Что такое планетарная передача
Автоматическая КПП
Автоматическая коробка передач имеет ряд неоспоримых достоинств. Она существенно упрощает управление автомобилем. Переключения производятся плавно, без рывков, что улучшает ездовой комфорт и увеличивает срок службы трансмиссии. Современные АКПП имеют возможность ручного переключения передач и режимов работы, могут подстраиваться под стиль вождения конкретного водителя.
Но даже самые совершенные гидромеханические коробки не лишены недостатков. К ним относятся: сложность конструкции, высокая цена и стоимость обслуживания, более низкий КПД, худшая динамика и повышенный расход топлива по сравнению с механической КПП, медлительность переключений.
Устройство и принцип работы
Автоматическая коробка передач состоит из следующих основных узлов: гидротрансформатора, планетарного ряда, системы управления и контроля. Коробка переднеприводных автомобилей дополнительно содержит внутри корпуса главную передачу и дифференциал.
Чтобы понять, как работает АКПП, необходимо представлять себе, что такое гидромуфта и планетарная передача. Гидромуфта — устройство, состоящее из двух лопастных колес, установленных в одном корпусе, который заполнен специальным маслом. Одно из колес, называемое насосным, соединяется с коленвалом двигателя, а второе, турбинное, — с трансмиссией. При вращении насосного колеса отбрасываемые им потоки масла раскручивают турбинное колесо. Такая конструкция позволяет передавать крутящий момент примерно в соотношении 1:1. Для автомобиля такой вариант не подходит, так как нам нужно, чтобы крутящий момент изменялся в широких пределах. Поэтому между насосным и турбинным колесами стали устанавливать еще одно колесо — реакторное, которое в зависимости от режима движения автомобиля может быть либо неподвижно, либо вращаться. Когда реактор неподвижен, он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем большее воздействие оно оказывает на турбинное колесо. Таким образом момент на турбинном колесе увеличивается, т.е. мы его трансформируем. Поэтому устройство с тремя колесами это уже не гидромуфта, а гидротрансформатор.
Но и гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в нужных нам пределах. Да и обеспечить движение задним ходом ему не под силу. Поэтому к нему присоединяют набор из отдельных планетарных передач с разным передаточным коэффициентом — как бы несколько одноступенчатых КПП в одном корпусе. Планетарная передача представляет собой механическую систему, состоящую из нескольких шестерён – сателлитов, вращающихся вокруг центральной шестерни. Сателлиты фиксируются вместе с помощью водила. Внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, как планеты вокруг Солнца (отсюда и название- планетарная передача), внешняя шестерня – вокруг сателлитов. Различные передаточные отношения достигаются путем фиксации различных деталей относительно друг друга.
Переключение передач осуществляется системой управления, которая на ранних моделях была полностью гидравлической, а на современных на помощь гидравлике пришла электроника.
Режимы работы гидротрансформатора
Перед началом движения насосное колесо вращается, реакторное и турбинное — неподвижны. Реакторное колесо закреплено на валу при помощи обгонной муфты, и поэтому может вращаться только в одну сторону. Включаем передачу, нажимаем педаль газа — обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает турбинное. Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток масла, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом с помощью реактора увеличивается крутящий момент, что и требуется при разгоне автомобиля. Когда автомобиль разогнался, и движется с постоянной скоростью, насосное и турбинное колеса вращаются примерно с одинаковыми оборотами. При этом поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Увеличения крутящего момента не происходит, гидротрансформатор переходит в режим гидромуфты. Если же сопротивление движению автомобиля возросло (например, автомобиль едет в гору), скорость вращения ведущих колес, а, соответственно, и турбинного колеса падает. В этом случае потоки масла опять останавливают реактор — крутящий момент возрастает. Таким образом осуществляется автоматическое регулирование крутящего момента в зависимости от режима движения.
Отсутствие жесткой связи в гидротрансформаторе имеет свои достоинства и недостатки. Плюсы: крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы — низкий КПД, так как часть энергии теряется при «перелопачивании масла» и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.
Для устранения этого недостатка в гидротрансформаторе применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колес гидротрансформатора, то есть он начинает выполнять функцию обычного «сухого» сцепления. При этом обеспечивается жесткая непосредственная связь двигателя с ведущими колесами, как в механической трансмиссии. На некоторых АКПП включение режима блокировки предусмотрено и на низших передачах. Движение с блокировкой является наиболее экономичным режимом работы АКПП. При повышении нагрузки на ведущих колесах блокировка автоматически выключается.
При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, поэтому в конструкции АКПП предусматривается система охлаждения с радиатором, который или встраивается в радиатор двигателя, или устанавливается отдельно.
Как работает планетарная передача
Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев.
В одинарной планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй — ведомым. Третий элемент при этом неподвижен.
Для получения прямой передачи необходимо зафиксировать между собой два любых элемента, которые будут играть роль ведомого звена, третий элемент при таком включении является ведущим. Общее передаточное отношение такого зацепления 1:1.
Таким образом, один планетарный механизм может обеспечить три передачи для движения вперед (понижающую, прямую и повышающую) и передачу заднего хода.
Передаточные отношения одиночного планетарного ряда не дают возможности оптимально использовать крутящий момент двигателя. Поэтому необходимо соединение двух или трех таких механизмов. Существует несколько вариантов соединения, каждое из которых носит название по имени своего изобретателя.
Планетарный механизм Симпсона, состоящий из двух планетарных редукторов, часто называют двойным рядом. Обе группы сателлитов, каждая из которых вращается внутри своей коронной шестерни, объединены в единый механизм общей солнечной шестерней. Планетарный ряд такой конструкции обеспечивает три ступени изменения передаточного отношения. Для получения четвертой, повышающей, передачи последовательно с рядом Симпсона установлен еще один планетарный ряд. Схема Симпсона нашла наибольшее применение в АКПП для заднеприводных автомобилей. Высокая надежность и долговечность при относительной простоте конструкции — вот ее неоспоримые достоинства.
Планетарный ряд Равиньё иногда называют полуторным, подчеркивая этим особенности его конструкции: наличие одной коронной шестерни, двух солнечных и водила с двумя группами сателлитов. Главным преимуществом схемы Равиньё является то, что она позволяет получить четыре ступени изменения передаточного отношения редуктора. Отсутствие отдельного планетарного ряда повышающей передачи позволяет сделать редуктор коробки очень компактным, что особенно важно для трансмиссий переднеприводных автомобилей. К недостаткам следует отнести уменьшение ресурса механизма приблизительно в полтора раза по сравнению с планетарным рядом Симпсона. Это связано стем, что шестерни передачи Равиньё нагружены постоянно, на всех режимах работы коробки, в то время как элементы ряда Симпсона не нагружены во время движения на повышенной передаче. Второй недостаток — низкий КПД на пониженных передачах, приводящий к снижению разгонной динамики автомобиля и шумности работы коробки.
Коробка передач Уилсона состоит из 3 планетарных редукторов. Коронная шестерня первого планетарного редуктора, водило второго редуктора, и коронная шестерня третьего постоянно соединены между собой, образуя единое целое. Кроме того, второй и третий планетарные редукторы имеют общую солнечную шестерню, которая приводит в действие передачи переднего хода. Схема Уилсона обеспечивает 5 передач вперед и одну заднего хода.
Планетарная передача Лепелетье объединяет в себе обыкновенный планетарный ряд и пристыкованный за ним планетарный ряд Равинье. Несмотря на простоту, такая коробка обеспечивает переключение 6 передач переднего хода и одну заднего. Преимуществом схемы Лепелетье является ее простая, компактная и имеющая небольшую массу конструкция.
Конструкторы постоянно совершенствуют АКПП, увеличивая количество передач, что улучшает плавность работы и экономичность автомобиля. Современные «автоматы» могут иметь до восьми передач.
Как работает система управления
Системы управления АКПП бывают двух типов: гидравлические и электронные. Гидравлические системы используются на устаревших или бюджетных моделях, современные АКПП управляются электроникой.
Устройством «жизнеобеспечения» для любой системы управления является масляный насос. Его привод осуществляется непосредственно от коленвала двигателя. Масляный насос создает и поддерживает в гидравлической системе постоянное давление, независимо от частоты вращения коленвала и нагрузки на двигатель. В случае отклонения давления от номинального функционирование АКПП нарушается ввиду того, что исполнительные механизмы включения передач управляются давлением.
Момент переключения передач определяется по скорости автомобиля и нагрузке на двигатель. Для этого в гидравлической системе управления существуют два датчика: скоростной регулятор и клапан — дроссель или модулятор. Скоростной регулятор давления или гидравлический датчик скорости устанавливается на выходном валу АКПП. Чем быстрее едет машина, тем больше открывается клапан, тем больше давление проходящей через этот клапан трансмиссионной жидкости. Предназначенный для определения нагрузки на двигатель клапан — дроссель соединяется тросом либо с дроссельной заслонкой (в бензиновых двигателях), либо с рычагом ТНВД (в дизелях). В некоторых автомобилях для подачи давления на клапан — дроссель используется не трос, а вакуумный модулятор, который приводится в действие разряжением во впускном коллекторе (при увеличении нагрузки на двигатель разряжение падает). Таким образом, эти клапаны формируют давления, пропорциональные скорости движения автомобиля и загруженности двигателя. Соотношение этих давлений и позволяет определять моменты переключения передач и блокировки гидротрансформатора. В «принятии решения» о переключении передачи участвует и клапан выбора диапазона, который соединен с рычагом селектора АКПП и, в зависимости от его положения, запрещает включение определенных передач. Результирующее давление, создаваемое клапаном — дросселем и скоростным регулятором, вызывает срабатывание соответствующего клапана переключения. Причем, если машина ускоряется быстро, то система управления включит повышенную передачу позже, чем при спокойном разгоне.
Как это происходит? Клапан переключения находится под давлением масла от скоростного регулятора давления с одной стороны и от клапана — дросселя с другой. Если машина ускоряется медленно, давление от гидравлического клапана скорости нарастает, что приводит к открытию клапана переключения. Поскольку педаль акселератора нажата не полностью, клапан — дроссель не создает большое давление на клапан переключения. Если же машина ускоряется быстро, клапан — дроссель создает большее давление на клапан переключения, препятствуя его открытию. Чтобы преодолеть это противодействие, давление от скоростного регулятора давления должно превысить давление от клапана — дросселя, но это произойдет при достижении автомобилем более высокой скорости, чем при медленном разгоне.
Каждый клапан переключения соответствует определенному уровню давления: чем быстрее движется автомобиль, тем более высшая передача включится. Блок клапанов представляет собой систему каналов с расположенными в них клапанами и плунжерами. Клапаны переключения подают гидравлическое давление на исполнительные механизмы: муфты фрикционов и тормозные ленты, посредством которых осуществляется блокировка различных элементов планетарного ряда и, следовательно, включение (выключение) различных передач. Тормоз — это механизм, который осуществляет блокировку элементов планетарного ряда на неподвижный корпус АКПП. Фрикцион же блокирует подвижные элементы планетарного ряда между собой.
Электронная система управления так же, как и гидравлическая, использует для работы два основных параметра: скорость движения автомобиля и нагрузку на двигатель. Но для определения этих параметров используются не механические, а электронные датчики. Основными из них являются датчики: частоты вращения на входе коробки передач, частоты вращения на выходе коробки передач, температуры рабочей жидкости, положения рычага селектора, положения педали акселератора. Кроме того, блок управления АКПП получает дополнительную информацию от блока управления двигателем и других электронных систем автомобиля (например, от АБС). Это позволяет более точно, чем в обычной АКПП, определять моменты переключений и блокировки гидротрансформатора. Программа переключения передач по характеру изменения скорости при данной нагрузке на двигатель может легко вычислить силу сопротивления движению автомобиля и ввести соответствующие поправки в алгоритм переключения, например, попозже включать повышенные передачи на полностью загруженном автомобиле.
АКПП с электронным управлением так же, как и простые гидромеханические коробки, используют гидравлику для включения муфт и тормозных лент, но каждый гидравлический контур управляется электромагнитным, а не гидравлическим клапаном.
Применение электроники существенно расширило возможности АКПП. Они получили различные режимы работы: экономичный, спортивный, зимний. Резкий рост популярности «автоматов» был вызван появлением режима Autostick, который позволяет водителю самостоятельно выбирать нужную передачу. Каждый производитель дал такому типу коробки передач свое название: Audi — Tiptronic, BMW — Steptronic. Благодаря электронике в современных АКПП стала доступна и возможность их «самообучения», т.е. изменение алгоритма переключений в зависимости от стиля вождения. Электроника предоставила широкие возможности для самодиагностики АКПП. И речь идет не только о запоминании кодов неисправностей. Программа управления, контролируя износ фрикционных дисков, температуру масла, вносит необходимые коррективы в работу АКПП.
Планетарная передача принцип работы
Планетарный редуктор представляет собой один из вариантов механических редукторов. Причина использования такого названия редуктора заключается в применении планетарной передачи, которая расположена в редукторе. Именно она отвечает за передачу и преобразование крутящего момента. Планетарные редукторы могут иметь одну планетарную передачу или больше.
Принцип работы планетарного редуктора
Солнечная шестерня в таком редукторе расположена в центральной части, а на его периферии находится коронная шестерня. Кроме этого, в нем используются сателлиты (на фото ниже их пять) – небольшие шестерни, которые установлены между коронной и солнечной.
Ведущий мост грузовиков МАЗ, троллейбусов ЗиУ-9, автобусов Икарус, тракторов К-700 и Т-150К
Благодаря использованию такого редуктора в бортовой передаче появляется возможность сделать диаметр основной передачи меньшим, в результате чего возрастает клиренс. Кроме этого, полуоси имеют меньший диаметр, что позволяет спроектировать их на менее высокий крутящий момент.
Устройство и принцип работы
Устройство состоит из следующих элементов:
Принцип работы планетарного редуктора предусматривает то, что смазывание основных деталей происходит за счет естественного разбрызгивания масла при работе устройства.
Схема классического устройства выглядит следующим образом:
Защита конструкции обеспечивается за счет крышки редуктора. Его фиксация проводится за счет болтов. Принцип действия агрегата во многом зависит от кинематической схемы привода. Расчет передаточного отношения проводится при применении специальных формул, которые можно встретить в технической литературе.
Виды планетарных редукторов
Первый вариант исполнения намного проще, характеризуется меньшими размерами и обеспечивает более широкие возможности по передаче крутящего момента. Создание нескольких ступеней определяет существенное увеличение размеров конструкции, а диапазон передаточных чисел уменьшается.
По показателю сложности планетарного редуктора выделяют два основных типа:
В зависимости от формы корпуса и применяемым внутри элементам выделяют следующие типы:
Их применение позволяет передавать вращение между пересекающимися, перекрещивающимися и параллельными валами.
Детальное описание устройств
Смешанные планетарные конструкции могут иметь разное количество колес, а также различные передачи, посредством которых они соединяются. Наличие таких деталей значительно расширяет возможности механизма. Составные планетарные конструкции могут быть собраны так, чтобы вал несущей платформы двигался с высокой скоростью. В результате некоторые проблемы с редукцией, солнечной шестерней и прочими могут быть устранены в процессе усовершенствования устройства.
Таким образом, как видно из приведенной информации, планетарный механизм работает по принципу передачи вращения между звеньями, являющимися центральными и подвижными. При этом сложные системы более востребованы, чем простые.
Варианты конфигурации
Простые и сложные устройства
Как уже отмечалось выше, схема планетарного механизма всегда включает водило и два центральных колеса. Сателлитов может быть сколько угодно. Это, так называемое, простое или элементарное устройство. В таких механизмах конструкции могут быть такими : «СВС», «СВЭ», «ЭВЭ», где:
Каждый такой набор колес + сателлиты называется планетарным рядом. При этом все колеса должны вращаться в одной плоскости. Простые механизмы бывают одно- и двухрядными. В различных технических приборах и машинах они используются редко. Примером может послужить планетарный механизм велосипеда. По такому принципу работает втулка, благодаря которой осуществляется движение.
Гораздо чаще можно встретить сложные зубчатые планетарные механизмы. Их схемы могут быть самыми разными, что зависит от того, для чего предназначается та или иная конструкция. Как правило, сложные механизмы состоят из нескольких простых, созданных по общему правилу для планетарной передачи. Такие сложные системы бывают двух-, трех- или четырехрядные. Теоретически можно создавать конструкции и с большим числом рядов, но на практике такое не встречается.
Плоские и пространственные устройства
Некоторые думают, что простой планетарный механизм обязательно должен быть плоским. Это верно лишь отчасти. Сложные устройства тоже могут быть плоскими. Это значит, что планетарные ряды, сколько бы их ни использовалось в устройстве, находятся в одной либо в параллельных плоскостях. Пространственные механизмы имеют планетарные ряды в двух и более плоскостях. Самих колес может быть меньше, чем в первом варианте.
Общие сведения о планетарных передачах
Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями. Отличительной особенностью механизмов, включающих планетарную передачу (или передачи), является наличие двух или более степеней свободы. При этом угловая скорость любого звена передачи определяется угловыми скоростями остальных звеньев.
Наибольшее распространение получила простая одинарная планетарная передача (рис. 1), которая состоит из центрального колеса 1 с наружными зубьями, неподвижного центрального колеса 3 с внутренними зубьями; сателлитов 2 – колес с наружными зубьями, зацепляющихся одновременно с колесами 1 и 3 (на рис. 1 число сателлитов с = 3), и водила Н, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно колесо неподвижно (соединено с корпусом). Обычно внешнее центральное колесо с внутренними зубьями называют коронным (коронная шестерня или эпицикл), а внутреннее колесо с внешними зубьями – солнечным колесом (солнечная шестерня или солнце).
При неподвижном колесе 3 вращение колеса 1 вызывает вращение сателлитов 2 относительно собственных осей, а обкатывание сателлитов по колесу 3 перемещает их оси и вращает водило Н. Сателлиты таким образом совершают вращение относительно водила и вместе с водилом вокруг центральной оси, с. е. совершают движение, подобное движению планет. Поэтому такие передачи и называют планетарными.
При неподвижном колесе 3 движение передают чаще всего от колеса 1 к водилу Н, можно передавать движение от водила Н к колесу 1.
В планетарных передачах применяют не только цилиндрические, но и конические колеса с прямым или косым зубом. Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной.С помощью дифференциального механизма можно суммировать движение двух звеньев на одном или раскладывать движение одного звена на два других. Например, в дифференциале заднего моста автомобиля движение от водила Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.
Область применения планетарных передач
Планетарные передачи применяют как редукторы в силовых передачах и приборах, в коробках передач автомобилей и другой самоходной техники, при этом передаточное число такой КПП может изменяться путем поочередного торможения различных звеньев (например, водила или одного из колес), в дифференциалах автомобилей, тракторов и т. п.
Широкое применение планетарные передачи нашли в автоматических коробках передач автомобилей благодаря удобству управления передаточными числами (переключением передач) и компактности. Можно встретить планетарные передачи и в механизмах привода ведущих колес современных велосипедов. Часто применяют планетарную передачу, совмещенную с электродвигателем (мотор-редуктор, мотор-колесо).
Планетарная коробка передач: характеристики, принцип действия
Планетарные механизмы относятся к наиболее сложным устройствам коробки передач. При небольших размерах конструкция характеризуется высокой функциональностью, что объясняет ее широкое применение в технологических машинах, велосипедной и гусеничной технике. На сегодняшний день планетарная коробка передач имеет несколько конструкционных исполнений, но основные принципы работы ее модификаций остаются прежними.
Принципы работы планетарных коробок передач
Изменение передачи зависит от конфигурации размещения функциональных узлов. Значение будет иметь подвижность элемента и направления крутящего момента. Один из трех компонентов (водило, сателлиты, солнечная шестерня) фиксируется в неподвижном положении, а два других вращаются. Для блокировки элементов планетарной коробки передач принцип работы механизма предусматривает подключение системы ленточных тормозов и муфт. Разве что в дифференциальных устройствах с коническими шестернями тормоза и блокировочные муфты отсутствуют.
Понижающая передача может активизироваться по двум схемам. В первом варианте реализуется следующий принцип: останавливается эпицикл, на фоне чего рабочий момент от силового агрегата переправляется на базу солнечной шестерни и убирается с водила. В итоге интенсивность вращения вала будет понижаться, а солнечная шестерня прибавит в частоте работы. В альтернативной схеме блокируется солнечная шестерня устройства, а вращение передается от водила к эпициклу. Результат аналогичный, но с небольшим отличием. Дело в том, что передаточное число в данной рабочей модели будет стремиться к единице.
В процессе повышения передачи тоже может реализовываться несколько рабочих моделей, причем для одной и той же планетарной коробки передач. Принцип действия в простейшей схеме следующий: блокируется эпицикл, а момент вращения переносится с центральной солнечной шестерни и транслируется на сателлиты и водило. В таком режиме механизм работает как повышающий редуктор. В другой конфигурации будет блокироваться шестерня, а момент переправляется от коронной шестерни на водило. Также принцип действия схож с первым вариантом, но есть разница в частоте вращения. При включении заднего хода момент кручения снимется с эпицикла и будет передаваться на солнечную шестерню. При этом водило должно находиться в неподвижном состоянии.
Особенности рабочего процесса
Принципиальным отличием планетарных механизмов от других видов коробок передач является уже упомянутая независимость рабочих элементов, что формулируется как две степени свободы. Это значит, что благодаря дифференциальной зависимости для вычисления угловой скорости одного компонента системы необходимо брать во внимание скорости двух других зубчатых узлов. Для сравнения, другие зубчатые коробки передач предполагают линейную зависимость между элементами в определении угловой скорости. Иными словами, угловые скорости планетарной «коробки» могут меняться на выходе независимо от динамических показателей на входе. При зафиксированных и неподвижных шестернях появляется возможность суммировать и распределять потоки мощности.
В простейших механизмах отмечается две степени свободы зубчатых звеньев, но работа сложных систем может предусматривать и наличие трех степеней. Для этого механизм должен иметь как минимум четыре функциональных звена, которые будут находиться в дифференциальной связке между собой. Другое дело, что такая конфигурация фактически будет неэффективна в силу низкой работоспособности, поэтому на практике применения и передачи с четырьмя звеньями сохраняют две степени свободы.
Простые и сложные планетарные передачи
Уже был отмечен один из признаков разделения планетарных механизмов на простые и сложные – это количество рабочих звеньев. Причем речь идет только об основных узлах, и группы сателлитов не берутся в расчет. Простая система обычно имеет три звена, хотя кинематикой допускаются все семь. В качестве примера такой системы можно привести наборы одно- и двухвенцовых сателлитов, а также парные взаимозацепленные группы зубчатых колес.
В сложных механизмах основных звеньев гораздо больше, чем в простых. Как минимум в них предусматривается одно водило, однако центральных колес может быть больше трех. Ппринцип работы планетарной коробки передач позволяет даже в рамках одной сложной системы использовать несколько простых агрегатов. Однако о полной независимости простых планетарных систем в рамках сложных устройствах речи не идет.