Что такое полногеномное секвенирование
Полногеномное секвенирование: опасайтесь ошибок!
Насколько надёжно медицинское секвенирование ДНК?
Анализ ДНК может много рассказать о том, какие болезни грозят человеку. Пусть и не все возможные мутации известны и изучены, у нас всё же достаточно знаний, чтобы оценить риск того или иного вида злокачественной опухоли или, скажем, диабета. Конечно, проявление мутации зависит от внешних факторов, однако вряд ли кто-то будет спорить с тем, что генетический дефект при прочих равных условиях всё-таки повышает вероятность болезни.
Но чтобы найти мутацию, ДНК нужно секвенировать, прочитать последовательность нуклеотидов в ней. То есть нам нужен метод анализа, с помощью которого мы смогли бы разобрать ДНК на буквы и узнать, какие буквы оказались мутированными. Методов сиквенса много, и совершенствуются они с головокружительной быстротой. Ещё бы, ведь огромная часть научных работ начинается с выяснения последовательности ДНК, и нужно это не только в молекулярно-биологических областях, но и при решении каких-нибудь эволюционно-зоологических проблем. И это не говоря уже о медицинских потребностях.
Один из лабораторных способов сиквенса ДНК с использованием радиоактивно или флуоресцентно меченых нуклеотидов,
излучение которых фиксируется чувствительной плёнкой. (Фото Michael Rosenfeld.)
Но метод секвенирования ДНК далёк от совершенства – то есть, проще говоря, у него есть какой-то процент брака, ошибок в чтении ДНК. И в данном случае под «методом секвенирования» мы понимаем все современные его варианты; среди них есть похуже, есть получше, но идеальной 100-процентной точности они не дают. Тут, впрочем, стоит задуматься, так ли уж критична для нас эта точность?
Юэн Эшли (Euan A. Ashley) и Томас Квертермос (Thomas Quertermous) из Центра наследственных сердечно-сосудистых болезней при Стэнфордском университете (США) вместе с коллегами решили проверить, насколько полную информацию об опасных мутациях дадут две машины для сиквенса ДНК – производства Illumina и Complete Genomics (обе – США). В исследовании участвовали 12 здоровых людей, без каких-либо признаков генетических заболеваний. Однако их ДНК всё же несли в себе нехорошие мутации, числом от двух до шести; более того, у одной женщины нашли мутацию в гене BRCA1, который тесно связан с опухолями яичников или молочных желёз. Хотя испытуемые были здоровы, осведомлённость о неполадках в собственной ДНК могла бы помочь им так организовать свою жизнь, чтобы не провоцировать мутации, уменьшить вероятность срабатывания этих генетических «мин».
Эти результаты, бесспорно, говорили в пользу метода (точнее, двух его вариантов, представленных разными технологическими решениями). Однако, как пишут исследователи в Journal of the American Medical Association (Dewey et al., Clinical Interpretation and Implications of Whole-Genome Sequencing), от 10 до 19% генов, связанных с болезнями, прочитывались обоими агрегатами неудовлетворительно. А это значит, что мутации в них могут ускользнуть от внимания медиков. Кроме того, эти два варианта сиквенса часто не сходились между собой в отношении особо опасных мутаций, когда в ген, связанный с болезнью, вносится вставка, или, наоборот, когда он теряет фрагмент последовательности.
Тут стоит заметить, что полногеномное секвенирование, когда прочитывается и анализируется с одинаковым тщанием абсолютно вся ДНК, в современной медицине пока что применяется не очень широко; обычно анализу подвергаются лишь те гены, которые вызывают особое подозрение в связи с какими-то симптомами. Геномный анализ, бесспорно, мог бы стать большим подспорьем в медицине, однако тут есть несколько проблем, одна из которых – пока ещё недостаточная дешевизна и доступность таких систем, а вторая – то, о чём мы только что говорили, то есть всё ещё не вполне идеальная точность. Впрочем, стоит надеяться, что точность в скором времени «дотянут» до нужного уровня: всё-таки сделанная загодя полная генетическая карта со всеми генетическими рисками сильно помогла бы и врачам, и их потенциальным пациентам.
Секвенирование генома
Весь геном человека состоит из более чем трех миллиардов этих нуклеотидов, которые расположены в строго определенной последовательности.
К сожалению, иногда бывает так, что некотоые нуклеотиды исчезают или наоборот удваиваются или заменяются один на другой. Во многих случаях это ведет к неправильному формированию организма. Это может проявляться в виде врожденных пороков или малых аномалий развития, задержке психического развития, аутизме или имеет другие проявления.
Cеквенирование – это тест для определения генетических повреждений (мутаций) в ДНК, которые являются причиной наследственных болезней, наследственных предрасположенностей или особенностией организма.
Полногеномное секвенирование дает максимально полный набор данных о структуре генетического материала и позволяет детально оценить все индивидуальные генетические вариации
Секвенатор нового поколения IlluminaNextSeq 500 применяемый для секвенирования может определять полную структуру генома человека. Каждый участок генома при этом прочитывается 30 раз для повышения точности полученных данных.
Что можно получить при полногеномном секвенировании?
Когда нужно делать секвенирование генома?
В результате полногеномного секвениования получается огромный объем данных который требует специальной обработки. Такая обработка включает несколько этапов:
Что такое полногеномное секвенирование
Сегодня много пациентов страдает от неверного диагноза или несвоевременно обнаруженного заболевания, связанного с нарушениями в структуре ДНК.
Распространенные генетические тесты, такие как анализ одного гена, панели из нескольких генов или микроматричный анализ, часто не могут до конца выявить точную причину болезни из-за своих ограниченных возможностей.
Недавние достижения молекулярной генетики позволили сделать доступным по цене и скорости выполнения новый метод генетического тестирования — полногеномное секвенирование.
Полное секвенирование генома способно обнаружить почти все изменения в ДНК пациента, расшифровывая последовательность всех кодирующих и некодирующих областей. Результат такого исследования — информация о тысячах генов, участвующих в нормальном росте и развитии организма.
Этот метод с успехом заменяет все ранее известные способы генетического тестирования, соединяя в себе их возможности. С каждым годом он позволяет установить точный диагноз все большего числа заболеваний.
Используя полногеномное секвенирование, лечащий врач получает помощь не только в диагностике, но и более точно принимает решения по лечению, может наблюдать за течением заболевания, делать прогноз развития болезни и выздоровления. Точные рекомендации о прогрессировании заболевания также возможны в некоторых случаях.
По результатам тестирования может быть проведена оценка риска наследственных заболеваний для других членов семьи.
Полное секвенирование может быть проведено по направлению лечащего врача, а также по желанию пациента без наличия срочных медицинских показаний.
Структура генома не изменяется в течение всей жизни. Сделав анализ однократно, его результатами можно пользоваться всю жизнь. К ним можно повторно обращаться при появлении очередных открытий в генетике и с учетом новых знаний более точно интерпретировать данные.
Имея на руках готовую расшифровку своего генотипа, человек подготовит себя к возможным экстренным ситуациям, когда подробная генетическая информация может спасти жизнь — травмы, операции, тяжелые заболевания, пересадка органов и другие.
Полногеномное секвенирование — лучший на сегодня метод продолжать исследование структуры ДНК, функций генов, их влияния друг на друга и на проявления фенотипа.
Хотя крупные исследовательские центры в мире ведут эту работу, ее результаты не всегда широко доступны.
Поэтому многие исследователи делают это самостоятельно для своих узкоспециализированных целей — подбор и разработка препаратов, спортивные достижения, селекция растений и животных, диагностика и лечение болезней.
Лаборатория «Геномед», обладая современным оборудованием, проверенными технологиями и квалифицированными специалистами-генетиками, готова предоставлять эти ресурсы для целого ряда научных разработок.
Фундаментальные исследования
Изучение структуры и функции генома
Исследование генома человека не завершено до сих пор. Полногеномное сенквенирование дает новые возможности поиска нераскрытых функций генов, изучения некодирующих областей и регуляторных участков ДНК.
Структурные изменения и CNV
В отличие от большинства других генетических методов полногеномное секвенирование позволяет точно определять любые изменения структуры ДНК.
Часто достигается точность определения до уровня единичного нуклеотида. Поэтому, если требуется достоверно определить транслокации, инверсии, вставки или делеции участков, стоит использовать тест Genome UNI.
Эпигенетика
После создания технологии полногеномного секвенирования появилась возможность изучать закономерности наследования, не связанные с генетической последовательностью. В первую очередь речь идет о механизмах регуляции экспрессии генов.
В вопросах эпигенетики важную роль играют методики исследования метилирования ДНК (MeDIP-Seq, WGBS), взаимодействия и модификации гистонов (ChlP-Seq), метилирования РНК (TRM).
Полногеномные ассоциативные исследования
Исследование связи между структурой генома и фенотипическими признаками позволяет выявить, как проявляются различные сочетания генов.
Результат такой работы — более четкое понимание механизмов развития полигенных и многофакторных заболеваний, выявление влияния гетерозиготности на развитие признаков и оценка влияния средовых факторов.
Митохондриальный геном
В отличие от других генетических тестов полногеномное секвенирование исследует одновременно весь генетический материал клетки — ДНК ядра и ДНК митохондрий. Это особенно важно при изучении наследственности по материнской линии и обнаружении наследственных митохондриальных заболеваний.
Транскриптом
Полногеномное секвенирование позволяет оценивать не только геном клетки, но и ее транскриптом — совокупность всех типов РНК.
Важность транскриптома в том, что он показывает активность экспрессии определенных генов на текущий момент. Эта активность сильно зависит от состояния окружающей среды и самого организма и может говорить о наличии неблагоприятных процессов.
Биоинформатический анализ
Расширенный пайплайн
Многопотоковое секвенирование позволяет одновременно проводить расшифровку множества участков одной ДНК. Это значительно ускоряет процесс чтения, позволяет снизить стоимость и добиться высокой точности.
В настоящее время полногеномный анализ покрывает больше 96% генов с глубиной прочтения >20х, а время исследования одного генома сократилось до 1 суток.
Платформа управления данными
Результаты анализов представлены в виде удобного пользовательского интерфейса в личном кабинете. Там же доступны данные интерпретации, если она проводилась, и полученные рекомендации.
Владелец доступа может в любое время обратиться к своим результатам или загрузить их для off-line использования.
Пользовательский биоинформационный сервис
Кроме оборудования и передовых технологий «Геномед» рад предоставить консультационные услуги опытных врачей-генетиков.
Направляя пациента на анализ, вы получите не только расшифровку нуклеотидной последовательности, но и, при необходимости, ее клиническую интерпретацию и рекомендации по использованию результатов.
Собственное хранилище данных
Данные о проведенных исследованиях хранятся на собственных серверах лаборатории.
Все данные шифруются и доступ к ним предоставляется исключительно заказчику с индивидуальным логином и паролем.
Прикладные исследования
Диагностика генетических заболеваний
Сегодня насчитывают около 6000 различных генетических заболеваний и нарушений. Многие из них обладают схожими симптомами, но вызваны патологией разных генов. Если искать эти заболевания по отдельности, потребуется огромное количество исследований.
Полногеномное секвенирование позволяет заменить все виды генетических и многих лабораторных исследований единственным точным и высокоинформативным тестом.
Геном опухоли
Полногеномное секвенирование опухоли дает ключ к пониманию канцерогенеза. Это не только определение основных мутаций, приводящих к развитию рака.
Получив полную расшифровку генома, онколог может оценить уровень сопротивляемости организма росту опухоли, следить за изменением опухоли под воздействием терапии, подбирать наиболее эффективные и безопасные сочетания препаратов.
Профилактическое здоровье
Данные об индивидуальных предрасположенностях к заболеваниям могут изменить образ жизни человека.
На этом основании проще подобрать диету, нагрузки, препятствовать или способствовать воздействию различных факторов внешней среды.
Это позволит не просто увеличить продолжительность жизни, но и улучшить ее качество.
Создание лекарств
Данные об индивидуальных предрасположенностях к заболеваниям могут изменить образ жизни человека.
В зависимости от своего генетического статуса человек по разному реагирует на лекарственную терапию. Гены влияют как на эффективность, так и на переносимость препаратов. Полногеномное тестирование позволяет решать две важные задачи фармакотерапии.
Первая задача — поиск биомаркеров заболеваний. Наглядный пример — простатоспецифический антиген, используемый для диагностики опухолей предстательной железы.
Вторая задача — персонализация лекарственной терапии. В идеале препарат должен разрабатываться для генотипически близких групп пациентов или даже индивидуально с учетом конкретного набора генов.
Судебная медицина / Судебная патология
Генетические данные сегодня широко используются в криминалистической и судебной практике. Ниже перечислены некоторые примеры такого применения. Определение родства\материнства\отцовства.
Антропология и этнос
Изучение ДНК предков или представителей различных этнических групп позволяет понимать историю происхождения и развития человека и законы передачи наследственной информации.
Для отдельного человека появляется возможность разобраться в своих корнях и родословной. Для общества и науки — это источник изучения этнических особенностей здоровья, заболеваемости, долголетия и возможностей развития.
Диагностика наследственных заболеваний
Анализ всего генома в одном исследовании чаще всего приводит к более быстрой постановке диагноза генетического состояния по сравнению с многочисленными сериями одиночных генетических тестов. Особенно это справедливо, если клиническая картина не дает генетику четких указаний, в каких локализациях следует искать патологию, либо тогда, когда клиника может быть обусловлена патологией разных или нескольких генов.
Репродуктивное здоровье
Четко определена связь ряда генов с репродуктивной функцией. Мужское и женское бесплодие, невынашивание, хромосомные болезни новорожденных — все эти состояния можно обнаружить, а впоследствии и успешно лечить, если знать состояние генов, ответственных за процессы зачатия и развития плода.
Онкология
Молекулярно-генетические исследования — мощный инструмент в борьбе с онкологическими заболеваниями.
Во-первых, расшифровав полный геном, можно оценить не только гены, напрямую связанные с развитием рака. Одновременно врач получает полную картину состояния антиоксидантной защиты, противоопухолевого иммунитета, антитоксической функции и других систем, которые косвенно влияют на появление и течение онкопроцесса.
Во-вторых, генетические методы позволяют более эффективно подобрать препарат, контролировать процесс лечения и склонность к рецидивированию.
Важно, что полногеномное исследование (WGS) экономически намного выгоднее, чем исследование отдельных генов или серии генетических панелей (наборов анализов генов, связанных с определенной патологией).
Сегодня с помощью полногеномного тестирования можно оценить 649 опухолевых генов и еще 28 генов, способных нести хромосомные транслокации (перенос участков ДНК между хромосомами), связанные с развитием рака.
Планирование семьи
Известно, что предрасположенность к заболеваниям передается по наследству. Существует группа заболеваний, которые зависят от состояния генов и носят название аутосомно-рецессивных.
Полногеномное секвенирование способно показать людям, вступающим в брак, риски рождения у них детей с аутосомно-рецессивными болезнями.
Предрасположенность к заболеваниям
Почему одни люди заболевают раком, а другие нет? Кто-то живет до 100 лет, многие же умирают в молодости. Как узнать причину?
Сегодня уже четко установлена связь многих генов с развитием заболеваний. Причем, состояние одних генов улучшает прогноз, других — ухудшает. Примеры таких болезней — атеросклероз, остеопороз, тромбозы.
Если знать сочетание всех генов, можно рассчитывать риск развития заболеваний для человека, даже если он пока абсолютно здоров, а также предотвращать их появление.
Индивидуальные способности
Для многих способностей и склонностей человека показана прямая зависимость от состояния его генотипа. К ним относятся мышечная выносливость и сила, темперамент, наклонность к разного рода зависимостям и многое другое. Если планировать профессию и образ жизни на основании генетического анализа, можно достигать лучших результатов быстрее и с меньшими усилиями.
Почему нужно использовать
секвенирование генома
Полногеномное тестирование обладает целым рядом преимуществперед другими методами
в скорости, широте и точности расшифровки генетической последовательности
и установлении диагноза.
Секвенирование панелей генов | Клиническое секвенирование экзома | Полное секвенирование экзома | Genome UNI | |
---|---|---|---|---|
Покрытие кодирующих участков генома | Равномерное, только в области экзонов исследуемых генов | Неравномерное | Неравномерное | Равномерное по всему геному |
Поиск вариантов в интронах | — | — | — | + |
Поиск вариантов мтДНК | — | — | — | + |
Определение CNVs с высокой точностью | — | — | — | + |
Определение экспансии тринуклеотидных повторов | — | — | — | + |
Вероятность выявления причины заболевания при повторном анализе данных | Низкая | Низкая | Средняя | Высокая |
Показания к исследованию | Заболевания с преимущественным поражением одной системы органов или одним ведущим симптомом, когда определены гены ассоциированные с фенотипом | Подозрение на определенную генетическую патологию, когда другие методы (анализ отдельного гена или панели) недоступны | Секвенирование пробанда или родителей (трио) для поиска генов кандидатов (GUS) при отсутствии патогенных вариантов в клинически значимых генах | «В качестве теста первой линии у пациентов с признаками наследственного заболевания или при отсутствии специфического фенотипа.» |
Другие особенности | Повышенное покрытие таргетных участков генома позволяет лучше выявить однонуклиотидные и in/del варианты | Нет рекомендованного перечня клинически значимых генов | Не обладает преимуществами при секвенировании только пробанда | Большой объем данных требует использования дополнительных вычислительных ресурсов |
Информация для исследователей
Фундаментальные исследования
Секвенирование и ресеквенирование генома, анализ метагенома, экспрессии и метилирования генов.
Прикладные исследования
Поиск биомаркеров, рекрутинг пациентов, решения для селекции.
Медицинские исследования
Секвенирование генома и экзома, анализ на микрочипах.
Биоинформатический анализ
Расширенный пайплайн, биоинформационный сервис, платформа управления данными, хранилище данных.
Genome UNI рекомендован:
Врачам на заметку!
Genome UNI выявит:
Обладает ли тест Genome UNI
доказанной эффективностью?
Для анализа данных используется проприетарный алгоритм и пайплайн, разработанный одной из ведущих компаний США, которая специализируется на анализе данных полного секвенирования генома.
Пайплайн разработан в соответствии с требованиями профессиональной ассоциации медицинских генетиков (ACMG) и ассоциации клинических патологов (CAP) США и включает возможность анализа данных с учетом формализованного описания фенотипа в терминах HPO.
Строгий подход к оценке качества лабораторных данных при использовании профессионального пайплайна позволяет не только повысить выявляемость вариантов, но и избежать ошибок которые могут возникнуть на стадии сиквенса и снизить вероятность ложноположительных результатов.
WGS выявляет больше инсерцционно-
делеционных вариантов при 30х чем WES
при средней глубине 100х
WGS охватывает больше генов на при 30х,
чем WES при 100х
Что такое Полный геном и зачем он нужен
Атлас запустил новый продукт — Полный геном. Теперь мы можем исследовать не только отдельные точки в геноме, как в генетическом тесте, но и прочитать всю последовательность нуклеотидов генома. В этой статье рассказываем, что это и зачем это нужно.
Внимание! Мы подарим Полный геном одному из наших читателей, кто выполнит все задания. Подробнее — в конце статьи.
Что значит Полный геном?
Чтобы разобраться с полным геномом или полногеномным секвенированием (whole genome sequencing, WGS), мы сначала расскажем коротко о технологии обычного генетического теста.
Микрочип и обычный генетический тест
Генетический тест «Атлас», как и многие подобные тесты, делают с помощью ДНК-микрочипа (DNA-microarray, Beadchip). Поверхность ДНК-микрочипа содержит множество небольших углублений (порядка 700 тысяч), в каждом из которых находится по кремниевому шарику диаметром около 3 микрометров. На поверхности этого шарика находятся сотни тысяч сшитых с ним идентичных коротких последовательностей одноцепочечной ДНК, соответствующих участку генома человека, расположенному рядом с исследуемой вариацией (снип, SNV). Каждый шарик соответствует только одной генетической вариации, а координаты лунки на чипе для каждого шарика известны (Рисунок 2D).
Образовательный блок 1
Снип или SNV (Single Nucleotide Varition) — генетическая вариация, то есть изменение последовательности ДНК только в одном нуклеотиде. Например, на участке гена Х в определенной позиции может существовать один из трех нуклеотидов (аллелей) A, G или T, а в остальной части последовательности у разных людей нуклеотиды идентичны (Рисунок 1). От этой одной буквы может зависеть определенная особенность человека.
Рисунок 1 Автор иллюстраций Rentonorama
Например, полиморфизм rs4481887, который находится на первой хромосоме рядом с геном обонятельного рецептора OR2M7, имеет три аллеля: A, G и T. Наличие аллеля А на одной или на обеих хромосомах (генотипы A/G, A/T и A/A) определяет чувствительность к запаху мочи после употребления спаржи. При отсутствии аллеля А человек даже не будет догадываться о том, что после поедания спаржи с мочой выделяется вещество с характерным запахом.
Индел или INDEL (Insertion/Deletion) — другой тип генетических вариаций, в который относят удаление или вставку одного или нескольких нуклеотидов. Снипы и инделы вместе, наряду с возможными структурными изменениями: большими делециями, инсерциями, транслокациями, инверсиями, являются фактической разницей в геноме разных людей.
При сдаче генетического теста «Атлас» из слюны выделяют геномную и митохондриальную ДНК, увеличивают количество ее копий (амплифицируют) и фрагментируют — нарезают на небольшие отрезки (Рисунок 2А). Многочисленные одноцепочечные фрагменты человеческой ДНК соединяются с соответствующими им последовательностями на кремниевых шариках (Рисунок 2В), после чего происходит удлинение этих последовательностей на 1 искусственный флюоресцирующий нуклеотид (Рисунок 2С). Разные нуклеотиды светятся разными цветами: красным и зеленым. По соотношению интенсивностей свечения каждого цвета (Рисунок 2E) можно определить генотип, который соответствует шарику.
Рисунок 2
После сканирования всего чипа мы получаем около 700 тысяч генотипов вариаций и пропускаем их через нашу систему интерпретации. Часто пользователи пытаются сравнить результаты разных тестов, но замечают сильную разницу. Это происходит по нескольким причинам. Во-первых, разные компании используют разные версии чипов и наборы SNV. Как следствие, на одних чипах существуют уникальные наборы вариаций, которые нельзя найти на других чипах. Во-вторых, всегда существует ошибка генотипирования, которая может возникнуть по разным причинам, хотя она вносит наименьший вклад в различие результатов. Данные исследований показывают, что точность генотипирования на ДНК-микрочипах, которые использует Атлас, выше 99,5%. Но основная причина отличий результатов генетических тестов в интерпретации: разные компании делают ее по-разному даже для одинаковых исходных данных генотипирования.
Что такое полногеномное секвенирование?
Главное отличие полногеномного секвенирования от генотипирования на микрочипах — технология и обработка получаемых данных. При полногеномном секвенировании определяется почти вся последовательность ДНК. Почти — потому, что в геноме существуют участки, которые в силу различных причин невозможно прочитать. Часто это участки теломер и центромер — концов и центра хромосом. Для определения последовательностей подобных регионов генома используют малодоступные узкоспециализированные технологии. Такие исследования носят в основном исследовательский характер.
Определение последовательности ДНК позволяет узнать генотипы вариаций в любом месте генома, включая исследуемые вариации на ДНК микрочипе в генетическом тесте «Атлас». Для быстрого и эффективного определения последовательности генома используется технология NGS (next generation sequencing, секвенирование следующего поколения). Существует несколько принципиально отличающихся методов, созданных разными компаниями.
Суть метода Атласа заключается в следующем: выделенную и очищенную ДНК многократно амплифицируют и фрагментируют до определенной длины. К каждому фрагменту пришиваются специальные последовательности, которые позволяют управлять данным фрагментом. Прочитываются, именно эти обработанные фрагменты (Рисунок 3).
Рисунок 3. Процесс пошагового секвенирования: каждый следующий нуклеотид флуоресцирует в уникальном для него цветовом канале.
На каждом шаге происходит удлинение на один нуклеотид, с которым связан флуоресцентный зонд. Каждый из четырех нуклеотидов связан с зондом определенного цвета. Таким образом, шаг за шагом по цвету свечения можно определить порядок нуклеотидов в исследуемом фрагменте. Полученные последовательности каждого фрагмента называются прочтениями или ридами (reads), и их получается около 1 миллиарда на каждый образец исследуемой ДНК. Риды и показатели качества их прочтения хранятся в текстовом формате FASTQ.
Далее риды выравниваются (картируются) на референсный геном. С использованием специального программного обеспечения, например Burrows-Wheeler aligner, для каждого рида происходит поиск места на референсном геноме, которому он соответствует. Прочтение вместе с информацией о положении в геноме записывается в файл формата SAM или BAM. Визуализация картированных на геном ридов в SAM (BAM) файле с помощью геномного браузера IGV показана на Рисунке 4.
Рисунок 4. Визуализация BAM файла в программе IGV (участок хромосомы одного человека). Картированные риды обозначены горизонтальными блоками, позиция указана в треке сверху.
На рисунке также видно, что такое глубина прочтения (depth of coverage) — когда, любую позицию в референсном геноме покрывает несколько выровненных ридов. Значение усредняется по всему геному и используется как показатель качества исследования. Атлас гарантирует среднее покрытие генома глубиной выше 30, что обеспечивает высокое качество генотипирования. Увеличение глубины прочтения значительно увеличивает стоимость секвенирования, точность определения генетических вариаций и используется в узких онкологических исследованиях, например, в Атлас Онкодиагностике.
Образовательный блок 2
Референсный геном — это искусственно собранная последовательность ДНК биологического вида. Большинство последовательностей, из которых собран референсный геном человека, были взяты у одного человека Африкано-Европейского происхождения. Референсный геном регулярно обновляется: последняя версия, GRCh38, была выпущена в 2013 году и содержит в себе 3,3 млрд нуклеотидов. Несмотря на доступность новой версии, многие генетические тесты и сервисы по анализу генетических данных используют предыдущую — GRCh37. Для предоставления наиболее точных результатов анализа Атлас использует версию GRCh38.
Полученные после картирования файлы (SAM-файлы, sequencing alignment map, или в бинарном виде BAM — binary alignment map) фильтруются и используются для поиска вариаций в геноме, включая как однонуклеотидные вариации, так и короткие инсерции и делеции. Наличие однонуклеотидного варианта на хромосоме 1 в позиции 248333561 (приведенный ранее пример rs4481887 — вариант, определяющий чувствительность к запаху мочи после употребления спаржи) показано на Рисунке 5.
Рисунок 5. Визуализация BAM файла в программе IGV. Участок хромосомы 1. В позиции 248333561 находится полиморфизм rs4481887: нуклеотид в данной позиции не соответствует референсному геному и выделен цветом. Во всех ридах, которые покрывают данный участок генома, присутствует нуклеоид G, что говорит о гомозиготности генотипа. У человека с такими результатами секвенирования будет генотип G/G и нечувствительность к запаху мочи после употребления спаржи.
Найденные генетические вариации хранятся в VCF файле (variant call format). Он содержит обнаруженные аллели для каждой позиции генома, а также показатели качества генотипирования. VCF файл фильтруется: из него удаляются записи о наличии/отсутствии вариаций, которые не соответствуют порогам качества и являются потенциально ложными. Каждой найденной вариации присваиваются известные по ней данные из dbSNP, в частности, уникальные идентификаторы rsID.
Подробно ознакомиться со спецификой форматов хранения данных секвенирования и генотипирования можно по следующим ссылкам:
FASTQ — maq.sourceforge.net
SAM — samtools.github.io
VCF — samtools.github.io
Для визуализации картирования ридов (SAM или BAM файлов) используется различное программное обеспечение. Наиболее популярным является IGV (Integrative Genomics Viewer от Broad Institute). Загрузить IGV и ознакомиться с ним можно по ссылке.
Какие данные интерпретирует Атлас?
Полный геном содержит данные по тем вариантам генов, которые есть в генетическом тесте «Атлас», а также по признакам, которые нельзя подсчитать с помощью технологии генотипирования с использованием ДНК-микрочипов. Например, к таким признакам относятся риски онкологических заболеваний.
Здоровье
383 Наследственных заболеваний
Основной акцент всех тестов Атласа — раздел здоровье, и наш новый тест «Полный геном» не стал исключением. К признакам нашего основного теста мы добавили еще 65 наследственных заболеваний.
К наследственным или моногенным заболеваниям относятся болезни, которые передаются от родителей детям и на развитие которых не влияет образ жизни человека. Для развития такого заболевания достаточно мутации от одного или от обоих родителей в зависимости от типа наследования заболевания.
21 Многофакторное заболевание
На развитие многофакторных заболеваний влияют гены, образ жизни и факторы окружающей среды. К таким болезням относятся, например, сахарный диабет, ожирение, болезнь Паркинсона и Альцгеймера, атопический дерматит. В личном кабинете пользователю доступен расчет относительного риска развития заболевания на основе данных теста и опросника об образе жизни.
6 других признаков, связанных со здоровьем
Здесь мы собрали признаки, которые влияют на образ жизни человека. Например, продолжительность сна, хронотип, синдром хронической усталости, боязнь боли.
Клиническая генетика
43 Онкологических риска
Благодаря тому, что в полном геноме исследуется больше вариантов генов, мы получаем больше данных и можем оценить риски развития онкологических заболеваний. По результатам теста мы оцениваем предрасположенность к наследственным онкологическим синдромам.
Наследственные онкологические синдромы — генетические заболевания, которые могут передаваться в семье из поколения в поколение и повышать риски некоторых видов рака. Около 10% случаев онкологии имеют наследственную природу.
Поиск наследственных онкологических синдромов полезен в первую очередь тем, у кого в семье были случаи рака. На наследственную природу может указывать ранний возраст начала болезни (до 50 лет), наличие нескольких родственников по одной линии с одинаковым диагнозом, редкие формы рака. На основе результатов теста врач определит объем дополнительных исследований и составит персональную программу управления онкологическими рисками. Узнайте больше о том, как развиваются злокачественные образования, можно в нашей серии статей.
53 Показателей восприимчивости к активным компонентам лекарств
Каждый человек по разному реагирует на лекарства: у одних препарат действует хорошо, другие страдают от тяжелый побочных эффектов, а у третьих лечение оказывается неэффективным. В некоторых случаях это обусловлено работой генов, которые влияют на метаболизм активных веществ и риски побочных реакций.
Например, препарат Омепразол снижает секрецию соляной кислоты в желудке. Используется при лечении язвенной болезни желудка и двенадцатиперстной кишки, рефлюксной болезни. Ген CYP2C19 кодирует фермент, который отвечает за метаболизм омепразола. Поэтому, в зависимости от вариантов гена, необходимо корректировать дозу омепразола или использовать альтернативное лекарственное средство.
В тесте мы исследуем варианты генов, связанные с особенностями метаболизма 53 препаратов. Среди них есть антидепрессанты, гормональные контрацептивы, препарат для снижения свертываемости крови и некоторые другие.
Специализированный отчет по наследственным заболеваниям
Отчет — заключение Лаборатории клинической биоинформатики Федора Коновалова. Биоинформатики лаборатории ищут носительство рецессивных заболеваний. Такое носительство чаще всего не влияет на здоровье человека, но у его будущих детей оно может привести к заболеванию. Также лаборатория может выявить уникальную, нигде ранее не описанную мутацию и дать по ней заключение, является ли она вероятно патогенной.
Эксперты проводят тщательный анализ актуальной научной информации о мутациях и заболеваниях в каждом конкретном случае. В заключении содержится вся необходимая информация для врача-генетика. С этим отчетом вы сможете обратиться к профильному специалисту в случае необходимости.
Такие генетические отчеты похожи на юридический документ с обилием сложных терминов, правильно оценить который может только специалист, в нашем случае — генетик. Поэтому мы не показываем данные клинической генетики до консультации. Во время встречи врач-генетик подробно рассказывает, на что стоит обратить внимание с учетом вашей семейной истории и наличия симптомов. Это может помочь, например, для уточнения возраста начала скрининга определенных заболеваний или при планировании семьи.
Питание
28 Отчетов
По генетическим тестам и даже по полному геному подобрать оптимальное питание и составить рацион нельзя. Продуктов, их способов приготовления и блюд настолько много, что исследователям трудно найти какие-либо корреляции с вариантами генов. При этом некоторые данные все же есть.
По определенным вариантам генов мы можем узнать, есть ли у человека предрасположенность к непереносимости лактозы или глютена, быстро или медленно организм справляется с алкоголем или кофеином, а также оценить предрасположенность к определенному уровню железа, кальция, омега-3 и 6 жирных кислот. По этим данным человек может решить, какие продукты ему стоит убрать или наоборот добавить в рацион.
Спорт
16 Отчетов
Определить вид спорта, который вам больше подходит генетически — так же сложно, как и подобрать питание. Видов физической нагрузки сейчас множество, и понятие спорт с каждым годом расширяется. Так скейтбординг и серфинг добавили в программу олимпийских видов спорта. Видов физической нагрузки слишком много, чтобы это в большей степени было обусловлено генетикой. Поэтому не верьте генетическим тестам, которые обещают найти наиболее подходящий вам вид спорта. Выбирайте тот вид спорта, который просто нравится.
Научные сообщества генетиков обеспокоены, что родители делают генетические тесты детям, чтобы узнать, какой вид спорта им больше подходит. В таком случае ребенка могут отправить в группу, которая ему не нравится, но подходит по результатам теста. Если человек хочет добиться выдающихся результатов в спорте, то успех в большей степени будет зависеть от его амбиций, силы воли и характера. Варианты генов тут играют меньшую роль.
С помощью генетического теста можно узнать, как гены влияют на риски спортивных травм, количество свободного инсулиноподобного фактора роста-1, уровень эритроцитов, эритропоэтина, а также на особенности обмена аминокислот — валина, лейцина и L-карнитина. К результатам «Полного генома» мы добавили также риск невралгии седалищного нерва, уровень IGFBP‑3, объем выдоха и другие.
Другие признаки
15 Отчетов
В этом разделе мы собрали признаки, которые относятся к особенностям организма: черты внешности, восприятие света, чувствительность к травам и запахам. В нашем тесте вы не найдете признаков, которые связаны с эмоциями, поведением или характером. В основном эти черты зависят от особенностей воспитания, окружения и привычек, и в меньшей степени на них влияют варианты генов. К тому же многие личные качества можно поменять или выработать во взрослом возрасте.
Происхождение
3 Отчета
Генетики не используют понятия этнической или национальной принадлежности. В большей степени они обусловлены культурными различиями, а не разными вариантами генов. Вместо этого генетики используют понятие популяция — группа людей, которая долгое время живет на одной территории. Сегодня доступны геномные данные определенных популяций, из них ученые выделили последовательности и варианты генов, характерные для каждой. Генетические исследования происхождения — это поиск таких вариантов в геноме и определение генетической схожести с известными популяциями в процентном соотношении.
Кроме популяционного состава по генетическому коду можно узнать свою гаплогруппу. Гаплогруппа — это группа людей с одинаковым вариантом гена, который случился у одного общего предка тысячи лет назад. Также по геному можно определить процент ДНК неандертальца. В геноме современного человека оказалось около 1–4 % ДНК неандертальцев. Сейчас известно только несколько признаков, которые зависят от наличия вариантов гена неандертальца, — рост волос на спине и уровень липопротеинов низкой плотности ЛПНП (плохой холестерин).
Сравнение Полного генома и генетического теста «Атлас»
Почему Полный геном?
Главный плюс Полного генома в том, что вы получаете всю информацию о своей ДНК. Когда появятся новые данные, мы просто добавим их в личный кабинет. С обычным генетическим тестом это работает не всегда, так как в нем исследуется около 660 000 вариантов — 0,1% всей ДНК. Для интерпретации новых признаков их может быть недостаточно.
Результаты теста помогут предпринять меры по профилактике заболеваний, планированию семьи, а врач сможет уточнить диагноз в будущем или уже сейчас. Тест доставят на дом и всё, что требуется от пользователя — собрать образец слюны и вызвать курьера для передачи пробирки в лабораторию.
Основа Полного генома «Атласа»: генетический анализ высокой точности (99,5%), контроль качества полученных данных, запатентованная система интерпретации данных, доступ к исходным данным, консультация генетика, а также отобранные научные статьи, которые доступны каждому пользователю. Всё это пользователь получает за 94 500 — самая низкая цена за подобные услуги в России. Тест уже можно купить на сайте Атласа.
Если вы умеете работать с большими данными, а особенно биоинформатическими, ваши сырые данные полного генома могут быть пластилином, с которым на досуге можно поиграть и узнать о себе больше. Например, можно отсеять варианты генов, которые изучают другие компании и загрузить в их базу интерпретации, узнать родственную связь с другим человеком, взять референсную ДНК шимпанзе или Неандертальца и сравнить насколько вы схожи.