующем абзаце предлагаю рассмотреть, как это же правило будет выглядеть для базисов, в частности, для правого.
Для базисов
Это правило будет работать и для базисов почти аналогично.
В правом базисе при вращении штопора, направленного по одному из векторов, по наиболее короткому пути ко второму вектору закручивание инструмента укажет направление третьего вектора.
Для простоты запоминания представляют настенные часы:
две вектора — это стрелки, а третий направлен к или от наблюдателя (выбор будет определять ориентацию всего базиса, то есть будет он правым или левым).
Правило буравчика универсально и подходит для определения многих векторов, так как зачастую в таких законах используются базисы и векторное произведение, которые подчиняются одним определенным законам.
Также используют для уравнения Максвелла, которые описывают поле индукции в сплошной среде и его влияние на точечные заряженные частицы.
Большой палец и правило правой руки для
Соленоида:
Во избежание дополнительных вопросов к статье, поясню значение этого слова поподробнее:
соленоид — проволочная спираль, иногда представляемая как катушка с током — неотъемлемая часть многих задач по физике и электротехнике.
Для соленоида правило правой руки может состоять из нескольких вариантов формулировок, но, как правило, так:
Как вы можете убедиться, ничего сложного здесь нет. Поэтому предлагаю рассмотреть другие примеры.
Магнитного поля
Правило правой руки для магнитного поля будет звучать так: если направить большой палец, отогнутый на 90 градусов от других, по движению проводника, а ладонь расположить так, чтобы линии поля «входили» в нее, то остальные пальцы совпадут с вектором индукционного тока.
Векторного произведения:
Это правило (в переписанном виде) отличается от предыдущих.
У него есть два варианта звучания.
Первая формулировка правила правой руки читайте:
Вторая формулировка часто именуется «пистолетом» и звучит так:
Это мнемоническое правило довольно несложно запоминать как ФБР — на английском эта аббревиатура FBI:
Кроме того, как я уже упоминала ранее, его ещё называют «пистолетом»: несложно заметить, что ваши пальцы при его выполнении будут расположены в виде пистолета.
На этом наше изучение правила правой руки подошло к концу, и мы обратимся к третьему (и кратчайшему) разделу статьи — правилу левой руки (ПЛР).
Правило левой руки для
Главное различие правил правой и левой руки в их назначении, а также в выборе ладони.
Правило левой руки применяется для определения силы Ампера и силы Лоренца, в то время как правой рукой можно определить векторы разных величин (например, магнитную индукцию, угловую скорость, вращающий момент).
Силы Ампера, в чём оно заключается
Первое правило левой руки связано с силой Андре-Мари Ампера, кою французский учёный открыл в тысяча восемьсот двадцатом году — сразу после закона Ампера.
Принцип его работы следующий:
Однако это только один вариант ПЛР.
Силы Лоренца и отличия от предыдущего
Сила магнитного поля, которая действует на заряженную частицу точечного размера, называется силой Лоренца.
Эта величина необходима для дополнения уравнения Максвелла и описания поведения электромагнитного поля, заряженных частиц.
Определяют направление правилом для левой руки.
Выполняется этот алгоритм следующим способом.
Пальцы (кроме мизинца и безымянного) располагают перпендикулярно друг другу (сначала большой и указательный в виде буквы «Г», а затем средний отставляют под прямым углом к ним обоим).
Соответствующий палец укажет направление:
Механическое вращение
Важные сокращения: ПБ — правило буравчика, УС — угловая скорость, ППР — правило правой руки.
Формулировка ПБ для механического вращения определяется следующим образом:
Если вы начнёте завинчивать бур в направлении, в коем крутится корпус, он будет закручен в ту сторону, куда будет стремится УС.
Как и ожидалось, здесь всё просто и понятно.
Но вот ППР в механике определяется заметно иначе.
Это правило в данном случае выглядит и работает так:
Абсолютно также вы сможете найти сторону, в которую будет направлен угловой момент.
Это было ожидаемо, потому как угловой момент прямо пропорционален угловой скорости с положительным (!) коэффициентом.
Аналогично это будет выглядеть и для момента импульса.
Но вернёмся к нашему чудесному правилу винта и посмотрим, как такой подход работает для момента силы.
Правило буравчика для момента
Момент сил — это вектор силы, которая вызывает вращательное движение какого-то объекта.
Вращательный момент связан с другими величинами, например, работой, совершаемой во время вращения тела.
Хоть алгоритм и работает аналогично, сформулируем правило винта (буравчика) для момента силы.
Если прокручивать штопор туда, куда силы смещают тело, то направление завинчивания инструмента укажет направление вращательного момента.
Для правой руки правило звучит так: мысленно взяв предмет в правую руку, предмет двигают в сторону направления четырех пальцев (их ориентация должна совпадать с той стороной, куда силы пытаются сместить объект), большой распрямленный палец же укажет вектор вращающего момента.
Определение направления тока буравчиком
Как было уже сказано выше, направление тока можно определить опираясь на ПБ.
Делается это следующим образом:
Довольно удобная пошаговая инструкция, не правда ли?
Кроме того, переформулировав наше утверждение, можно определить направление вектора магнитной индукции, о чём будет более подробно сказано в абзаце ниже.
Определение направления вектора магнитной индукции с помощью правила буравчика
Чтобы определить направление линий магнитной индукции, сделаем следующее.
Острием буравчика укажем вектор силы тока, тогда сторона, в которую инструмент будет закручиваться, покажет направление магнитной индукции для этого проводника.
Инструмент выпускают с разным направлением закручивания, поэтому подразумеваем, что используется традиционный, закручивающийся направо.
Если вы привыкли к другому варианту, вы можете представлять, что штопор выкручивается.
С правой рукой все также: если представить, что исследуемый проводник в обхватывающей правой ладони, а большой палец направлен по направлению течения электрического тока, то загнутые оставшиеся пальцы будут совпадать с линиями магнитной индукции.
Способы определения движения электрического тока и магнитного поля с помощью правила винта
Для того, чтобы вы могли найти ту сторону, куда стремится магнитное поле, вернее, магнитных линий возле проводника с током, было придумано правило правого винта, которое определяется так: если вы начнёте ввинчивать буравчик согласно тому, как направлен ток в проводнике, тогда сторона, в которую будет вращаться ручка буравчика, продемонстрирует нам, куда будут стремиться линии магнитного поля.
А вот для электротока правило формулируется несколько иначе:
Итак, мы рассмотрели самое главное: правило буравчика, правило правой и левой руки.
Последние два пункта будут дополнять нашу статью и демонстрировать специальные случаи, которые будут позволять знать материал безукоризненно.
Разветвление взаимодействия проводников с током в опытах ампера
Когда Эрстед открыл возникновение индукции в проводнике с током, Ампер вдохновился и начал свои исследования.
Ученый провел серию экспериментов с параллельными проводниками, в которых доказал, что вокруг заряженной частицы образуется магнитное поле.
Благодаря своим наблюдениям он пришел к выводу, что если пустить по проводникам ток в одну сторону, то они притягиваются, а если в разные стороны, то отталкиваются.
Объяснить это можно с помощью правила буравчика.
В первом случае видно, что магнитные поля каждого проводника идут по направлению к наблюдателю в точке между ними, индукции мешают друг другу, провода отталкиваются.
И наоборот во втором случае: в точке, где у правого проводника линии идут на наблюдателя, у левого они идут от него.
Направление линий магнитной индукции внутри постоянного магнита
Об этом можно сказать, пожалуй, меньше всего. Учёные считают, что линии напряжения магнитного поля, кое создаётся постоянным магнитом, направлены — разумеется, внутри магнита — от южного к северному полюсу.
На этом моя статья подошла к концу. Надеюсь, что вы были довольны этой информацией, позволяющей досконально разобраться в вашей теме, и что она поможет вам в ваших изысканиях в области науки.