Что такое пеленг самолета
Что такое пеленг самолета
Курс, пеленг, азимут.
Магнитным курсом (МК) называется угол, заключенный между северным направлением магнитного меридиана, проходящего через самолет, и продольной осью самолета.
Истинным курсом (ИК) называется угол, заключенный между северным направлением истинного меридиана, проходящего через самолет, и продольной осью самолета.
Компасным курсом (КК) называется угол, заключенный между северным направлением компасного меридиана, проходящего через самолет, и продольной осью самолета.
Заданным путевым углом (ЗПУ) называется угол, заключенный между северным направлением меридиана, и линией заданного пути.
Азимутом (А) ориентира называется угол, заключенный между северным направлением меридиана, проходящего через данную точку, и направлением на наблюдаемый ориентир.
Курсовой угол радиостанции (КУР) называется угол, заключенный между продольной осью самолета и направлением на радиостанцию. КУР отсчитывается от продольной оси самолета до направления на радиостанцию по ходу часовой стрелки от 0 до 360°.
Магнитный курс взлета и посадки аэродрома Чугуев равен 345(165) градусам. Чтобы узнать истинный курс нужно узнать сумму МК и магнитного склонения для данной местности(+8градусов). Т.е.ИК=345+8=353градуса.
Итак самолет находится в ИПМ и нам нужно знать куда следовать дальше. Направление движения определяется заданным путевым углом. Однако, при наличии боковой составляющей ветра, самолет будет сносить с линии заданного пути, и для сохранения ЛЗП нужно вносить поправку на ветер. Эта поправка называется угол сноса.
Итак как провести самолет от одного до другого пункта маршрута разобрались.
Выдерживаем заданную скорость, высоту и ЗПУ и будет нам счастье аж до следующего ППМ. Но вот как определить что мы подходим к этому самому следующему ППМ?
Существует несколько способов определить местоположение самолета:
1. Визуально, по наземным ориентирам. Но, если ориентир будет скрыт облачностью, либо самолет отклониться от ЛЗП на расстояние, с которого ориентиры будут неразличимы, мы рискуем потеряться. Поэтому визуальные ориентиры служат больше для подтверждения правильности выдерживания нашего маршрута, чем как основной способ навигации.
2. По географическим координатам (широта-долгота) можно точно указать местонахождение самолета, но для определения местоположения самолета по географическим координатам требуется специальное оборудование, которое имеется далеко не на всех самолетах.
3. По азимуту и дальности до маяка (радиостанции) можно с достаточной точностью определить свое местонахождение на маршруте. Для этого достаточно чтобы самолет был оснащен дальномерным оборудованием и радиокомпасом. Настроив радионавигационное оборудование на РСБН, мы сможем контролировать правильность выдерживание маршрута на протяжении всего полета по заранее известным значениям азимута и дальности в контрольных точках.
Например: в контрольной точке №Х расчетная Д=55 А=70. Фактически имеем Д=58 А=70. Значит мы идем на 3 км восточнее ЛЗП, и нужно взять соответствующую поправку. Либо, в той же ситуации, имеем Д=55 А=90. Следовательно мы отклонились южнее маршрута и нужно исправлять ситуацию.
Цель этого упражнения состоит в том, чтобы летчик научился определять и выдерживать свое местоположение по дальности и азимуту, четко представлял в какую сторону и насколько он отклонился от маршрута (границ пилотажной зоны).
Выдерживание местоположения в пилотажной зоне с использованием РТС.
Использование наземных визуальных ориентиров для определения своего местоположения удобно до определенного предела. Например, ориентируясь по Печенежскому водохранилищу, вы можете достаточно точно определить направление на аэродром, но определить границы пилотажной зоны с достаточной точностью визуально вам вряд-ли удастся. Удерживать свое местоположение в пределах пилотажной зоны используя дальность и азимут до РСБН достаточно просто.
На полетной карте у вас указаны дальности и азимуты границ пилотажной зоны. Выполняя задание летчик должен представлять свое местоположение относительно границ зоны, и соответствующим образом строить следующий маневр.
Пеленгация радиосигналов. Как это работает?
В предыдущей части была рассмотрена возможность приема сигнала гетеродина работающего радиоприемника. Рассмотрим теперь более общий вопрос — а как вообще пеленгуется радиосигнал? С какой точностью?
Что правда а что миф, попробуем разобраться.
Примечание: доступа к реальному пеленгатору для проведения реальных тестов у меня нет. Вся информация была найдена в открытых источниках.
Принципы пеленгации радиоволн
Направленные антенны
Самый наверное, очевидный, и исторически появившийся первым, это способ пеленгации сигналов с помощью направленных антенн. Использовался в частности во времена СССР для спортивных соревнований по радиопеленгации, называемых «охота на лис». Обложка журнала Радио того времени показывает как примерно это выглядело:
Нас же сейчас больше интересует не спортивная, а техническая сторона вопроса. Как видно из фото, приемник содержит 2 антенны: одну рамочную, другую штыревую. Схемотехнически сигналы из антенн комбинируются так, что получается диаграмма направленности в виде кардиоиды (схема с сайта unradio.ru):
Как можно видеть, диаграмма направленности весьма широкополосна, однако вполне позволяет «засечь» направление на максимум сигнала. Точность определения максимума не особо высока, что впрочем компенсировалось скоростью и физ.подготовкой спортсмена.
Если говорить о современных устройствах, то нечто похожее можно видеть например в носимом пеленгаторе «АРК-НК3И», который как можно видеть из описания, тоже снабжен рамочной антенной. Подробных описаний найти не удалось, но можно предположить что точность взятия пеленга таким устройством примерна сопоставима с вышеупомянутой кардиоидой.
Фазовые методы
С направленными антеннами все более-менее ясно, так же ясно, что их надо как минимум, крутить, или с ними идти, что конечно неудобно. Гораздо больший интерес представляют фазовые методы, которые позволяют брать пеленг на сигнал с помощью антенны неподвижной.
(антенна пеленгатора РПс3000и, фото с сайта irga.sut.ru/sp.html)
Существуют разные подмножества фазовых методов, рассмотрим для примера принцип квази-допплеровского пеленгатора. Представим сигнал, идущий с определенного направления, и антенну, вращающуюся в горизонтальной плоскости.
Очевидно, что благодаря эффекту Допплера, во время движения антенны в сторону источника, частота будет выше, в обратную сторону, соответственно ниже. Анализируя максимум и минимум колебаний частоты, можно легко определить направление. Разумеется, в реале антенну никто не вращает — используется стационарная решетка из антенн (примерно как на фото), переключение сигнала с которых выполняется электронной коммутацией. Сравнивая фазы сигналов, можно определить направление на источник излучения.
Кстати, подобные устройства могут использоваться и радиолюбителями, например для той же «охоты на лис». За 400$ возможно приобрести готовый Doppler Direction Finder Kit:
Существуют и более простые схемы, содержащие не более 20 деталей. В них в качестве приемника используется уже готовая радиостанция, а доделать необходимо лишь модуль для переключения антенн.
Впрочем, вернемся к пеленгаторам стационарным. Наверное основной вопрос, который интересует пользователей — это точность и частотный диапазон пеленгации. Для примера можно рассмотреть Стационарный пеленгатор «АРК-СП», описание которого есть на сайте bnti.ru:
— Рабочий диапазон частот: 20 — 3000 МГц
— Чувствительность по полю в диапазоне 20-1000 МГц: не более 12 мкВ/м
— Инструментальная точность (СКО), не более: 2° (20-1000 МГц)
— Минимальная длительность пеленгуемого сигнала, однократного при полосе обработки 5 МГц: 30 мс
— Непрерывная запись радиосигналов в полосе: до 24 МГц, скорость потока данных при непрерывной записи радиосигнала в полосе 24 МГц: 102,4 МБайт/с
Из этого описания можно выделить ряд полезных фактов:
— Рабочий диапазон частот простирается до 3ГГц, что покрывает все практически возможные источники сигналов.
— Для пеленга действительно достаточно очень короткого сигнала.
— Максимальная полоса записываемого сигнала 24МГц, это связано с максимальной частотой дискретизации доступных АЦП. Описание на сайте датируется 2012м годом, учитывая некий прогресс, можно предположить что сейчас доступны АЦП на 60 или даже на 100МГц. Но больше вряд ли, и однозначно можно сказать, что весь радиоэфир никто не пишет, это слишком сложно и дорого. Таким образом, пеленгация сигнала «задним числом» по записи практически невозможна, разве что сигнал попал в запись случайно.
— Заявленная точность не более 2°, что с одной стороны, весьма неплохо, с другой стороны, явно недостаточно для поиска с точностью «до квартиры». Более того, как следует из принципа действия, в вертикальной плоскости сигнал не пеленгуется вообще, так что узнать высоту источника (или этаж) тоже невозможно.
Кстати о точности, на том же сайте можно найти скриншот программы Radio Explorer где видна точность работы пеленгатора РПс3000и:
На каком максимальном расстоянии возможно запеленговать радиосигнал? Достаточно далеко, т.к. антенны пеленгаторов обычно ставят на самых высоких зданиях в городе. На сайте ess.ru удалось найти опубликованную в 2006 году статью, в которой приведена следующая таблица (пеленгация радиостанции мощностью 5Вт):
Как можно видеть, максимальная дальность составила 27 км
Что касается автомобильных пеленгаторов, то их описание (включая фото монтажа и установки, а также рабочих мест операторов) можно найти в той же статье.
Заключение
Надеюсь, кое-какие мифы о пеленгации удалось развеять, кое-какие подтвердить. Все данные для статьи были взяты из открытых источников, 5-10 летней давности. Что-то вероятно было улучшено, но явно не на порядки, да и законы физики в этой области за 10 лет вроде не менялись.
Хочется отметить и другой момент. Несмотря на то, что современные технологии не позволяют запеленговать нарушителя с точностью до квартиры, комнаты и этажа, через секунду после нажатия кнопки PTT, все же не стоит обольщаться. Как показывает практика, злостных нарушителей все-таки ловят, это лишь вопрос времени.
Что такое пеленг самолета
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|