Что такое паропроницаемость строительных материалов
Паропроницаемость стен и материалов
Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.
Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.
Какая паропроницаемость у строительных материалов
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление — по пароизоляционным качествам
Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Разделение слоев пароизолятором
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация пароизоляционных качеств материалов
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.
Коэффициент сопротивляемости движению пара
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.
Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
Таблицы со значениями паропроницаемости востребованных в частном секторе строительных материалов
Отправим материал на почту
Недавно мы с соседом обсуждали проблемы с его дачным домиком для сезонного проживания. Основная пеноблочная часть у него изнутри утеплена, но сырость все лето чувствуется. По мере обсуждения мы сделали вывод, что он неправильно построил «дышащие» стены. Чтобы у Вас таких проблем не возникло, я решил написать про паропроницаемость строительных материалов: таблица, терминология, правила.
Актуальность знаний о паропроницаемости материалов
Внутри и снаружи здания атмосферное давление, как правило, одинаковое. А вот насыщенность воздуха влагой разное. Из-за этого происходит движение паров сквозь те или иные конструкции, что разделяют пространство на части. Это может быть стена между комнатой и улицей либо перегородка между ванной, кухней и сухим помещением. В каждом случае происходит некое подобие процесса балансировки.
Под паропроницаемостью материалов подразумевается способность пропускать пары и удерживать в себе эту влагу. Эти показатели напрямую связаны с морозостойкостью. Если основанию характерны высокие показатели пропускной способности, то при низких температурах оно будет подвергаться разрушительному давлению со стороны замерзающей воды.
Еще одна взаимосвязь касается теплопроводности. Всем известно, что мокрая минвата в меньшей степени оказывает сопротивление уходящему теплу из помещения. Или, например, пеноблочные изделия. Они позиционируются как материалы с низким коэффициентом тепловодности. Однако хорошая паропроницаемость может ухудшить значение почти в 5 раз.
Есть еще один момент, который объясняет необходимость знаний о паропроницаемости используемых материалов. Сегодня (особенно в рекламных целях) много говорится о полезности устройства «дышащих» стен. Суть заключается в том, что такой подход положительно влияет на микроклимат внутри дома. Однако здесь необходимо все тщательно просчитывать, чтобы исключить ухудшение показателей морозостойкости и теплопроводности материалов.
Что скрывается за коэффициентами
Под коэффициентом подразумевается способность материала сопротивляться паропроницанию. Оно сравнивается с паропроницаемостью воздуха. Числовое значение, которое вносится в сводные таблицы, определяется в лабораторных условиях.
Измеряется коэффициент паропроницаемости строительных материалов в граммах проходящего пара за час через образец толщиной в 1 метр, площадью 1 кв.м. В таблицах сопротивление паропроницания условно обозначается символом «µ». Что проще было понять табличные данные, рассмотрим пример. Если для минеральной ваты характерна единица (µ=1), то это означает, что утеплитель пропускает пары фактически так же, как воздух. А газобетон с коэффициентом 10 заметно уступает воздуху.
Правильное проектирование стен
Во время составления проектной документации особо тщательно проводятся инженерные расчеты по возведению несущих конструкций, что разделяют улицу и помещения. Здесь обязательно учитываются показатели паропроницаемости материалов, чтобы возвести стены в соответствии с нормативными документами. В частности со СНиПом II-3-79 от 1998 года. Здесь имеется 6-я глава, в которой прописаны требования по сопротивлению паропроницанию ограждающих конструкций.
Основной принцип, который соблюдается при возведении стен состоит в том, что по мере послойного продвижения в сторону улицы показатели паропроницаемости строительных материалов должны увеличиваться. То есть внутренняя сторона должна лучше сопротивляться проникновению влаги. По нормативам эти показатели должны быть в 5 раз ниже, чем у наружного слоя.
Табличные данные
Сразу стоит отметить, что показатели паропроницаемости и коэффициентов сопротивления в реальных условиях могут отличаться от табличных. Ведь последние актуальны только при конкретном парциальном давлении пара и атмосферных условиях. Поэтому все инженерные расчеты имеют приблизительный характер. Но этого достаточно, чтобы выполнять строительные работы с надлежащим качеством.
Ниже представлена таблица паропроницаемости теплоизоляционных материалов, которые в частном секторе пользуются наибольшим спросом.
Тип материала | Коэффициент паропроницаемости (в мг/м*ч*Па) |
Минеральная вата | |
Каменная (180 кг/куб.м) | 0,3 |
Каменная (140-175 кг/куб.м) | 0,32 |
Каменная (40-60 кг/куб.м) | 0,35 |
Каменная (25-50 кг/куб.м) | 0,37 |
Стеклянная (85-75 кг/куб.м) | 0,5 |
Стеклянная (60-45 кг/куб.м) | 0,51 |
Стеклянная (35-30 кг/куб.м) | 0,52 |
Стеклянная (20 кг/куб.м) | 0,53 |
Стеклянная (17-15 кг/куб.м) | 0,54 |
Пенополистирол | |
Экструдированный | 0,005-0,013 |
С плотностью 10-38 кг/куб.м | 0,05 |
Плиты | 0,023 |
Пенополиуретан | |
С плотностью 80 кг/куб.м | 0,05 |
С плотностью 60 кг/куб.м | 0,05 |
С плотностью 40 кг/куб.м | 0,05 |
С плотностью 32 кг/куб.м | 0,05 |
Насыпной керамзит (гравийный) | |
С плотностью 800 кг/куб.м | 0,21 |
С плотностью 600 кг/куб.м | 0,23 |
С плотностью 500 кг/куб.м | 0,23 |
С плотностью 450 кг/куб.м | 0,235 |
С плотностью 400 кг/куб.м | 0,24 |
С плотностью 350 кг/куб.м | 0,245 |
С плотностью 300 кг/куб.м | 0,25 |
С плотностью 250 кг/куб.м | 0,26 |
С плотностью 200 кг/куб.м | 0,26-0,27 |
В этой таблице представлена информация о паропроницаемости распространенных вариантов основы для стен.
Тип материала | Коэффициент паропроницаемости (в мг/м*ч*Па) |
Железобетон | 0,03 |
Бетон | 0,03 |
Глиняный кирпич | 0,11 |
Силикатный кирпич | 0,11 |
Керамический пустотелый кирпич (1400 кг/куб.м) | 0,14 |
Керамический пустотелый кирпич (1000 кг/куб.м) | 0,17 |
Крупноформатный керамический блок | 0,14 |
Керамзитобетон (1800 кг/куб.м) | 0,09 |
Керамзитобетон (1000 кг/куб.м) | 0,14 |
Керамзитобетон (800 кг/куб.м) | 0,19 |
Керамзитобетон (500 кг/куб.м) | 0,3 |
Пенобетон и газобетон (1000 кг/куб.м) | 0,11 |
Пенобетон и газобетон (800 кг/куб.м) | 0,14 |
Пенобетон и газобетон (600 кг/куб.м) | 0,17 |
Пенобетон и газобетон (400 кг/куб.м) | 0,23 |
Сосна и ель поперек волокон | 0,06 |
Сосна и ель вдоль волокон | 0,32 |
Дуб поперек волокон | 0,05 |
Дуб вдоль волокон | 0,3 |
В этой таблице указана паропроницаемость часто используемых расходных материалов для возведения тех или иных конструкций.
Тип материала | Коэффициент паропроницаемости (в мг/м*ч*Па) |
Арболит (800 кг/куб.м) | 0,11 |
Арболит (600 кг/куб.м) | 0,18 |
Арболит (300 кг/ куб.м) | 0,3 |
Арболит и фибролитовая плита (500-450 кг/куб.м) | 0,11 |
Арболит и фибролитовая плита (400 кг/куб.м) | 0,26 |
Гранит, мрамор и базальт | 0,008 |
Известняк (2000 кг/куб.м) | 0,06 |
Известняк (1800 кг/куб.м) | 0,075 |
Известняк (1600 кг/куб.м) | 0,09 |
Известняк (1400 кг/куб.м) | 0,11 |
Цементно-песчаная штукатурка | 0,09 |
Цементно-известково-песчаная штукатурка | 0,098 |
Известково-песчаная штукатурка | 0,12 |
Фанера клееная | 0,02 |
ДСП и ДВП (1000-800 кг/куб.м) | 0,12 |
ДСП и ДВП (600 кг/куб.м) | 0,13 |
ДСП и ДВП (400 кг/куб.м) | 0,19 |
ДСП и ДВП (200 кг/куб.м) | 0,24 |
Пакля | 0,49 |
Гипсокартон | 0,075 |
Гипсоплиты (1350 кг/куб.м) | 0,098 |
Гипсоплиты (1100 кг/куб.м) | 0,11 |
Песок | 0,17 |
Битум | 0,008 |
Мастика полиуретановая | 0,00023 |
Полимочевина | 0,00023 |
Вспененный каучук (синтетический) | 0,003 |
Рубероид и пергамин | 0-0,001 |
Полиэтилен | 0,00002 |
Линолеум (ПВХ) | 0,002 |
ОСП (3 и 4) | 0,0033 и 0,004 |
Стекло | 0 |
О паропроницаемости прочих марок пенопласта, бетона или кирпича можно узнать из справочных документов, в которых опубликованы полные таблицы. Здесь могут быть подробнее расписаны значения, например, для разных видов гипсокартона и пенополистирола. Для обывателя это незначительная разница, но на стратегических объектах и в ответственном строительстве это может оказаться важным.
В этом видео рассказано о паропроницаемости, правильном выборе строительных материалов с учетом этой характеристики и о последствиях неправильных решений на конкретных примерах:
Коротко о главном
Паропроницаемость – это способность того или иного материала пропускать и удерживать в теле пар.
Коэффициент паропроницаемости – это способность материала сопротивляться пропусканию пара в сравнении с воздухом.
Чем выше показатели паропроницаемости, тем больше вероятность разрушения материала при минусовых температурах и хуже теплопроводность.
По правилам внутренняя часть несущих стен должна проводить пар хуже в 5 раз, чем наружный слой.
Напишите в комментариях, как думаете – с учетом нормативных требований как будет правильно решить проблему моего соседа: утепление пеноблочного дома для сезонного проживания?
Паропроницаемость.
В период развития строительных технологий, появление новых строительных материалов, утеплителей, понятие паропроницаемость получило широкое применение и характеризуется коэффициентом паропроницаемости. Наиболее существенное значение, понятие паропроницаемости приобретает при анализе технических характеристик утеплителей, ведь способность накапливать воду и пропускать ее через себя характеризует утеплитель с точки зрения гидроизоляционных свойств и возможного его утяжеления и гниения, что негативно влияет как на сам утеплитель, так и на всю конструкцию в целом. Также анализ материала с точки зрения паропроницаемости достаточно весом при рассмотрении материала на пригодность в качестве упаковки.
Коэффициент паропроницаемости.
При выборе строительных материалов по параметрам паропроницаемости лучше пользоваться международными нормами ISO, они получены экспериментальным путем и достоверно проверены в различных условиях эксплуатации. В зависимости от толщины материала деленной его коэффициент паропроницаемости получают сопротивляемость слоя измеряемое (м 2 *час*Па)/мг. Исходя из коэффициента паропроницаемости и толщины слоя, заявленной техническими условиями объекта, также можно определить необходимый материал, выбрав его из таблицы паропроницаемости материалов.
Паропроницаемость материалов.
Паропроницаемость материалов – это способность конкретно взятого материала, взаимодействовать с газообразным паром и пропускать его сквозь себя.
Паропроницаемость пленок.
Все существующие пленки паропроницаемы, но значение коэффициента парапроницаемости пленок определяет их принадлежность к той или иной группе:
Паропроницаемость пленки сильно меняется от изменения окружающей температуры, при повышении температуры ее свойства увеличиваются в разы. Надо отметить, что газопроницаемость пленок относительно мала и увеличивается при очень высокой влажности,
Из этого следует, что та же пленка в различных условиях покажет разные параметры паропроницаемости. Как пример при температуре 21°C и влажности 50% показания паропроницаемости пленки 1600г/м 2 /24час, при t 36°C и влажности 85%, та же пленка, покажет паропроницаемость 2800г/м 2 /24час.
Итог: паропроницаемость важный аспект, в планировании на стадии проекта. Не смотря на скептическое отношение некоторых экспертов строительной промышленности, знание и правильный учет данного коэффициента убережет строение от быстрого износа, и сохранит отдельные элементы в целости, а правильно подобранный паро-/гидро-материал, точно справится с возложенной на него функцией.
Таблица паропроницаемости.
Таблица паропроницаемости – это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.
Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.
Таблица паропроницаемости указывается на следующие показатели:
Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости, так как она помогает эффективно сравнить разнообразные типы паропроницаемости.
С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.
Пароизоляция – это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.
Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции – это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.