Что такое постоянная планка

Постоянная Планка

Постоянная Планка определяет границу между макромиром, где действуют законы механики Ньютона, и микромиром, где действуют законы квантовой механики.

Макс Планк — один из основоположников квантовой механики — пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами (см. Уравнения Максвелла) и атомами и, тем самым, разрешить проблему излучения черного тела. Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами) и лишь на отдельных волновых частотах. Энергия, переносимая одним квантом, равна:

где v — частота излучения, а hэлементарный квант действия, представляющий собой новую универсальную константу, получившую вскоре название постоянная Планка. Планк же первым и рассчитал ее значение на основе экспериментальных данных h = 6,548 × 10 –34 Дж·с (в системе СИ); по современным данным h = 6,626 × 10 –34 Дж·с. Соответственно, любой атом может излучать широкий спектр связанных между собой дискретных частот, который зависит от орбит электронов в составе атома. Вскоре Нильс Бор создаст стройную, хотя и упрощенную модель атома Бора, согласующуюся с распределением Планка.

Опубликовав свои результаты в конце 1900 года, сам Планк — и это видно из его публикаций — сначала не верил в то, что кванты — физическая реальность, а не удобная математическая модель. Однако, когда пять лет спустя Альберт Эйнштейн опубликовал статью, объясняющую фотоэлектрический эффект на основе квантования энергии излучения, в научных кругах формулу Планка стали воспринимать уже не как теоретическую игру, а как описание реального физического явления на субатомном уровне, доказывающее квантовую природу энергии.

Постоянная Планка фигурирует во всех уравнениях и формулах квантовой механики. Она, в частности, определяет масштабы, начиная с которых вступает в силу принцип неопределенности Гейзенберга. Грубо говоря, постоянная Планка указывает нам нижний предел пространственных величин, после которого нельзя не принимать во внимание квантовые эффекты. Для песчинок, скажем, неопределенность произведения их линейного размера на скорость настолько незначительна, что ею можно пренебречь. Иными словами, постоянная Планка проводит границу между макромиром, где действуют законы механики Ньютона, и микромиром, где вступают в силу законы квантовой механики. Будучи получена всего лишь для теоретического описания единичного физического явления, постоянная Планка вскоре стала одной из фундаментальных констант теоретической физики, определяемых самой природой мироздания.

Источник

Физическая сущность постоянной Планка

В данной статье на основе фотонной концепции раскрывается физическая сущность “фундаментальной константы” постоянной Планка. Приводятся аргументы, показывающие, что постоянная Планка это типовой параметр фотона, являющийся функцией его длины волны.

Введение. Конец ХIХ – начало ХХ веков ознаменовались кризисом теоретической физики [1], обусловленный неспособностью методами классической физики обосновать ряд проблем, одной из которых была “ультрафиолетовая катастрофа”[2]. Суть данной проблемы состояла в том, что при установлении закона распределения энергии в спектре излучения абсолютно черного тела методами классической физики спектральная плотность энергии излучения должна была неограниченно расти по мере сокращения длины волны излучения. По сути, эта проблема показала если не внутреннюю противоречивость классической физики, то, во всяком случае, крайне резкое расхождение с элементарными наблюдениями и экспериментом.

Исследования свойств излучения абсолютно чёрного тела, проходившие в течение почти сорока лет (1860—1900), завершились выдвижением гипотезы Макса Планка о том, что энергия любой системы Е при излучении или поглощении электромагнитного излучения частоты ν <\displaystyle

\nu > может измениться только на величину, кратную энергии кванта [3]:

Коэффициент пропорциональности h в выражении (1) вошел в науку под названием «Планка постоянная», став основной константой квантовой теории [4].

Проблема чёрного тела была пересмотрена в 1905 г., когда Рэлей и Джинс с одной стороны, и Эйнштейн с другой стороны, независимо доказали, что классическая электродинамика не может обосновать наблюдаемый спектр излучения. Это привело к так называемой «ультрафиолетовой катастрофе«, обозначенной таким образом Эренфестом в 1911 г. Усилия теоретиков (вместе с работой Эйнштейна по фотоэффекту) привели к признанию того, что постулат Планка о квантовании уровней энергии является не простым математическим формализмом, а важным элементом представлений о физической реальности [3].

Дальнейшее развитие квантовых идей Планка – обоснование фотоэффекта с помощью гипотезы световых квантов (А. Эйнштейн, 1905), постулат в теории атома Бора квантование момента импульса электрона в атоме (Н. Бор, 1913), открытие соотношения де Бройля между массой частицы и ее длиной волны (Л. Де Бройль, 1921), а затем создание квантовой механики (1925 – 26) и установление фундаментальных соотношений неопределенности между импульсом и координатой и между энергией и временем (В. Гейзенберг, 1927) привело к установлению фундаментального статуса постоянной Планка в физике [5].

Этой точки зрения придерживается и современная квантовая физика [6]: “В дальнейшем нам станет ясно, что в формуле Е / ν = h выражен фундаментальный принцип квантовой физики, а именно имеющая универсальный характер связь между энергией и частотой: Е = hν. Эта связь полностью чужда классической физике, и мистическая константа h есть проявление не постигнутых в то время тайн природы ”.

Вместе с тем был и альтернативный взгляд на постоянную Планка [7]: “Учебники по квантовой механике говорят, что классическая физика – это физика в которой h равняется нулю. А на самом деле постоянная Планка h – это не что иное, как величина, фактически определяющая понятие хорошо известное в классической физике гироскопа. Втолкование адептам, штудирующим физику, что h ≠ 0 — это чисто квантовое явление, не имеющее своего аналога в классической физике, было одним из основных элементов, направленных на укрепление убеждения о необходимости квантовой механики.”

Таким образом, взгляды физиков теоретиков на постоянную Планка разделились. С одной стороны, наблюдается ее исключительность и мистификация, а с другой, попытка дать физическое толкование, не выходящее за рамки классической физики. Такое положение сохраняется в физике и в настоящее время, и будет сохраняться до тех пор, пока не будет установлена физическая сущность этой постоянной.

В отличие от представлений адептов квантовой физики на природу постоянной Планка их оппоненты были более прагматичны. Физический смысл их представлений [7, 9, 10] сводился к “вычислению методами классической механики величины главного момента импульса электрона Pe (момента импульса связанного с вращением электрона вокруг собственной оси) и получение математического выражения постоянной Планка «h» через известные фундаментальные константы.” Из чего обосновывалась физическая сущность [9]: “постоянная Планка «h» равна величине классического главного момента импульса электрона (связанного с вращением электрона вокруг собственной оси), умноженной на 4p.

Ошибочность этих взглядов заключается в непонимании природы элементарных частиц и истоков появления постоянной Планка. Электрон это структурный элемент атома вещества, имеющий свое функциональное назначение – формирование физико-химических свойств атомов вещества. Поэтому выступать в качестве переносчика электромагнитного излучения он никак не может, т. е. гипотеза Планка о переносе энергии квантом к электрону неприменима.

Для обоснования физической сущности постоянной Планка рассмотрим эту проблему в историческом аспекте. Из выше изложенного следует, что решением проблемы “ультрафиолетовой катастрофы” стала гипотеза Планка о том, что излучение абсолютно черного тела происходит порционно, т. е. квантами энергии. Многие физики того времени предполагали изначально, что квантование энергии есть результат какого-то неизвестного свойства материи, поглощающей и излучающей электромагнитные волны. Однако, уже в 1905 г. Эйнштейн развил идею Планка, предположив, что квантование энергии — свойство самого электромагнитного излучения. Исходя из гипотезы световых квантов он объяснил ряд закономерностей фотоэффекта, люминесценции, фотохимических реакций [12].

Если фотон это квант (переносчик) электромагнитного излучения, то его электрический заряд никак не может быть равен нулю. Противоречивость данного представления фотона стала одной из причин непонимания физической сущности постоянной Планка.

В эфиродинамических моделях элементарные частицы трактуются как замкнутые вихревые образования (кольца), в стенках которых эфир существенно уплотнён, а элементарные частицы, атомы и молекулы, — это конструкции, объединяющие такие вихри. Существование кольцевого и винтового движений соответствует наличию у частиц механического момента (спина), направленного вдоль оси его свободного движения.

Согласно данной концепции структурно фотон представляет собой замкнутый тороидальный вихрь с кольцевым движением тора (как колеса) и винтовым движением внутри него. Источником генерации фотонов является протон-электронная пара атомов вещества. В результате возбуждения, вследствие симметричности своей структуры, каждая протон-электронная пара генерирует два фотона. Экспериментальным подтверждением этому является процесс аннигиляции электрона и позитрона [15].

Фотон это единственная элементарная частица, которая характеризуется тремя видами движений: вращательное движение вокруг собственной оси вращения, прямолинейное движение в заданном направлении и вращательное движение с некоторым радиусом R относительно оси прямолинейного движения. Последнее движение трактуется как движение по циклоиде [16]. Циклоида это периодическая функция по оси абсцисс, с периодом R <\displaystyle 2\pi r>/…. У фотона период циклоиды трактуется как длина волны λ, которая является аргументом всех остальных параметров фотона.

С другой стороны длина волны является также одним из параметром электромагнитного излучения [17]: распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля. Для которого длина волны это расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе [18].

Из чего следует существенное различие в понятиях длины волны для фотона и электромагнитного излучения в целом.

У фотона длина волны и частота связаны соотношением

где uγ – скорость прямолинейного движения фотона.

Фотон это понятие относящееся к семейству (множеству) элементарных частиц, объединенных общими признаками существования. Каждый фотон характеризуется своим определенным набором характеристик, одной из которых является длина волны. При этом, учитывая взаимозависимость этих характеристик друг от друга, на практике стало удобным представлять характеристики (параметры) фотона как функции одной переменной. В качестве независимой переменной была определена длина волны фотона.

Эти исследования позволяют сделать еще один существенный вывод о том, что изменение скорости движения фотонов в области их существования не превышает величины ≈ 0,1 %. Такое относительно небольшое изменение скорости фотонов в области их существования позволяет говорить о скорости фотонов, как о квазипостоянной величине.

Исходя из представлений о множественности фотонов и зависимости параметров фотона от длины волны, а также из экспериментально подтвержденных фактов непрерывности спектра электрического заряда и массы можно полагать, что eλ, mλ =f(λ), которые имеют характер квазипостоянных.

Исходя из вышеизложенного можно говорить, что выражение (1) устанавливающее взаимосвязь энергии любой системы при излучении или поглощении электромагнитного излучения частотой ν <\displaystyle

\nu >есть не что иное как взаимосвязь между энергией фотонов, излучающихся или поглощающихся телом и частотой (длиной волны) этих фотонов. А постоянная Планка это коэффициент взаимосвязи. Такое представление взаимосвязи энергии фотона и его частоты снимает с постоянной Планка значение ее универсальности и фундаментальности. В данном контексте постоянная Планка становится одним из параметров фотона, зависимым от длины волны фотона.

Кинетическая энергия движения фотона по круговой орбите

Выражение (4) показывает, что кинетическая энергия вращения по круговой траектории, составляет часть энергии прямолинейного движения зависящего от радиуса круговой траектории и длины волны фотона

Оценим эту величину. Для фотонов инфракрасного диапазона

Для фотонов гамма-диапазона

Таким образом, во всей области существования фотона его кинетическая энергия вращения по круговой траектории значительно меньше энергии прямолинейного движения и ею можно пренебречь.

Оценим энергию прямолинейного движения.

Выражение (7) можно представить в следующем виде

Где kλ (λ) = mλ r 2 γ λ некоторая квазипостоянная.

Оценим значения собственных частот вращения фотонов вокруг оси: например,

Оценим отношение ω 2 γ λ / ωλ для фотонов инфракрасного и гамма диапазонов. После подстановки выше указанных данных получим:

Т. е. выражение (8) показывает, что отношение квадрата частоты собственного вращения фотона к вращению по круговой траектории есть величина квазипостоянная для всей области существования фотонов. При этом, значение частоты собственного вращения фотона в области существования фотона изменяется на три порядка. Из чего следует, что постоянная Планка носит характер квазипостоянной.

Преобразуем выражение (6) следующим образом

М = h ωλ / ωγ λ , (9)

где М = mλ r 2 γ λ ωγ λ — собственный гироскопический момент фотона.

Преобразуем выражение (7) следующим образом

Выражение (10) также показывает, что отношение квадрата собственного гироскопического момента фотона к гироскопическому моменту движения по круговой траектории (циклоиде) есть величина квазипостоянная во всей области существования фотона и определяется выражением h (r 2 γλ /R 2 λ ).

Выводы. Ни классическая ни квантовая физики оказались не способными решить проблему физической сущности постоянной Планка вследствие неразработанности представлений о фотоне как элементарной частицы. Решение этой проблемы оказалось возможным на основе эфиродинамической концепции – парадигмы физики ХХI века.

Процессы излучения и поглощения телом электромагнитного излучения это процессы поглощения и излучения фотонов — элементарных частиц, характеризующихся набором параметров, являющихся функцией длины волны фотона. Одним из таких параметров является постоянная Планка, которая также является функцией длины волны фотона.

Физическая сущность постоянной Планка фотона, обусловленная его уникальным характером движения показывают, что универсальность и фундаментальность постоянной Планка это миф, “втолковываемый научной общественности, направленный на укрепление убеждения о необходимости квантовой механики”.

Литература:

7 комментариев

То, что постоянная Планка является «типовым параметром фотона» было показано ещё в 2013 году и опубликовано в 2014 здесь:
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=45266

На самом деле фотон не является «последней инстанцией», поскольку он распространяется в реальной Вселенной характеризуемой вполне определённой геометрией. Поэтому правильно говорить о зависимости постоянной Планка от геометрии Вселенной а не от фотона. Т.е. постоянная Планка характеризуется геометрией пространства.
Полная теория была развита в первой половине 2016 года и опубликована в начале августа 2016 года.
Общий случай рассмотрен здесь:
https://arxiv.org/abs/1608.04596

частный случай (псевдо-)Римановой геометрии здесь:
https://arxiv.org/abs/1608.04593

В своих суждениях Вы вводите новый термин «Эфиродинамическая модель» как производное понятие от понятия «эфир» не давая ему никакого определения в общепринятых терминах.
«В эфиродинамических моделях элементарные частицы трактуются как замкнутые вихревые образования (кольца), в стенках которых эфир существенно уплотнён, а элементарные частицы, атомы и молекулы, — это конструкции, объединяющие такие вихри. Существование кольцевого и винтового движений соответствует наличию у частиц механического момента (спина), направленного вдоль оси его свободного движения»

Либо же дайте какое-то Ваше определение «эфира», либо же устраните противоречия в понятиях эфира, накопившиеся со времён Рене Декарта, чтобы Ваши суждения стали более удобоусвояемыми. Мезенцев.

«В конце XIX века в теории эфира возникли непреодолимые трудности, вынудившие физиков отказаться от понятия эфира и признать электромагнитное поле самодостаточным физическим объектом, не нуждающимся в дополнительном носителе. Абсолютное пространство было упразднено специальной теорией относительности. Неоднократные попытки отдельных учёных возродить концепцию эфира в той или иной форме (например, связать эфир с физическим вакуумом) успеха не имели». Википедия

Постоянная Планка для одного электрона будет зависеть от числа электронов в атоме и для алюминия равна h1 = h / 13*1/D^2 = 171*10^-33 / 13 *1^2*10^20 = 13,15*10^-53 дж./сек

Формула Планка — выражение, описывающее спектральное распределение энергии излучения абсолютно чёрного тела(АЧТ)…в модели,для вывода формулы Планк заполнял пространство АЧТ трёхмерными гармоническими осцилляторами,которыми пространство заполнить можно шестью способами(Платоновы тела-многогранники),НО только для одного(додекаэдра-12гр.)эксперимент сходиться с моделью(..второе не аргументированное допущение,а ПЕРВОЕ—дискретность энергии,чтобы избежать расхождение выведенной формулы при увеличении частоты колебаний осцилляторов(«ультофиолетовая катастрофа»)….ТАК ВОТ h (пост Планка) связывает результаты эксперимента с выведенной формулой в конкретной модели Планка с двумя допущениями

Источник

ПЛАНКА ПОСТОЯННАЯ

Полезное

Смотреть что такое «ПЛАНКА ПОСТОЯННАЯ» в других словарях:

ПЛАНКА ПОСТОЯННАЯ — (квант действия, обозначается h), фундаментальная физ. константа, определяющая широкий круг физ. явлений, для к рых существенна дискретность величин с размерностью действия (см. КВАНТОВАЯ МЕХАНИКА). Введена нем. физиком М. Планком в 1900 при… … Физическая энциклопедия

Планка постоянная — (квант действия), основная постоянная квантовой теории (см. Квантовая механика). Названа по имени М. Планка. Планка постоянная h≈6,626·10 34 Дж·c. Часто применяется величина h = h/2π≈1,0546·10 34 Дж·с, также называется Планка постоянной. * * *… … Энциклопедический словарь

Планка постоянная — Постоянная Планка (квант действия) основная константа квантовой теории, коэффициент, связывающий величину энергии электромагнитного излучения с его частотой. Также имеет смысл кванта действия и кванта момента импульса. Введена в научный обиход М … Википедия

Планка постоянная — квант действия (См. Действие), фундаментальная физическая постоянная (См. Физические постоянные), определяющая широкий круг физических явлений, для которых существенна дискретность действия. Эти явления изучаются в квантовой механике (См … Большая советская энциклопедия

ПЛАНКА ПОСТОЯННАЯ — (квант действия), осн. постоянная квантовой теории (см. Квантовая механика). Названа по имени М. Планка. П. п. h 6,626*10 34 Дж*с. Часто применяется величина Н = h/2ПИ 1,0546*10 34 Дж*с, также наз. П. п … Естествознание. Энциклопедический словарь

ПЛАНКА ПОСТОЯННАЯ — фундаментальная физ. постоянная, квант действия, имеющий размерность произведения энергии на время. Определяет физ. явления микромира, для к рых характерна дискретность физ. величин с размерностью действия (см. Квантовая механика). По величине… … Химическая энциклопедия

ПЛАНКА ПОСТОЯННАЯ — одна из абсолютных физич. констант, имеющая размерность действия (энергия X время); в системе CGS П. п. hравна (6,62377 + 0,00018). 10 27 эрг x сек (+0,00018 возможная погрешность в измерении). Впервые была введена М. Планком (М. Planck, 1900) в… … Математическая энциклопедия

ПЛАНКА ПОСТОЯННАЯ — квант действия, одна из осн. постоянных физики, отражает специфику закономерностей в микромире и играет фундаментальную роль в квантовой механике. П. п. h (6,626 0755 ± 0,000 0040)*10 34 Дж*с. Часто пользуются величиной Л = й/2я = (1,054 572 66 ± … Большой энциклопедический политехнический словарь

Планка постоянная (квант действия) — одна из фундаментальных мировых постоянных (констант), играющая определяющую роль в микромире, проявляющуюся в существовании дискретных свойств у микрообъектов и их систем, выражаемых целочисленными квантовыми числами, за исключением полуцелых… … Начала современного естествознания

Источник

Новое в блогах

О Постоянной Планка

Постоянная Планка

Об этой физической константе впервые заявил немецкий физик Макс Планк в 1899 году. В этой статье я постараюсь ответить на три вопроса:

1. В чём заключается физический смысл постоянной Планка?

2. Как её можно вычислить из реальных экспериментальных данных?

Введение

Читая современную научную литературу, невольно обращаешь внимание на то, насколько сложно, а иногда и туманно авторы отображают эту тему. Поэтому в своей статье я постараюсь объяснить ситуацию простым русским языком, не выходя за уровень школьных формул. История эта началась во второй половине 19 века, когда учёные начали детально изучать процессы теплового излучения тел. Для повышения точности измерений при этих экспериментах использовались специальные камеры, которые давали возможность приблизить коэффициент поглощения энергии к единице.

Подготовительная часть

Если взять температуру в один градус, то, в соответствии с этой формулой, энергия одного атома будет равна: (2) Е=4140*10 в степени-26 дж Причём эта энергия будет одинаковой как для атома свинца, так и для атома алюминия или атома любого другого химического элемента. В этом как раз и заключается смысл понятия «температура».

Вспомним о таком понятии, как момент импульса. Это понятие было введено для тел, совершающих движение по окружности. Можно провести простой пример: взять кроткую трубку, пропустить через неё шнур, привязать к шнуру груз массой m и, придерживая шнур одной рукой, другой рукой раскрутить груз над головой. Перемножив значение скорости движения груза на его массу и радиус вращения, получим значение момента импульса, который обычно обозначается буквой L. Т.е. L=mVR. Потянув шнур через трубку вниз, мы уменьшим радиус вращения. При этом скорость вращения груза возрастёт и его кинетическая энергия увеличится на величину той работы, которую вы выполните, тянув за шнур для уменьшения радиуса. Однако, умножив массу груза на новые значения скорости и радиуса, мы получим то же самое значение, которое у нас получилось до того, как мы уменьшили радиус вращения. Это и есть закон сохранения импульса.

А теперь о сути этого самого третьего закона.

Основная часть

Вот теперь можно и к главному переходить.

Заглянув в лабораторные работы по этой теме, мы увидим, что в большинстве случаев постоянную Планка вычисляют из формул фотоэффекта. Но законы фотоэффекта были открыты гораздо позже, чем Планк вывел свою постоянную. В другой лабораторной работе я увидел, как постоянную Планка вычисляют из закона Стефана Больцмана. Похоже, Планк действительно вычислял свою постоянную именно из этого закона, где она сейчас присутствует в одном из коэффициентов. Этот коэффициент вычисляется по адской формуле, которую я здесь даже не хочу приводить. Поэтому поищем другой закон. Он есть. Это закон Вина, открытый в 1893 году.

Суть этого закона проста. Объясню его простыми словами.

Пик излучения показывает, что большинство атомов в нагретом теле излучает именно эту длину волны, т.е. имеют именно эту температуру. А излучение справа и слева от пика показывает, что в теле есть как «недогретые», так и «перегретые» атомы. В реальных условиях бывает даже несколько «горбов» излучения. Поэтому современные пирометры измеряют интенсивность излучения в нескольких точках спектра, а потом полученные результаты интегрируются, что даёт возможность получить максимально точные результаты.

Но вернёмся к нашим вопросам. Сейчас будет последнее лирическое отступление и будем заканчивать.

Вы сами по указанной методике можете просчитать значение постоянной Планка для атомов любых химических элементов при любой температуре.

Во всех случаях получится величина именно 4, а не 6,626. Но, лучше всего, чтобы ответ на этот вопрос дал сам Планк.

Эти результаты совпадают, что является лучшим доказательством.

Поэтому, хочет кто-то этого или нет, справочники по физике придётся переписывать.

Заключение

Если открытие закона Вина можно по значимости сравнить с законами Кеплера, то открытие Планка можно сравнить с открытием Закона Всемирного тяготения.

Он превратил безликую постоянную Вина в константу, имеющую размерность и физический смысл. Доказав, что для жидкого и твёрдого агрегатного состояния вещества для атомов любых элементов при любой температуре сохраняется момент импульса, Планк совершил великое открытие, позволившее по новому взглянуть на окружающий нас физический мир.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *