Орбитальные параметры Средние элементы орбит планет, относящиеся к средним эклиптике и равноденствию J2000 Средние элементы орбит планет, относящиеся к эклиптике и равноденствию даты Средние элементы орбиты Плутона Кеплеровские элементы для приближенных положений больших планет (Standish E.M., JPL/Caltech)
1 a.e. = 149 597 870 км
ОРБИТАЛЬНЫЕ ПАРАМЕТРЫ
Название
Большая полуось (а.е.)
Эксцентриситет
Наклон к эклиптике 1/ (град)
Период обращения (сут)
Наклон оси (град)
Орбит. скорость (км/с)
Меркурий
0.38709830982
0.205631752
7.0049863889
87.96843362
0.00
47.87
Венера
0.72332981996
0.006771882
3.3946619444
224.6954354
177.36
35.02
Земля
1.00000101778
0.016708617
0.0
365.24218985
23.45
29.79
Марс
1.52367934191
0.093400620
1.8497263889
686.92970957
25.19
24.13
Юпитер
5.20260319132
0.048494851
1.3032697222
4330.5957654
3.13
13.06
Сатурн
9.55490959574
0.055508622
2.4888780556
10746.940442
25.33
9.66
Уран
19.21844606178
0.046295899
0.77319611
30588.740354
97.86
6.80
Нептун
30.11038686942
0.008988095
1.7699522
59799.900456
28.31
5.44
Плутон
39.5181761979
0.2459387823
17.1225991666
90738.995
122.52
4.74
1/ Элементы относятся к эпохе J2000.
Кроме того, в таблицах приводятся следующие элементы: k = e cosω, h = e sin ω, q = sin i/2 cos Ω, p = sin i/2 sin Ω.
Сейчас нам сложно представить, что раньше люди верили, будто Земля плоская. У греков, например, плоскость просто парила в воздухе и была окружена ледниками. А в Индии верили, что планета покоится на трех слонах, которые стоят на черепахе. Впрочем, кое-кто до сих пор так думает. Доказательств того, что наша планета на самом деле не плоская — много, но вот вам парочка, чтобы можно было поддержать светскую беседу.
Гравитация
Гравитация всегда притягивает все в сторону центра масс. Наша Земля — сферической формы, а центр масс сферы находится как раз в ее центре.
Гравитация притягивает все объекты на поверхности в направлении ядра Земли, то есть вниз, независимо от их местоположения — что мы всегда и наблюдаем.
Если представить, что Земля плоская, то гравитация должна будет притягивать все, что на поверхности, к центру плоскости. То есть если вы окажетесь у края плоской Земли, гравитация будет тянуть вас не вниз, а к центру диска.
Чтобы доказать свою точку зрения, сторонникам плоской Земли придется поискать на планете место, где вещи падают не вниз, а вбок.
Если бы Земля была плоской, да еще и со слонами и черепахой, то при лунном затмении мы бы видели не равномерно растущую тень, а примерно такую картину:
Но, пожалуй, это сильно отличается от реальности.
На плоскую Землю свет от Солнца падал бы, как свет от фонаря. То есть высокие объекты в противоположном от Солнца направлении после заката оставались бы в тени.
А на шарообразной Земле небоскребы или горы будут освещены Солнцем после заката или перед рассветом.
Именно это вы увидите, если застанете рассвет или закат в горах — или посмотрите на фотографии.
Окей, Земля все-таки не плоская — с этим разобрались. Но и шаром ее назвать нельзя: Земля имеет форму эллипсоида.
Эллипсоид — это такой приплюснутый шар, в сечении у которого эллипс. Именно по траектории эллипса вращаются все спутники.
Эллипс
Эллипс — это замкнутая прямая на плоскости, частный случай овала. У эллипса две оси симметрии — горизонтальная и вертикальная, которые состоят из двух полуосей.
А еще у эллипса два фокуса — это такие точки, сумма расстояний от которых до любой точки P(x,y) является постоянной величиной.
Эллипс
F1 и F2 — фокусы
с — половина расстояния между F1 и F2
a — большая полуось
b — малая полуось
r1 и r2 — фокальные радиусы
Теперь мы знаем все необходимые понятия, чтобы разобраться, в чем состоят законы Кеплера.
Первый закон Кеплера
Каждая планета солнечной системы вращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.
Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка B траектории называется перигелием, а точка A, наиболее удаленная от Солнца — афелием.
Первый закон Кеплера достаточно простой, но важный, так как в свое время он сильно продвинул астрономию. До этого открытия астрономы считали, что планеты движутся исключительно по круговым орбитам. Если же наблюдения противоречили этому убеждению, ученые дополняли главное круговое движение малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Кеплер получил доступ к огромной базе наблюдений Тихо Браге и, изучив их, перешагнул старые идеи.
Второй закон Кеплера (закон площадей)
Радиус-вектор планеты описывает в равные промежутки времени равные площади.
Каждая планета перемещается в плоскости, проходящей через центр Солнца. В одно и то же время радиус-вектор, соединяющий Солнце и планету, описывает равные площади. Таким образом, тела движутся вокруг Солнца неравномерно: в перигелии они имеют максимальную скорость, а в афелии — минимальную.
На практике это можно заметить по движению Земли. Ежегодно в начале января наша планета проходит через перигелий и перемещается быстрее. Из-за этого движение Солнца по эклиптике также происходит быстрее, чем в другое время года. В начале июля Земля движется через афелий, из-за чего Солнце по эклиптике перемещается медленнее. Поэтому световой день летом длиннее, чем зимой.
Третий закон Кеплера
Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.
Согласно третьему закону Кеплера, между периодом обращения планет вокруг Солнца и средним расстоянием от Солнца до планеты или спутника устанавливается связь. Этот закон выполняется как для планет, так и для спутников с погрешностью менее 1%.
Третий закон Кеплера
T1 и T2 — периоды обращения двух планет [c]
a1 и a2 — большие полуоси орбит планет [м]
На основании этого закона можно вычислить продолжительность года (времени полного оборота вокруг Солнца) любой планеты, если известно ее расстояние до Солнца.
Также можно проделать обратное — рассчитать орбиту, зная период обращения.
Закон всемирного тяготения
Законы Кеплера — это результаты наблюдений и обобщений. Теоретически их обосновал Исаак Ньютон в законе всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
F — сила тяготения [Н]
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Ньютон был первым исследователем, который пришел к выводу, что между любыми телами в космосе действуют гравитационные силы, и именно они определяют характер движения этих тел.
Первая и вторая космические скорости
Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.
В серии книг Дугласа Адамса «Автостопом по Галактике» говорится, что летать — это просто промахиваться мимо Земли. Если ты промахнулся мимо Земли и достиг первой космической скорости 7,9 км/с, то ты стал искусственным спутником нашей планеты.
Искусственный спутник Земли — космический летательный аппарат, который вращается вокруг Земли по геоцентрической орбите. Чтобы у него это получалось, аппарат должен иметь начальную скорость, которая равна или больше первой космической.
Первая космическая скорость
v1 — первая космическая скорость [м/с]
g — ускорение свободного падения на данной планете [м/с 2 ]
R — радиус планеты [м]
Есть еще вторая и третья космические скорости. Вторая космическая скорость — это скорость, которая нужна, чтобы корабль стал искусственным спутником Солнца, а третья — чтобы вылетел за пределы солнечной системы.
Вторая космическая скорость
v2 — вторая космическая скорость [м/с]
g — ускорение свободного падения на данной планете [м/с 2 ]
Кеплеровы элементы — шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел:
Первые два определяют форму орбиты, третий, четвёртый и пятый — ориентацию плоскости орбиты по отношению к базовой системе координат, шестой — положение тела на орбите.
Содержание
Большая полуось
Большая полуось — это половина главной оси эллипса (обозначена на рис.2 как ). В астрономии характеризует среднее расстояние небесного тела от фокуса
Эксцентриситет
Эксцентрисите́т (обозначается «» или «ε») — числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия. [1] Эксцентриситет характеризует «сжатость» орбиты. Он выражается по формуле:
, где — малая полуось (см. рис.2)
Можно разделить внешний вид орбиты на пять групп:
Наклонение
Наклонение орбиты (накло́н орбиты, накло́нность орбиты, наклоне́ние) небесного тела — это угол между плоскостью его орбиты и плоскостью отсчёта (базовой плоскостью).
Обычно обозначается буквой i (от англ. inclination ). Наклонение измеряется в угловых градусах, минутах и секундах.
Зная наклонение двух орбит к одной плоскости отсчёта и долготы их восходящих узлов, можно вычислить угол между плоскостями этих двух орбит — их взаимное наклонение, по формуле косинуса угла.
Аргумент перицентра
Аргуме́нт перице́нтра — определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д.
При исследовании экзопланет и двойных звёзд в качестве базовой используют картинную плоскость — плоскость, проходящую через звезду и перпендикулярную лучу наблюдения звезды с Земли. Орбита экзопланеты, в общем случае случайным образом ориентированная относительно наблюдателя, пересекает эту плоскость в двух точках. Точка, где планета пересекает картинную плоскость, приближаясь к наблюдателю, считается восходящим узлом орбиты, а точка, где планета пересекает картинную плоскость, удаляясь от наблюдателя, считается нисходящим узлом. В этом случае аргумент перицентра отсчитывается из притягивающего центра против часовой стрелки.
Обозначается ().
Долгота восходящего узла
Долгота́ восходя́щего узла́ — один из основных элементов орбиты, используемый для математического описания ориентации плоскости орбиты относительно базовой плоскости. Определяет угол в базовой плоскости, образуемый между базовым направлением на нулевую точку и направлением на точку восходящего узла орбиты, в которой орбита пересекает базовую плоскость в направлении с юга на север. Для тел, обращающихся вокруг Солнца, базовая плоскость — эклиптика, а нулевая точка — Первая точка Овна (точка весеннего равноденствия); угол измеряется от направления на нулевую точку против часовой стрелки.
Большая полуось — один из основных геометрических параметров объектов, образованных посредством конического сечения.
Содержание
Эллипс
Большой осью эллипса называется его наибольший диаметр — отрезок проходящий через центр и два фокуса. Большая полуось составляет половину этого расстояния и идёт от центра эллипса через фокус к его краю.
Под углом в 90° к большой полуоси располагается малая полуось — минимальное расстояние от центра эллипса до его края. У частного случая эллипса — круга — большая и малая полуоси равны и являются радиусами. Таким образом, можно рассматривать большую и малую полуоси как некоего рода радиусы эллипса.
Большая полуось представляет собой среднее арифметическое между расстояниями от любой точки эллипса до его фокусов.
Рассмотрев уравнение в полярных координатах, с точкой в начале координат (полюс) и лучом, начинающейся из этой точки (полярная ось):
Если выразить её через коническое сечение и эксцентриситет, тогда выражение примет вид:
Прямая, содержащая большую ось гиперболы, называется поперечной осью гиперболы. [1]
Астрономия
Орбитальный период
Следует обратить внимание, что в данной формуле для всех эллипсов период обращения определяется значением большой полуоси, независимо от эксцентриситета.
В астрономии большая полуось, наряду с орбитальным периодом, является одним из самых важных орбитальных элементов орбиты космического тела.
Для объектов Солнечной системы большая полуось связана с орбитальным периодом по третьему закону Кеплера.
T 1 2 T 2 2 = a 1 3 a 2 3 <\displaystyle <\frac ^<2>>^<2>>>=<\frac ^<3>>^<3>>>>
Это выражение является частным случаем общего решения задачи двух тел Исаака Ньютона:
T 2 = 4 π 2 G ( M + m ) a 3 <\displaystyle T^<2>=<\frac <4\pi ^<2>>>a^<3>>
Среднее расстояние
Часто говорят, что большая полуось является средним расстоянием между центральным и орбитальным телом. Это не совсем верно, так как под средним расстоянием можно понимать разные значения — в зависимости от величины, по которой производят усреднение:
Энергия; расчёт большой полуоси методом векторов состояния
Большая полуось рассчитывается на основе общей массы и удельной энергии, независимо от значения эксцентриситета орбиты.
Большие и малые полуоси орбит планет
Орбиты планет всегда приводятся в качестве главных примеров эллипсов (первый закон Кеплера). Однако минимальная разница между большой и малой полуосями показывает, что они практически круговые по внешнему виду. Эта разница (или соотношение) основывается на эксцентриситете и вычисляется как a / b = 1 / 1 − e 2 <\displaystyle a/b=1/<\sqrt <1-e^<2>>>> , что для типичных эксцентриситетов планет дает очень малые значения. Причина предположения о значительной эллиптичности орбит, вероятно, кроется в гораздо большей разнице между афелием и перигелием. Эта разница (или соотношение) также основывается на эксцентриситете и рассчитывается как r a / r p = ( 1 + e ) / ( 1 − e ) <\displaystyle r_<\text>/r_<\text
>=(1+e)/(1-e)> . Из-за большой разницы между афелием и перигелием второй закон Кеплера легко изобразить графически.
Систематизация и структурирование результатов астрономических наблюдений возможны только благодаря математике. Более того, математика сыграла важнейшую роль в развитии астрономии. Однако астрономия имеет свои особенности: вы не можете повторить эксперимент в лаборатории в любое удобное время, изменив то или иное условие. А ведь как прекрасно было бы заказывать затмения по желанию!
Хочу частичное солнечное затмение! Нет, лучше полное!
Астрономия родилась одновременно с человечеством. Телевизора у древнего человека не было, и он наверняка проводил вечера, глядя на звёздное небо. По крайней мере, на небо он смотрел чаще, чем любой из нас. Постепенно наши предки начали понимать, что некоторые астрономические явления повторяются и, наблюдая за ними, можно определить, когда начинать сеять, а когда — отправляться на охоту.
Несомненно, все эти знания помогали людям выживать. Так наука впервые доказала свою полезность. Кроме того, древние люди считали, что те явления, которые они не могут объяснить, происходят по воле Бога. Такие события были сакральными, их связывали с выполнением определённых ритуалов, которые и стали задачей жрецов различных примитивных культов.
Астрономия всегда была близка простым людям, поэтому, возможно, в прошлом она была ближе к человеку, чем сейчас. Мой дед-крестьянин знал то, что сейчас неизвестно большинству городских жителей. К примеру, он рассказывал, что каждую ночь луна восходит на час позже (в действительности на 50 минут, однако подобная точность для крестьянина была несущественной). Моя бабушка знала, что летом солнце стоит выше, чем зимой: его лучи проникали через окно и освещали дальнюю стену комнаты в разное время года по-разному. Интересно, что астрономия больше других наук привлекает любителей во всём мире. Возможно, вызвано это тем, что небо всегда находится у нас над головой, даже в облачный день, а вот, например, любителям-орнитологам надо ехать в какие-то определённые места, что бы наблюдать, как птицы вьют гнёзда. Обилие астрономов-любителей является одной из характерных особенностей данной науки. Благодаря этому распространение новых результатов в астрономии происходит успешно и очень быстро, а некоторым астрономам-любителям удалось добиться больших успехов в изучении небес.
Мне кажется, что распространение результатов астрономических наблюдений происходит проще, чем в других науках, потому что астрономия очень наглядна.
Объяснить последние математические открытия, относящиеся, например, к теории чисел или дифференциальной геометрии, довольно сложно, а продемонстрировать последние снимки, полученные телескопом «Хаббл», нетрудно. Кто из нас, затаив дыхание, не рассматривал фотографии космоса? Более того, астрономия в грамотном изложении по эмоциям и накалу страстей не уступит и сериалу. Кто из нас не удивится, узнав, что звёзды рождаются, стареют и умирают, а некоторые из них ждёт трагическая гибель? Кто не расчувствуется, узнав, что именно внутри звёзд родились самые тяжёлые химические элементы, из которых состоит наше тело? Кто не почувствует себя частью космоса, узнав, что мы — всего лишь дети звёзд, звёздная пыль? Кроме того, во Вселенной движутся и сталкиваются между собой целые галактики. В конечном итоге астрономия — это целый мир, полный прекрасных образов.
Люди хотят узнать об астрономии больше — возможно, потому, что эта наука рассказывает о прошлом, о том, как вращается Земля, о Солнечной системе, о космосе и, следовательно, о нашем доме. И ещё она говорит о том, откуда мы взялись.
Также астрономия позволяет предсказывать смену времён года, затмения, положение планет и звёзд на небе. Этот аспект порой используют псевдоучёные, чтобы предсказать какие-то явления, никак не связанные с расположением небесных тел. Возможно, это является следствием самой природы человека: люди чувствуют неуверенность в будущем и пытаются устранить её любыми способами, например с помощью астрологических прогнозов.
Кстати, если говорить о прогнозах, то между астрономией и математикой существует особая связь, ведь астрономические прогнозы являются результатами математических расчётов. По сути, многие задачи астрономии стало возможным решить благодаря развитию новых разделов математики.
Я ожидаю, что эта книга придётся по душе читателю, и в ней он найдёт ответ на некоторые интересующие его вопросы. Возможно, после чтения у вас возникнут новые идеи — именно таким путём и движется наука. Любой исследователь понимает, что он зажат в рамки: с одной стороны, он испытывает удовольствие от того, что побеждает неподвластную ранее задачу или начинает понимать то, чего раньше не понимал, но, с другой стороны, ему не дают покоя всё новые и новые вопросы.
Я была бы очень рада, если бы читатель получил от этой книги удовольствие сродни исследовательскому. Признаюсь, я работала над ней с наслаждением и надеюсь, что и вы испытаете нечто похожее.
Книга состоит из пяти глав, посвящённых важнейшим темам астрономии, связанным с математикой, — положению планет и измерению времени. В двух первых главах рассказывается об относительном положении небесных тел и расстояниях между ними, в двух последних — об измерении времени. В самой важной, третьей главе, мы поговорим о затмениях — астрономических явлениях, во время которых небесные тела занимают особое положение в пространстве.
Глава 1. Основные углы и расстояния: азбука астрономии
Очевидно, что основной целью науки, посвящённой наблюдению и изучению объектов, является определение их местоположения. В решении этой крайне важной задачи главную роль играет математика, позволяющая вычислить три значения: величины двух углов, указывающих расположение объекта на небесной сфере, и расстояние от объекта до нас. Определить эти два угла сравнительно просто, а вот вычисление расстояний до небесных тел — напротив, одна из сложнейших задач астрономии.
Определение положения по двум углам
Для расчёта положения тела на поверхности Земли используется метод координат. Так как результаты астрономических наблюдений часто зависят от того, где находится наблюдатель, учитывать земные координаты при работе с астрономическими данными крайне важно. Коротко опишем метод расчёта положения небесных тел.
Наша планета вращается вокруг оси, которая обычно используется в качестве линии отсчёта при определении положения точек на поверхности Земли. К примеру, точки пересечения земной оси с поверхностью нашей планеты называются Северным и Южным полюсом. Если мы рассмотрим плоскость, перпендикулярную оси вращения Земли и проходящую через центр нашей планеты, то увидим, что линией пересечения этой плоскости и земной поверхности будет экватор, который делит Землю на два полушария, Северное и Южное (в их вершинах находятся Северный и Южный полюс соответственно). Если теперь мы представим бесконечное число плоскостей, параллельных экватору, и рассечём этими плоскостями поверхность Земли, то получим окружности меньшего размера — параллели.
Теперь представим, что Земля подобна апельсину, разделённому на дольки с помощью линий, проходящих через оба полюса перпендикулярно экватору. Будем называть эти линии меридианами. В отличие от экватора и параллелей, все меридианы имеют равную длину. В 1884 году было принято решение выбрать в качестве нулевого меридиан, проходящий через Гринвичскую обсерваторию близ Лондона. Этот меридиан сохранил свой статус до наших дней, хотя ранее большинство европейских моряков использовали в качестве нулевого меридиан острова Иерро в Канарском архипелаге, точнее меридиан мыса Орчилья на западной оконечности острова. Вызвано это было тем, что со времён Птолемея остров Иерро считался концом известного мира, и до 1492 года о землях, лежащих к западу от острова, ничего не было известно.