Что такое подобные треугольники определение
Подобные треугольники
Два треугольника подобны, если об этом сказано в условии либо если это можно доказать по одному из признаков подобия треугольников.
Подобные треугольники — это треугольники, у которых углы равны, а стороны пропорциональны.
Два треугольника подобны, если между их точками можно установить взаимно-однозначное соответствие, при котором отношение расстояний между любыми парами соответствующих точек равно одной и той же постоянной k, k — коэффициент подобия).
Как и в случае равных треугольников, важно правильно называть подобные треугольники: равные углы должны находиться на соответствующих позициях.
Определение подобных треугольников предполагает выполнение шести пар равенств (равенство трёх пар углов и пропорциональность трёх пар сторон). Признаки подобия позволяют сократить число равенств до 2-3 (для прямоугольных треугольников — до 1-2).
Свойства подобных треугольников
1) Периметры подобных треугольников относятся как их соответствующие стороны:
2) Соответствующие линейные элементы подобных треугольников (медианы, высоты, биссектрисы и т.д.) относятся как их соответствующие стороны.
3) Площади подобных фигур относятся как квадраты их соответствующих линейных размеров:
Подобие треугольников (ЕГЭ — 2022)
Что такое равные треугольники, понятно более или менее всем: их можно правильно наложить – и они совпадут.
А вот что такое подобные треугольники? Вроде как «похожие», но как это понимать? И для чего это понимать?
Ну например для решения задание ЕГЭ №16, где подобие треугольников используется для доказательств. Кстати, полностью 16-ю задачу решают менее 1% выпускников!
Читай эту статью, смотри вебинар по 16 задаче и все поймешь!
Подобие треугольников — коротко о главном
Подобные треугольники – это треугольники, у которых все углы равны и все стороны строго пропорциональны.
Коэффициент пропорциональности называется коэффициентом подобия \( \displaystyle k\).
\( \angle A = \angle
Отношение периметров подобных треугольников равно коэффициенту подобия: \( \displaystyle \frac<<
_ _<<_<1>><_<1>>< Отношение площадей подобных треугольников равно квадрату коэффициента подобия: \( \displaystyle \frac<< Признаки подобия треугольников: По двум углам: По одному углу и отношению заключающих его сторон: По отношению трех сторон: Мы разобрали подробно все, что касается треугольников в общем. Кроме того мы рассмотрели отдельные темы: Но что такое подобные треугольники? Вот, например, такой и такой: Похожи эти треугольники? Ты скажешь, конечно же нет! А вот такой и такой? Посмотри внимательно, тоже похожи. А теперь строго математически! Треугольники называются подобными, если у них все углы равны и все стороны пропорциональны. То есть все углы равны и все стороны одного треугольника в \( \displaystyle 5\), или, в \( \displaystyle 7\), или в \( \displaystyle 8,21\) (или и т.д.) больше сторон другого треугольника. Записываются слова «треугольник \( \displaystyle ABC\) подобен треугольнику \( \displaystyle <_<1>><_<1>>< То число раз, в которое отличаются стороны подобных треугольников, называются коэффициентом подобия, обозначается обычно с помощью буквы \( \displaystyle k\). \(\angle A = \angle Можно было бы все так и оставить, но, как и в случае с равенством треугольников, ленивым математикам стало слишком неохота проверять равенство ВСЕХ трех углов, и пропорциональность ВСЕХ трех сторон. Помнишь еще, что «\( \displaystyle \sim<\ >\)» обозначает слова «подобен»? Осознай удобство! Вместо того, чтобы проверять 6 утверждений – 3 равных угла и 3 пропорциональных стороны – ДОСТАТОЧНО РАВЕНСТВА ВСЕГО ДВУХ УГЛОВ! И это вообще-то самых удобный и часто используемый признак. Но есть и еще два. Смотри. Признаки нам рассказали о том, как обнаружить подобные треугольники, а теперь, как же воспользоваться найденным? Ну вот, что же хорошего? А то, что тогда… Все элементы одного треугольника ровно в \( \displaystyle 2\) (или сколько у тебя выйдет раз) больше, чем элементы другого треугольника. Не только стороны, но и высоты, биссектрисы, медианы, радиусы вписанной и описанной окружности и т.д. Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз: Это одна из самых сложных задачи в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников! Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства. Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы. В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение. Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем. Вы научитесь также применять подобие треугольников для расчетных задач (не только для доказательств). Подобные треугольники — это треугольники, у которых все три угла равны, а все стороны одного треугольника в одно и то же число раз длиннее (или короче) сторон другого треугольника, то есть треугольники подобны если их углы равны, а сходственные стороны пропорциональны. Сходственные стороны — это стороны двух треугольников, лежащие против равных углов. Рассмотрим два треугольника Стороны AB и A1B1, BC и B1C1, CA и C1A1, лежащие напротив равных углов, называются сходственными сторонами. Следовательно, отношения сходственных сторон равны: k — это коэффициент подобия ( число, равное отношению сходственных сторон подобных треугольников). Если k = 1, то треугольники равны, то есть равенство треугольников – это частный случай подобия. Подобие треугольников обозначается знаком : Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если обозначить площади двух подобных треугольников буквами S и S1, то: Если два угла одного треугольника равны двум углам другого, то треугольники подобны. то Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то треугольники подобны. Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.__<<_<1>><_<1>><Подобные треугольники — подробнее
Признак подобия треугольников «по двум углам»
Признак подобия треугольников «две пропорциональные стороны и угол между ними»
Признак подобия треугольников «три пропорциональные стороны»
Самый главный «секрет» подобия треугольников
Читать далее…
Бонус: Вебинар из нашего курса подготовки к ЕГЭ по математике
ЕГЭ 16. Подобие треугольников. Задачи на доказательство
Подобные треугольники
ABC и
A1B1C1, у которых ∠A = ∠A1, ∠B = ∠B1, ∠C = ∠C1:
AB = BC = AC = k, A1B1 B1C1 A1C1 ABC
A1B1C1.
Первый признак подобия треугольников
ABC
A1B1C1.
Второй признак подобия треугольников
Если AB = AC , ∠A = ∠A1, A1B1 A1C1 то ABC
A1B1C1.
Третий признак подобия треугольников