Что такое план трассы
ПЛАН ТРАССЫ
ПЛАН ТРАССЫ графическое изображение технических и геодезических данных дороги для нанесения их на местность
(Болгарский язык; Български) — план на трасе
(Чешский язык; Čeština) — polohový výkres silnice
(Немецкий язык; Deutsch) — Trassenplan
(Венгерский язык; Magyar) — vonalvezetési terv
(Монгольский язык) — замын (трассын) байгуулалт
(Польский язык; Polska) — plan trasy
(Румынский язык; Român) — planul traseului
(Сербско-хорватский язык; Српски језик; Hrvatski jezik) — plan trase
(Испанский язык; Español) — plano del trazado
(Английский язык; English) — horizontal alignment of road
(Французский язык; Français) — tracé de la route en plan
Смотреть что такое «ПЛАН ТРАССЫ» в других словарях:
план трассы — Графическое изображение технических и геодезических данных дороги для нанесения их на местность [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики дороги, мосты, тоннели, аэродромы EN horizontal alignment of … Справочник технического переводчика
План обводнения города Москвы — план по созданию в Москве водных судоходных магистралей. Входил в состав Генплана 1935 года как часть сталинской реконструкции города. В связи со стремительным ростом населения Москвы в 1920 х 1930 х годах (c 1 млн жителей в 1920 г. до 3.6 млн в… … Википедия
план — 3.1.14 план: Вид сверху или горизонтальный разрез здания или сооружения. Источник: ГОСТ Р 21.1101 2013: Система проектной документации для строительства. Основные требования к проектной и рабочей документации … Словарь-справочник терминов нормативно-технической документации
План размещения составных частей оборудования и рабочих мест — 2.2.3 План размещения составных частей оборудования и рабочих мест разрабатывается для обеспечения безопасного производства ремонтных работ в связи с необходимостью: а) размещения составных частей оборудования и организации временных рабочих мест … Словарь-справочник терминов нормативно-технической документации
Проектный план — 2. Проектный план в масштабе 1:100000 1:25000, на котором показываются: а) отнесенные к группам по ГО территории и к категориям по ГО организации, зоны возможной опасности и загородная зона, предусмотренные СНиП 2.01.51 90; б) зоны действия… … Словарь-справочник терминов нормативно-технической документации
СП 47.13330.2012: Инженерные изыскания для строительства. Основные положения — Терминология СП 47.13330.2012: Инженерные изыскания для строительства. Основные положения: 8.4.9 Биологические (флористические геоботанические, фаунистические) исследования выполняют для определения видового состава флоры и основных растительных… … Словарь-справочник терминов нормативно-технической документации
Обход города Иркутска — Координаты: 52°17′55.8″ с. ш. 104°01′05.95″ в. д. / 52.298833° с. ш. 104.018319° в. д. … Википедия
Полевое трассирование — 5.1.4.5 Полевое трассирование должно содержать: создание планово высотной геодезической опорной сети; полевое трассирование (вынос намеченной трассы на местность) с нивелированием оси трассы и поперечников в характерных местах изменения рельефа… … Словарь-справочник терминов нормативно-технической документации
Остин (Техас) — Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии … Википедия
Липецк (автовокзал) — Автовокзал «Липецк» автобусный вокзал в Октябрьском округе города Липецка. Адрес в Липецке: проспект Победы, 89. Телефон справочной службы 004 (номер доступен только с таксофона и/или стационарного телефона), (4742) 41 17 99. Телефон приемной:… … Википедия
Элементы и параметры автомобильных дорог
Проектирование дороги осуществляется в трех проекциях: поперечном профиле, плане и продольном профиле.
Рис.8 Изображение автомобильной дороги: а) поперечный профиль (проекция на вертикальную плоскость перпендикулярно к оси дороги); б) продольный профиль (проекция на вертикальную плоскость параллельно к оси дороги); в) план (проекция на горизонтальную плоскость)
2.2.1 Элементы плана дороги
План трассы дороги — это графическое изображение ее проекции на горизонтальную плоскость, выполненное в уменьшенном масштабе.
Положение геометрической оси дороги на земной поверхности называют трассой. Трасса в плане и профиле является пространственной линией, так как она меняет свое направление при обходе различных препятствий (населенных пунктов, озер, рек, болот, оврагов и др.) (рис.11.)
Рис 11. Ось дороги как пространственная кривая: а – вид полотна дороги в аксонометрии; б – план дороги;
в – продольный профиль.
Масштаб плана трассы принимается: для равнинной и пересеченной местности 1:10000, для горной 1:5000. На план трассу наносят сплошной основной линией с разбивкой на километры и пикеты (пикет — расстояние, равное 100 м).
Рис.10 План трассы дороги
На плане трассы указывают номера углов поворота, которые характеризуют каждое изменение ее направления. В местах изменения направления трассы вписывают круговые кривые, основными элементами которых являются (рис.12): радиус R; длина кривой К. тангенс Т — длина касательной, т. е. расстояние от вер шины угла поворота а до начала или конца кривой; биссектриса Б — расстояние от вершины угла поворота до середины кривой. Данные об элементах кривых можно определять по специальным таблицам.
С целью обеспечения безопасности движения автомобилей с расчетными скоростями радиусы кривых в плане необходимо назначать возможно большими: от 3000 м и более дорог I категории и от 2000 м и более для дорог остальных категорий. При таких радиусах кривых обеспечивается безопасность движения автомобилей с расчетной скоростью, так как влияние центробежной силы на них невелико.
Однако назначение больших радиусов в плане не везде и не всегда возможно, а поэтому разрешается принимать их минимально допускаемые значения (согласно СНиП 2.05.02-85):
Категория дороги Ia Iб 11 III IV V
Все элементы кривых, а также пикетажное положение вершин углов поворота указывают в отдельных таблицах на плане трассы ( рис10).
Рис. 12. Основные элементы круговой кривой:
По обе стороны от трассы условными знаками и обозначениями изображают основные элементы рельефа, населенные пункты, земельные угодья, пути сообщения, водотоки, водоемы, а также указывают границы землепользователей и их наименование.
При проложении трассы необходимо применять ландшафтное проектирование, задачей которого является обеспечение плавного включения дороги в ландшафт окружающей среды, что имеет не только эстетическое значение, но и повышает удобство и безопасность движения. Оно преследует две цели: обеспечивает наилучшее сочетание дороги с окружающим ландшафтом, дополняет и улучшает его.
Дорога, вписанная в окружающий ландшафт, обеспечивает постоянный или плавный переменный режим движения, способствует работоспособности водителей и создает хорошее настроение у проезжающих.
На кривых с радиусами менее 2000 м в целях безопасности и комфортабельности движения при высоких расчетных скоростях с обоих концов круговой кривой устраивают переходные кривые, обеспечивающие плавное изменение направления движения автомобиля от прямолинейного к движению по круговой кривой. Переходные кривые представляют собой кривые переменного радиуса (рис.13 ).
В зависимости от радиуса круговой кривой длина переходных кривых назначается в пределах 30—120 м. При вписывании переходных кривых круговая кривая смещается к центру кривой на величину сдвижки р. Пользуясь таблицами, составленными В. И. Ксенодоховым, можно получить все разбивочные элементы переходных кривых.
В целях обеспечения удобства и безопасности движения автомобилей с расчетной скоростью на кривых с радиусами менее 3000 м на дорогах I категории и менее 2000 м на дорогах остальных категорий устраивают виражи — участки кривой с односкатным поперечным профилем и уклоном проезжей части к центру кривой (рис.14).
Односкатный поперечный профиль устраивают на всем протяжении основной круговой кривой. Поперечный уклон проезжей части на вираже i В необходимо принимать не менее поперечного уклона покрытия на участках с двускатным профилем в зависимости от радиуса кривой в плане (табл.5).
Радиус кривой в плане, м | Поперечный уклон проезжей части на вираже. | |
Основной наиболее распространенный | В районах с частыми гололедами | |
3000 и более для 1 категории; 2000 и более для дорог остальных категорий | Двухскатный поперечный профиль | |
От 3000 (2000) до 1000 | 20-30 | 20-30 |
> 1000 >700 | 30-40 | 30-40 |
>700 >650 | 40-50 | |
>650 >600 | 55-65 |
Рис.14 Схема виража
Поперечный уклон обочин на вираже тот же, что и уклон проезжей части.
Переход от двускатного поперечного профиля к односкатному и обратно осуществляется плавно на участках, примыкающих к круговой кривой, называемых отгонами виража, длина которых зависит от поперечного уклона виража и колеблется от 10 до 30 м.(Рис.15)
Рис15. Схема перехода от двускатного поперечного профиля проезжей части к односкатному на отгоне виража
На протяжении этих участков устраивают и переходные кривые. Переход от нормального уклона обочин при двускатном профиле к уклону проезжей части выполняется на протяжении 10 м до начала отгона виража.
Переход от двускатного поперечного профиля к односкатному осуществляется в пределах отгона виража «вращением» внешней половины проезжей части и внешней обочины относительно оси дороги. После достижения односкатного поперечного профиля с уклоном, равным уклону двускатного профиля, всю проезжую часть и внешнюю обочину вращают относительно внутренней кромки проезжей части до получения соответствующего уклона виража.
На кривых в плане при радиусах 1000 м и менее предусматривают уширение проезжей части с внутренней стороны за счет обочины. При этом ширина обочины должна быть не менее 1,5 м для дорог I—III категорий и не менее 1 м для дорог остальных категорий. В горной местности при радиусах 20—30 м в виде исключения допускается уширять проезжую часть с внешней стороны кривой. Уширение в пределах круговой кривой имеет постоянную величину, а затем в пределах переходных кривых (отгона виража) сводится на нет. Величины полного уширения для двухполосных автомобильных дорог назначают в зависимости от радиусов круговых кривых по СНиП 2.05.02-85.
Важнейшим условием безопасности движения на автомобильных дорогах является обеспечение видимости в плане, т. е. когда водитель видит встречный автомобиль или препятствие на расстоянии, достаточном для своевременной остановки своего автомобиля во избежание дорожно-транспортного происшествия. При этом учитывается, что луч зрения водителя при движении автомобиля по крайней правой полосе движения в 1,5 м от кромки проезжей части расположен на высоте 1,2 м над поверхностью проезжей части дороги. Наименьшие расстояния видимости установлены в зависимости от категории автомобильной дороги.
Категория до роги | Расчетная скорость, км/ч | Наименьшее расстоя ние видимости, м | Категория до роги | Расчетная скорость, км/ч | Наименьшее расстоя ние видимости, м |
для остановки | встречного автомобиля | для остановки | встречного автомобиля | ||
1а II | III IV V |
В целях обеспечения безопасности движения периодически необходимо оценивать состояние видимости на отдельных элементах улиц и дорог.(табл.5)
На пересечениях автомобильных дорог в одном уровне должна быть обеспечена боковая видимость, рассчитываемая из условия видимости с главной дороги автомобиля, ожидающего на второстепенной дороге момента безопасного выезда на главную дорогу (рис. 16, а). При пересечении равнозначных по интенсивности движения дорог расстояние видимости определяется согласно схеме, представленной на (рис. 16, б).Значения расстояний для обеспечения боковой видимости приведены в таблице 6.[7].
Рис16. Схемы определения видимости на пересечениях в одном уровне:
а – при пересечении дорог разных категорий; б – при пересечении равнозначных дорог
Содержание курсовой работы. 2.1.1. Построение плана трассы и определение его характеристик
2.1.1. Построение плана трассы и определение его характеристик
Построение плана трассы выполняется по исходным данным, приведенным на продольном профиле дороги в графах “Прямые и кривые в плане” (либо “План линии”, либо “Условный план трассы”), “Пикеты”, “Километры”, “Развернутый план трассы с ситуацией”. План трассы вычерчивается в масштабе 1:5000 (в 1 см 50 м) на листе формата А3 либо в масштабе 1:10000 (в 1 см 100 м) на листе формата А4.
Вначале из точки начала дороги проводится луч в направлении, определяемом румбом первого прямолинейного участка. Румбом называется угол между направлением участка дороги и линией «север-юг», отсчитываемый от 0 до 90 град в пределах одного из четырех секторов азимутального круга. Секторы обозначаются буквами (СВ- северо-восточный, ЮВ- юго-восточный, ЮЗ- юго-западный, СЗ- северо-западный). Если румб не указан, луч проводится в северном направлении (вверх). На луче откладывается отрезок, равный в масштабе длине первого прямолинейного участка, и таким образом определяется положение точки начала первой кривой в плане (Нк1). Если исследуемый участок дороги начинается не с начала километра, длину первого прямолинейного участка следует рассчитать, исходя из количества пикетов (участков длиной 100 м), размещенных на исследуемом отрезке, и расстояния от ближайшего пикета до точки начала (конца) соседней кривой в плане, указанного возле этой точки.
От полученной точки Нк1 далее по лучу откладывается расстояние, равное тангенсу кривой в плане (Т1), и определяется положение вершины угла поворота №1 (ВУ1).
В вершине угла в необходимом направлении (вправо или влево) откладывается угол поворота (угол между продолжением первоначального направления трассы и ее новым направлением). Направление поворота определяется по данным графы продольного профиля “Прямые и кривые в плане” либо по данным графы “Развернутый план трассы”. В графе “Прямые и кривые в плане” при движении слева направо повороту направо соответствует расположение дугообразного элемента, обозначающего кривую в плане, выше среднего положения трассы, и наоборот, повороту налево соответствует расположение условного обозначения кривой в плане ниже среднего положения трассы. В графе “Развернутый план трассы” новое направление трассы показано стрелкой, выходящей из точки, обозначающей вершину угла поворота.
В новом направлении трассы от вершины угла вновь откладывается расстояние Т1 и определяется положение точки окончания первой кривой в плане (Кк1), от которой далее по лучу откладывается расстояние, соответствующее длине второго прямолинейного участка. От полученной точки начала второй кривой в плане (Нк2) откладывается тангенс второй кривой (Т2) для получения вершины угла поворота №2.
Далее процесс построения плана трассы аналогичен рассмотренному выше и продолжается до прибытия в точку конца дороги.
Для построения криволинейных участков определяется положение центров каждого из поворотов. Из точек Нк и Кк перпендикулярно трассе проводятся лучи. Точка их пересечения определяет положение центра поворота. Расстояние от центра поворота до точек Нк и Кк будет соответствовать радиусу поворота.
После построения плана трассы он разбивается на пикеты. Расставляются указатели километров (в каждом километре 10 пикетов), обозначаются вершины углов поворота и их центры (обозначаются буквами О с соответствующими индексами), точки начала и конца кривых в плане, характеристики прямолинейных участков и углов поворота.
При отсутствии на продольном профиле, выданном в качестве исходного задания, населенных пунктов, пересечений дорог, мостов, остановочных пунктов автобусов указанные объекты должны быть размещены студентом самостоятельно с учетом следующих правил:
1. На дороге должен находиться один населенный пункт длиной 200 – 300 м (на любом из участков);
2. На каждом километровом участке должны располагаться (как минимум): одно пересечение (примыкание) дорог, один мост, один остановочный пункт автобуса. Конкретное место размещения каждого из указанных объектов определяется с учетом местных условий.
Масштаб изображения ситуации на плане трассы в поперечном направлении от оси дороги целесообразно принять М 1:10000 (в 1 см 100 м). Пример построения плана трассы приведен на рис. 1.
После выполнения графической части рассчитываются основные характеристики плана трассы:
Суммарная длина прямых участков;
Средняя протяженность прямолинейного участка (отношение суммарной длины прямых к количеству прямолинейных участков);
Суммарная длина кривых в плане;
Средняя протяженность кривой в плане (отношение суммарной длины кривых в плане к их количеству);
Количество углов поворота;
Удельное количество углов поворота на 1 км дороги;
Средняя величина угла поворота;
| (1) |
Минимальный радиус кривой в плане на каждом километре исследуемого участка. Полученные значения сравниваются со значениями, определенными нормативными документами в зависимости от категории дороги (прил. 1). Категория дороги определяется по интенсивности движения (п.1 линейного графика).
Выводы по разделу должны содержать результаты сравнения характеристик плана трассы с нормативными значениями. Предложения по изменению характеристик плана трассы приводятся в разделе 7 курсовой работы (раздел 2.1.7 данного издания).
Глава 5. Проектирование трассы в плане
Трассирование автомобильных дорог осуществляется с учетом, в первую очередь, требований удобства и безопасности транспортного движения. Чтобы дорога наилучшим образом удовлетворяла этим требованиям, необходимо обеспечить возможность движения одиночных автомобилей с расчетными скоростями, а транспортных потоков со скоростями, нормируемыми в зависимости от категории проектируемой дороги и плотности этого потока.
Сочетания элементов плана и продольного профиля должны правильно ориентировать водителей в дальнейшем направлении трассы за пределами фактической видимости. При проектировании трассы для транспортного движения следует избегать: кривых малого радиуса; резких поворотов за переломами продольного профиля; пересечений дорог в одном уровне в условиях необеспеченной видимости; участков переплетений и слияний транспортных потоков местного и транзитного движения с различными скоростями; длинных прямых, особенно переходящих в кривые малого радиуса.
Одним из наиболее радикальных средств обеспечения наилучших условий удобного и безопасного движения является ландшафтное проектирование. Методы ландшафтного проектирования получили значительное развитие в работах Бабкова В. Ф. [1, 2] и Лобанова Е. М. [13].
Ландшафтное проектирование предусматривает решение ряда взаимосвязанных задач:
· Обеспечение зрительной плавности трассы. Обеспечение пространственной плавности автомобильных дорог сводится к реализации при проектировании следующих принципов сочетания элементов плана и продольного профиля: длины прямых и кривых должны быть соизмеримы; количество переломов в плане и профиле должно быть по возможности одинаковым; следует стремиться совмещать вершины вертикальных и горизонтальных кривых, допуская смещение их вершин относительно друг друга не более, чем на ¼ длины меньшей из них; необходимо избегать сочетаний элементов трассы, создающих провалы видимости. Всестороннюю оценку зрительной плавности трассы путем построения перспективных изображений участков проектируемой дороги с разных точек зрения.
· Реализация принципов «оптического трассирования», когда различными приемами (посадка деревьев и кустарников, трассирование на возвышающие объекты ландшафта и т.д.) обеспечивается ясное представление о дальнейшем направлении дороги за пределами фактической видимости.
· Обеспечения плавного и гармоничного вписывания автомобильной дороги в окружающий ландшафт и соблюдение требований охраны окружающей среды.
· Улучшение существующего природного ландшафта путем включения в проект различных мероприятий (посадка деревьев и кустарников на придорожной полосе; планировочные и осушительные работы; создание искусственных водоемов с приданием земляному полотну на участках пересечений водотоков функций гидротехнических плотин; раскрытие либо маскировки отдельных элементов ландшафта и т.д.).
В современных условиях при трассировании дорог также особое внимание уделяется вопросам охраны окружающей среды. Решение этой проблемы достигается посредством:
· Проложения дорог в обход ценных сельскохозяйственных угодий; заповедников; лесных массивов; водоохранных зон; природных, исторических и культурных памятников; мест обитания ценных животных и других территорий, где строительство и эксплуатация дороги могут иметь особенно неблагоприятные последствия для окружающей среды.
· Удаления автомобильной дороги с интенсивным транспортным движением от населенных пунктов на расстояния, обеспечивающих защиту населения от вредных выбросов автомобилей и транспортного шума [15].
· Назначения параметров и сочетания геометрических элементов дороги, обеспечивающих равномерный режим движения транспортного потока, при котором снижается уровень вредного влияния автомобильного транспорта на окружающую среду.
При трассировании дорог необходимо учитывать значительное число требований и условий, изложенных выше. Однако зачастую проектные решения, в максимальной степени отвечающие какому-либо критерию или критериям, не соответствуют другим. Отсюда следует, что трассирование дорог является многокритериальной задачей и конечной целью ее решения является нахождения варианта трассы, обеспечивающего разумный компромисс в удовлетворении всех вышеперечисленных требований и условий.
5.1. Принципы проектирования трассы в плане
Методы трассирования автомобильных дорог основаны на принципах «гибкой линейки» и «полигонального трассирования».
При системной автоматизации проектных работ трассирование дорог по принципу «гибкой линейки» содержит огромный потенциал развития, поскольку при этом осуществляется непосредственная укладка трассы автомобильной дороги и расчет базиса (полигонального хода для выноса трассы в натуру) не оказывает влияния на формирование эргономических и эстетических свойств этой трассы. По этому же самому обстоятельству тип закруглений может быть сколь угодно сложным в смысле комбинации геометрических элементов трассирования. Однако методы трассирования, основанные на этом принципе, применяются до сих пор редко, как ввиду неподготовленности инженерных кадров, так и из-за методологической незавершенности обоснования приоритетной применимости этих методов в проектной практике.
Традиционный принцип трассирования дорог, который принято называть принципом «полигонального трассирования», до сих пор является доминирующим в практике проектирования в подавляющем большинстве проектных организаций. Методы, которые основаны на этом принципе, относятся к эвристическим. Суть этих методов заключается в том, что назначается полигональный (тангенциальный) ход и в каждый излом этого хода последовательно вписываются закругления. И если расчет закруглений содержит определенный математический алгоритм, то способ назначения самого тангенциального хода основывается лишь на интуиции и профессиональном опыте инженера-проектировщика.
Феномен широкой применимости принципа «полигонального трассирования» можно объяснить тем, что для проектировщиков этот принцип более понятен, методы на его основе просты в расчетах и обеспечивают предельную экономичность полевого этапа работ.
Рассмотрим детально этот принцип трассирования. При «тангенциальном трассировании» трассу можно охарактеризовать как ломаную линию, в изломы которой вписаны кривые. Отрезки прямых представляют собой касательные к кривым, поэтому можно говорить о ломаной как о тангенциальном ходе (полигоне). Заложение полигона в полевых условиях заключается в последовательном отыскании и закреплении его вершин. Осуществляется это, как правило, посредством проложения теодолитного хода. Рациональным началом такого подхода является то, что ошибки, возможные при вписывании какой-либо кривой, не оказывают влияния на достоверность расчетов последующих кривых.
С принципом «полигонального трассирования» практически однозначно связано условие выполнения геодезических изысканий по «пикетному методу». Его суть заключается в следующем: измеряют линии тангенциального хода с помощью мерной ленты, на этой линии закрепляют, как правило, пикеты и характерные точки трассы (водоразделы, лога, пересечения с автомобильными дорогами и инженерными коммуникациями и др.). На каждом последующем отрезке ломаной пикетажное положение точек корректируется с учетом величины домера вписанной кривой. Далее перпендикулярно закрепленным точкам осуществляют съемку поперечных профилей на ширину полосы отвода. Таким образом, тангенциальный ход предопределяет очертания трассы и является основой для всех последующих геодезических работ. Естественно, что изменение или корректировка этой основы (трассы) на этапе камеральных работ практически не возможна.
Отдельного рассмотрения требует процедура вписывания кривых в изломы тангенциального хода. Случай, когда закругление представляет собой круговую кривую (рис. 5.3, а), является простейшим и применяется для дорог II-ой категории при R ³ 2000 м и при R ³ 3000 м для дорог I-ой категории. Для расчета такого закругления при известном угле поворота ( a ) и радиусе кривой (R) необходимо вычислить значения тангенса, биссектрисы, длины кривой и домера (см. рис. 5.1):
Если длины входной и выходной клотоиды не равны между собой, то это – случай несимметричного закругления. При его расчете уже отсутствует понятие биссектрисы закругления, что усложняет процесс закрепления и последующей разбивки такого закругления. В частном случае, если отсутствует круговая вставка между переходными кривыми, то такое закругление называется биклотоидой (симметричной или несимметричной).
Случаи коробовой клотоиды (рис. 5.3, в) и комбинированного закругления (рис. 5.3, г) являются универсальными и служат для подбора любых очертаний закругления. Расчет таких закруглений представляет собой достаточно сложную аналитическую задачу. Основы решения для составных закруглений известны, однако на практике реализация этих решений крайне затруднительна.
Наиболее перспективными геометрическими элементами для проектирования закруглений трассы в составе тангенциального хода являются кривые Безье, которые способны принимать формы и свойства всех вышеприведенных элементов. К тому же кривые Безье являются в общем случае пространственными функциями и способны, как было показано в гл. 2, обеспечивать и пространственное (трехмерное) трассирование автомобильных дорог.
5.2. Методы трассирования
5.2.1. Трассирование на основе тангенциального хода
Проект в системе IndorCAD / Road может содержать множество трасс автомобильных дорог. Это связано с тем, что проектирование участка автомобильной дороги сопровождается устройством примыканий, пересечений, развязок. Каждый из этих проектных элементов формируется собственной трассой (трассами). При этом каждая трасса имеет свои параметры проектирования, которые должны быть зафиксированы и отражены в соответствующих настройках.
Начальная и конечная вершины трассы могут располагаться в любом месте плана и не зависят от точек ЦММ. На плане трасса отображается линиями красного цвета, количество которых определяется установленным в свойствах трассы режимом отображения.
Обратите внимание, что в дереве объектов проекта появилась новая трасса. Чтобы переименовать трассу, щелкните правой кнопкой мыши на ее названии и в появившемся контекстном меню выполните команду Переименовать…
После создания новой трассы система автоматически переходит в режим редактирования для задания тангенциального хода трассы.
Следующим проектным действием, который целесообразно осуществить, должно быть задание свойств этой трассы.
Для задания свойств активной трассы в меню Трасса выполните команду Свойства или дважды щелкните на названии трассы в дереве объектов. Откроется диалоговое окно, в котором задаются основные параметры трассы, параметры верха земляного полота, ограничения на продольные уклоны и минимальные радиусы кривых и другие свойства.
В верхней информационной части окна можно определить название и выбрать категорию трассы. При выборе категории можно изменить некоторые свойства трассы на установленные по умолчанию для данной категории. Для этого требуется дать положительный ответ на запрос об изменении свойств трассы.
В нижней части окна отображаются пять вкладок: Верх земляного полотна (рис. 5.6), Параметры (рис. 5.7), Ограничения (рис. 5.8), Потоки (рис. 5.9) и Поверхность (рис. 5.10).
На вкладке Верх земляного полотна можно установить следующие параметры:
· общую ширину верха земляного полотна, проезжей части и разделительной полосы;
· поперечные уклоны обочин, проезжей части и разделительной полосы;
На вкладке Параметры определяются основные параметры трассы и режим отображения трассы в плане.
К основным параметрам трассы относятся следующие:
· пикет начала трассы;
· значение руководящей отметки трассы. Устанавливается для контроля возвышения трассы над уровнем грунтовых или поверхностных длительно стоящих вод. При реконструкции и ремонте дорог под руководящей отметкой можно понимать величину усиления дорожной одежды.
· длина расчетного автопоезда (максимальная длина автопоезда, проезд которого гарантирован проетными параметрыми трассы и земляного полотна). Этот параметр используют, в первую очередь, при построении отгонов виражей;
· расстояние видимости (минимальная длина видимого участка дороги);
· расчетная скорость (максимальная скорость автомобиля). Этот параметр также используется при построении отгонов виражей;
На вкладке Ограничения определяются следующие значения:
· минимальный и максимальный уклоны продольного профиля;
· минимальные радиусы закруглений трассы в плане, а также выпуклых и вогнутых сегментов в продольном профиле.
При выборе опции Отображать как примыкания в продольных профилях близких трасс данная трасса на продольных профилях всех близких трасс будет отображаться как примыкание.
На вкладке Потоки можно задать направления движения автомобилей по трассе. Для этого следует установить флажки опций Разрешить движение автомобилей в прямом направлении (от начальной вершины трассы к конечной) и/или Разрешить движение автомобилей в обратном направлении (от конечной вершины трассы к начальной).
На вкладке Поверхность определяются следующие свойства трассы:
· существующая поверхность. Имя слоя, который будет являться существующей поверхностью для данной трассы;
· проектная поверхность. Имя слоя, в котором трасса будет формировать проектную поверхность. Выбор опции Разрешать формировать поверхность включает режим динамического обновления ЦМП. То есть любые изменения в трассе вызывают соответствующие изменения поверхности.
Задание тангенциального хода
После настройки свойств (параметров) трассы необходимо переходить к заданию тангенциального хода на основе воздушной линии трассы. Тангенциальный ход трассы задается в режиме редактирования трасс. Чтобы включить режим редактирования, щелкните кнопку Редактирование трассы , расположенную на панели инструментов «Трассы«. Режим становится доступным, если активная трасса не разбита на поперечные профили.
Создание вершин углов. Создавать новые вершины (изломы тангенциального хода) можно только на прямолинейных сегментах оси трассы. Для этого поместите курсор на ось трассы (рядом с курсором появится знак плюс) и перетащите его в место расположения новой вершины, удерживая нажатой левую кнопку мыши. Новой вершине будет присвоен номер, определяющий ее положение от начальной вершины трассы, номера остальных вершин изменятся соответствующим образом.
При перемещении вершины трассы с клавишами Ctrl или Shift сохраняется азимут направления предыдущего или следующего за перемещаемой вершиной сегмента.
Параметры вершин трассы
В области Параметры вершины отображаются X, Y-координаты выделенной вершины (ее название отображается на синем фоне) и параметры кривой закругления, вписанной в вершину.
В информационном поле отображается дополнительная информация (рис. 5.14):
· Домер . Разность между суммой больших тангенсов и длиной кривой закругления;
Для обеспечения плавного изменения формы трассы в ее угловые вершины вписываются кривые. Модели и параметры кривых закругления выбираются в окне Параметры вершин трассы . Чтобы вписать кривую в угловую вершину трассы, выберите модель кривой и задайте параметры кривой в группе элементов Параметры вершины .
· X и Y-координаты угловой вершины трассы (X, Y);
· входной тангенс (Т1) – расстояние от начала входной клотоиды до вершины;
· выходной тангенс (Т2) – расстояние от вершины до конца выходной клотоиды;
· радиус круговой вставки (R);
· длина входящей клотоиды (L1);
· длина исходящей клотоиды (L2).
Математическое обоснование кривых Безье для трассирования дорог приведено в гл. 2. Ниже приводится описание кривых Безье 3-й и 5-й степени, применяемых в системе IndorCAD / Road для вписывания кривых в изломы тангенциального хода.
Модель Безье 3-й степени. Описывает закругление по кривой Безье 3-й степени, которая строится по четырем точкам: начальной, конечной точкам закругления и двум промежуточным точкам, расположенным на сторонах угла. Кривая определяется следующими параметрами:
· X, Y-координаты угловой вершины трассы (X,Y);
· входной тангенс (Т1) – расстояние от начальной точки закругления до вершины;
· выходной тангенс (Т2) – расстояние от вершины до конечной точки закругления;
· малый входной тангенс (t1) – расстояние от первой промежуточной точки до вершины;
· малый выходной тангенс (t2) – расстояние от вершины до второй промежуточной точки.
Модель Безье 5-й степени. Описывает закругление по кривой Безье пятой степени, которая строится по шести точкам: начальной и конечной точкам закругления и четырем промежуточным точкам. Кривая определяется следующими параметрами:
· X и Y–координаты угловой вершины трассы (X,Y);
· входной тангенс (Т) – расстояние от начальной точки закругления (точка № 1) до вершины;
· выходной тангенс – расстояние от вершины до конечной точки закругления (точка № 2);
· средний входной тангенс (S) – расстояния от точки № 3, расположенной на стороне угла, до вершины;
· средний выходной тангенс – расстояния от вершины до точки № 4, расположенной на стороне угла;
· малый входной тангенс (М) – расстояние от нормали точки № 5 до вершины;
· малый входной тангенс (М) – расстояние от нормали точки № 5 до вершины;
· малый выходной тангенс – расстояние от нормали точки № 6 до вершины;
· входная нормаль – расстояние по нормали от точки № 5 до стороны угла;
· выходная нормаль (N) – расстояние по нормали от точки № 6 до стороны угла.
Второй график показывает скорость изменения центробежного ускорения на кривой, вписанной в выбранную вершину. Пунктирные линии задают интервал допустимых значений скоростей (м/с 3 )
[-0.5, 0.5]. Если скорость изменения центробежного ускорения удовлетворяет этому интервалу, то график отображается зеленым цветом, иначе – красным.
В строке статуса данного окна отображаются параметры точки, на которую указывает курсор:
· S – расстояние от начала закругления до точки, м;
· J – скорость нарастания центробежного ускорения, м/с 3 ;
· R – радиус закругления трассы в выбранной точке, м.
На рис. 5.19 представлены графики кривизны и скорости нарастания центробежного ускорения (СНЦУ) для закругления типа «клотоида-круговая кривая-клотоида». На начальном участке закругления (по длине клотоиды) кривизна изменяется линейно, а СНЦУ является константой. На участке круговой кривой кривизна – константа, а СНЦУ равна нулю. На конечном участке кривой законы изменения дифференциальных свойств закругления такие же, как и начальном участке. Отметим, что изломы графика кривизны и разрывы СНЦУ на стыках клотоид и круговой кривой отражают как математическое несовершенство, так и, как следствие, транспортно-эксплуатационное несовершенство такого типа закругления трассы автомобильной дороги.
Совершенно иную перспективу в этом смысле нам открывают кривые Безье. На рис. 5.20 представлены графики закругления, близкого по очертаниям закруглению, анализируемому на рис. 5.19, но запроектированному посредством кривой Безье 3-й степени.
Как видно из рис. 5.20, график кривизны такого закругления имеет колоколообразную форму, характеризующуюся отсутствием разрывов и изломов. А график СНЦУ имеет S—образную форму и также как график кривизны, не имеет изломов и разрывов по длине закругления.
Еще более полезные и разнообразные свойства (потребительские качества) имеют кривые Безье 5-й степени (Безье-5), которые способны единой кривой моделировать серпантины 1-го и 2-го рода, правосторонние и левосторонние рампы транспортных развязок.
При проектировании дорог в горной местности с целью смягчения больших продольных уклонов на затяжных участках крутых склонов, в некоторых случаях, приходится развивать трассу, представляя ее зигзагообразной линией с острыми внутренними углами поворота [16]. Вписывание кривых внутрь острых углов не дает желаемого результат, поскольку при этом не обеспечивается должного развития трассы. Это обусловлено тем, что длины кривых оказываются несоизмеримо меньшими суммы тангенсов. В таких случаях предусматривают сложные закругления с внешней стороны углы, называемые серпантинами.
Серпантина представляется основной кривой, огибающей с внешней стороны центральный угол, двумя вспомогательными (как правило, обратными) круговыми кривыми и прямыми вставками для размещения переходных кривых, отгонов виражей и уширений проезжей части. Как видно из описания, серпантина представляет собой последовательность из трех закруглений, каждое из которых является составным.
Серпантины бывают: 1-го рода, когда обе вспомогательные кривые имеют кривизну другого знака по отношению к основной кривой: 2-го рода, когда одна вспомогательная кривая имеет кривизну одного знака (положительная или отрицательная) с основной кривой, а другая вспомогательная кривая – кривизну с другим знаком.
Выполним построение серпантины 1-го рода единой кривой Безье-5.
Как видно из рис. 5.21, серпантина 1-го рода построена на основе кривой Безье-5 при следующих ее параметрах:
Если принять величину больших тангенсов за 1, то средние тангенсы установлены на величину примерно 0.5; малые тангенсы имеют значения, близкие к нулю; обратные кривые порождаются за счет положительных величин нормалей малых тангенсов. Варьируя параметрами тангенсов и нормалей, можно получать те или иные требуемые очертания серпантины. Также отметим, что подбором соответствующих параметров кривой нам удалось получить в центральной части закругления кривую с постоянным радиусом кривизны.
Серпантина 2-го рода (рис. 5.22) построена при следующих величинах управляющих параметров кривой Безь-5: выходной большой тангенс существенно (в 1.5-2 раза) больше входного тангенса; входной средний и малый тангенсы имеют значения, близкие к нулю, в то время как выходной средний и малый тангенсы имеют значения около 0.5 от величины выходного большого тангенса; и, самое главное, входная нормаль имеет отрицательную величину, что позволяет построить входную вспомогательную кривую того же знака, что и главная кривая.
Правоповоротные рампы транспортных развязок по ситуационным или высотным условиям пересекающихся дорог могут иметь те или иные очертания. Самые простые очертания проектируются по одноцентровой схеме. Это означает, что закругление рампы имеет одну центральную кривую и ее расчет может быть выполнен по схеме традиционного закругления трассы в виде последовательности элементов «клотоида – круговая кривая – клотоида».
Значительно сложнее выполнить расчет, если очертания правоповоротной рампы представляют собой схему с двумя или тремя центрами кривизны. Кривая Безье-5 способна моделировать все эти три случая проектирования рампы. Рассмотрим построение кривой Безье-5 на примере схемы с 3-мя центрами кривизны.
Параметры построения правоповоротной рампы с 3-мя центрами кривизны с помощью кривой Безье-5 имеют следующие величины (рис. 5.23): средние тангенсы в 1.5-2 раза меньше больших тангенсов; величина малых тангенсов превышает значения средних тангенсов; нормали малых тангенсов имеют отрицательные значения и их величина во многом определяет очертания и величину средней из 3-х кривых, образующих рампу.
Левоповоротные рампы транспортных развязок, так же, как и правоповоротные, по ситуационным или высотным условиям пересекающихся дорог могут иметь те или иные очертания. Расчетные схемы их построения существенно сложнее, чем для правоповоротных рамп, поскольку угол поворота трассы на левоповоротной рампе составляет величину 270º и выше. Но и здесь кривые Безье-5 способны моделировать эти очертания рамп.
Если установить величину больших тангенсов близкую к нулю, а величину средних и малых тангенсов достаточно большую, то кривая Безье-5 будет строиться ни как кривая, стягивающая внутренний угол α, а как кривая с углом поворота 360º–α. Таким образом, мы получаем левоповоротную рампу (см. рис. 5.24), очертания которой можно регулировать ее управляющими параметрами – тангенсами и нормалями.
Система IndorCAD/Road имеет еще ряд функций и инструментов, которые позволяют проводить определенные операции над трассами на основе тангенциального трассирования для выработки оптимальных проектных решений. Их описание приведено ниже.
Операции с трассами
Удаление трассы. Для удаления активной трассы в меню Трасса выполните команду Удалить… и дайте положительный ответ на запрос системы. Или щелкните правой кнопкой мыши на названии трассы в дереве объектов и выполните команду Удалить трассу из контекстного меню.
Р азбивка трассы на поперечные профили
Добавление поперечного профиля. Для создания дополнительного поперечного профиля на активной трассе в меню Трасса выполните команду Добавить поперечный профиль или щелкните кнопку Добавить поперечный профиль на панели инструментов «Трасса». Курсор мыши примет вид прицела с перпендикуляром, проведенным к активной трассе, а в статус-строке появятся координаты курсора относительно трассы. Щелкните левой кнопкой мыши и в появившемся диалоговом окне укажите точное значение пикета нового поперечного профиля. При нажатии кнопки ОК создается новый поперечный профиль, который интерполируется по соседним поперечным профилям. Кнопка Отмена позволяет отменить добавление поперечного профиля и вернуться к работе с трассой.
Удаление поперечного профиля. У разбитых на поперечные профили трасс можно удалить любой поперечный профиль, кроме первого и последнего. Для этого выберите трассу и сделайте текущим тот профиль, который требуется удалить. В меню Трасса выполните команду Удалить текущий поперечный профиль. или щелкните кнопку Удалить текущий поперечный профиль на панели инструментов «Трасса», а затем дайте положительный ответ на запрос системы об удалении поперечного профиля.
· выделите на активной трассе исходную точку сопряжения. В качестве исходной точки можно использовать любую точку кромки или бровки, расположенную на линии поперечного профиля активной трассы;
· линия поперечного профиля будет продолжена до пересечения с другими разбитыми трассами. Все точки, к которым можно выполнить увязку, будут подсвечены;
· перетащите исходную точку к сопрягаемой точке;
Процедура увязки трасс с последующей увязкой проезжих частей, обочин и откосов имеет огромное значение для выработки качественных проектных решений. Посредством этой процедура осуществляют сопряжение примыканий и пересечений, а также сопряжения соединительных рамп транспортных развязок.
Рассмотрим пример реализации этой процедуры на практическом примере. Алгоритм выработки проектного решения по сопряжению основной дороги с примыканием можно описать в виде последовательности из 8 шагов.
Шаг 1. Проектируется основная трасса, выполняется ее разбивка и формирование верха земляного полотна.
Шаг 2. Создаётся второстепенная трасса с привязкой к кромке или оси основной трассы (рис. 5.31)