Что такое параллельный интерфейс

Параллельный интерфейс

Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс

Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс

Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс

Практическая работа

Изучение интерфейса периферийных устройств и особенностей настройки.

Интерфейсы

Одно из ключевых отличий персонального компьютера от игровой приставки и калькулятора заключается в том, что к нему можно подключать самые разнообразные внешние устройства. Это, например, могут быть устройства вывода информации — принтеры и плоттеры, ввода — модемы и видеокамеры. Можно соединить компьютер с локальной сетью и управлять станком ЧПУ, на кото

ром отфрезеровать, скажем, печатную плату, которую перед этим разработали в программе PCAD. То есть компьютер — это универсальное вычислительное устройство, которое возможно использовать в различных областях человеческой деятельности.

Так как конструкции внешних устройств, да и разных типов компьютеров, сильно отличаются друг от друга, то для упрощения процесса подключения компьютера к внешним устройствам было разработано несколько стандартных интерфейсов. В мире IBM PC наиболее популярными оказались следующие внешние интерфейсы — параллельный интерфейс LPT, он же Centronics, последовательные интерфейсы RS-232 и USB, а также сетевой интерфейс Ethernet. В последнее время становятся популярными последовательный интерфейс FireWire и инфракрасный IrDa. Кроме того, на подходе новые стандарты, которые позволят значительно увеличить скорость обмена информацией.

Параллельный интерфейс

Термин «параллельный интерфейс» означает, что данные от компьютера к принтеру передаются не побитно, а в виде машинных слов — байтов (8 битов). Для каждого разряда байта в кабеле интерфейса предназначен отдельный провод. Кроме того, параллельно данным передается различная служебная информация, например, о готовности принтера к работе или о том, что закончилась бумага.

Для параллельного интерфейса на корпусе компьютера установлен 25-контактный разъем DB-25S. Для подключения интерфейсного кабеля к принтеру используется 36-контактный разъем Centronics с плоскими контактами. Длина простого принтерного кабеля не должна превосходить 5 м, а экранированного — 12 м. Максимальная скорость передачи данных по параллельному интерфейсу лежит в диапазоне от 120 до 200 Кбайт/с.

Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейсЧто такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс

Первоначально стандарт на параллельный интерфейс предусматривал только передачу данных из компьютера в принтер, а также подключение только одного внешнего устройства. А поскольку пользователи часто устанавливают несколько принтеров, например струйный и игольчатый, то в этом случае для переключения интерфейса между принтерами используется обычный галетный переключатель на 25 групп, который монтируется в стальной коробке.

Сложность установки дополнительных разъемов на корпус персонального компьютера заставила разработчиков взяться за совершенствование параллельного интерфейса. В 1994 г. был принят стандарт IEEE 1284, который определил расширенные возможности параллельного порта. В современном компьютере параллельный порт теперь может работать в нескольких режимах — AT или SPP (Standart Parallel Port) — стандартный параллельный порт, ЕРР (Enhanced Parallel Port) — усовершенствованный параллельный порт и ЕСР (Extended Capability Port) — параллельный порт с расширенными возможностями.

Спецификация ЕРР была разработана фирмами Zenith и Xircom, чтобы использовать параллельный порт для двунаправленной передачи данных. Подключаемые устройства должны соответствовать стандарту ЕРР, а системная плата — обеспечивать двунаправленную передачу. Максимальная скорость передачи данных по этому стандарту достигает 2 Мбайт/с.

Кроме двунаправленной передачи данных между внешним устройством и процессором, стандарт ЕРР предусматривает возможность передавать блоки данных непосредственно между оперативной памятью и интерфейсом, не занимая ресурсов процессора. В таком режиме используется канал прямого доступа к памяти, который реализуется чипсетом системной платы.

Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс

Порт ЕРР полностью совместим со стандартным параллельным интерфейсом. Дополнительно он обладает возможностью подключать без использования каких-либо механических переключателей до 64 периферийных устройств, соединенных в цепочку.

Дальнейшим развитием параллельного интерфейса стала спецификация ЕСР, предложенная корпорациями Microsoft и HP, которая позволила организовать скоростную двунаправленную передачу данных, сжатых по методу RLE (Run Length Encoding). Для повышения производительности используется промежуточный FIFO-буфер емкостью 16 Кбайт. Количество подключаемых периферийных устройств увеличено до 128.

Несмотря на различия между стандартами параллельного порта, для подключения используются одни и те же разъемы. Режим работы переключается в настройках BIOS, где нужно выбрать между вариантами SPP, ЕРР и ЕСР. В настоящее время параллельный порт применяют для подключения различных видов принтеров, сканеров и внешних накопителей, например, приводов ZIP и внешних винчестеров. Также он применяется для соединения двух компьютеров друг с другом, для чего в операционной системе Windows есть стандартная программа связи Прямое кабельное соединение.

В качестве сервисной функции усовершенствованный параллельный порт поддерживает режим Plug and Play, что позволяет операционной системе получить регистрационную информацию от подключенного к нему устройства. Но при подключении старых игольчатых принтеров, которые не поддерживают этот режим, пользователю самому надо указать тип и модель принтера.

Источник

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Введение

Параллельные и последовательные интерфейсы

Общая информация параллельных и последовательных интерфейсов

Для компьютеров и связанных с ним устройств наиболее распространенной является задача передачи дискретных данных, и, как правило, в значительных количествах (не один бит). Самый распространенный способ представления данных сигналами — двоичный: например, условно высокому (выше порога) уровню напряжения соответствует логическая единица, низкому — логический ноль (возможно и обратное представление). Для того чтобы передавать группу битов, используются два основных подхода к организации интерфейса:

На первый взгляд организация параллельного интерфейса проще и нагляднее и этот интерфейс обеспечивает более быструю передачу данных, поскольку биты передаются сразу пачками. Очевидный недостаток параллельного интерфейса — большое количество проводов и контактов разъемов в соединительном кабеле (по крайней мере по одному на каждый бит). Отсюда громоздкость и дороговизна кабелей и интерфейсных цепей устройств, с которой мирятся ради вожделенной скорости. У последовательного интерфейса приемопередающие узлы функционально сложнее, зато кабели и разъемы гораздо проще и дешевле. Понятно, что на большие расстояния тянуть многопроводные кабели параллельных интерфейсов неразумно (и невозможно), здесь гораздо уместнее последовательные интерфейсы.

Скорость передачи данных интерфейсов

Теперь подробнее разберемся со скоростью передачи данных. Очевидно, что она равна числу бит, передаваемых за квант времени, деленному на продолжительность кванта. Для простоты можно оперировать тактовой частотой интерфейса — величиной, обратной длительности кванта. Это понятие естественно для синхронных интерфейсов, у которых имеется сигнал синхронизации (clock), определяющий возможные моменты возникновения всех событий (смены состояния). Для асинхронных интерфейсов можно воспользоваться эквивалентной тактовой частотой — величиной, обратной минимальной продолжительности одного состояния интерфейса. Теперь можно сказать, что максимальная (пиковая) скорость передачи данных равна произведению тактовой частоты на разрядность интерфейса. У последовательного интерфейса разрядность 1 бит, у параллельного она соответствует числу параллельных сигнальных цепей передачи битов данных. Остаются вопросы о достижимой тактовой частоте и разрядности. И для последовательного, и для параллельного интерфейсов максимальная тактовая частота определяется достижимым (при разумной цене и затратах энергии) быстродействием приемопередающих цепей устройств и частотными свойствами кабелей. Здесь уже очевидны выгоды последовательного интерфейса: для него, в отличие от параллельного интерфейса, затраты на построение высокоскоростных элементов не приходится умножать на разрядность.

В параллельном интерфейсе существует явление перекоса (skew), существенно влияющее на достижимый предел тактовой частоты. Суть его в том, что сигналы, одновременно выставленные на одной стороне интерфейсного кабеля, доходят до другого конца не одновременно из-за разброса характеристик цепей. На время прохождения влияет длина проводов, свойства изоляции, соединительных элементов и т. п. Очевидно, что перекос (разница во времени прибытия) сигналов разных битов должен быть существенно меньше кванта времени, иначе биты будут искажаться (путаться с одноименными битами предшествующих и последующих посылок). Вполне понятно, что перекос ограничивает и допустимую длину интерфейсных кабелей: при одной и той же относительной погрешности скорости распространения сигналов на большей длине набегает и больший перекос. Перекос сдерживает и увеличение разрядности интерфейса: чем больше используется параллельных цепей, тем труднее добиться их идентичности. Из-за этого даже приходится «широкий» (многоразрядный) интерфейс разбивать на несколько «узких» групп, для каждой из которых используются свои управляющие сигналы. В 90-х годах в схемотехнике приемопередающих узлов стали осваиваться частоты в сотни мегагерц и выше, то есть длительность кванта стала измеряться единицами наносекунд. Достичь соизмеримо малого перекоса можно лишь в пределах жестких компактных конструкций (печатная плата), а для связи отдельных устройств кабелями длиной в десятки сантиметров пришлось остановиться на частотах, не превышающих десятков мегагерц. Для того чтобы ориентироваться в числах, отметим, что за 1 нс сигнал пробегает по электрическому проводнику порядка 20–25 см. Наносекунда — это период сигнала с частотой 1 ГГц.

Повышения пропускной способности параллельных интерфейсов

Для повышения пропускной способности параллельных интерфейсов с середины 90-х годов стали применять двойную синхронизацию DDR (Dual Data Rate). Ее идея заключается в выравнивании частот переключения информационных сигнальных линий и линий стробирования (синхронизации). В «классическом» варианте данные информационных линий воспринимаются только по одному перепаду (фронту или спаду) синхросигнала, что удваивает частоту переключения линии синхросигнала относительно линий данных. При двойной синхронизации данные воспринимаются и по фронту, и по спаду, так что частота смены состояний всех линий выравнивается, что при одних и тех же физических параметрах кабеля и интерфейсных схем позволяет удвоить пропускную способность. Волна этих модернизаций началась с интерфейса ATA (режимы UltraDMA) и прокатилась уже и по SCSI (Ultra160 и выше), и по памяти (DDR SDRAM). Кроме того, на высоких частотах применяется синхронизация от источника данных (Source Synchronous transfer): сигнал синхронизации, по которому определяются моменты переключения или действительности (валидности) данных, вырабатывается самим источником данных. Это позволяет точнее совмещать по времени данные и синхронизующие импульсы, поскольку они распространяются по интерфейсу параллельно в одном направлении. Альтернатива — синхронизация от общего источника (common clock) — не выдерживает высоких частот переключения, поскольку здесь в разных (пространственных) точках временные соотношения между сигналами данных и сигналами синхронизации будут различными.

Повышение частоты переключений интерфейсных сигналов, как правило, сопровождается понижением уровней сигналов, формируемых интерфейсными схемами. Эта тенденция объясняется энергетическими соображениями: повышение частоты означает уменьшение времени, отводимого на переключения сигналов. Чем выше амплитуда сигнала, тем выше должна быть скорость нарастания сигнала и, следовательно, выходной ток передатчика. Повышение выходного тока (импульсного!) нежелательно по разным причинам: большие перекрестные помехи в параллельном интерфейсе, необходимость применения мощных выходных формирователей, повышенное тепловыделение. Тенденцию снижения напряжения можно проследить на примере порта AGP (3,3/1,5/0,8 В), шин PCI/PCI-X (5/3,3/1,5 В), SCSI, шин памяти и процессоров.

Повышения пропускной способности последовательных интерфейсов

В последовательном интерфейсе явления перекоса отсутствуют, так что повышать тактовую частоту можно вплоть до предела возможностей приемопередающих цепей. Конечно, есть ограничения и по частотным свойствам кабеля, но изготовить хороший кабель для одной сигнальной цепи гораздо проще, чем для группы цепей. А когда электрический кабель уже «не тянет» требуемые частоту и дальность, можно перейти на оптический, у которого есть в этом плане огромные, еще не освоенные «запасы прочности». Устраивать же параллельный оптический интерфейс — слишком дорогое удовольствие.

Вышеприведенные соображения объясняют современную тенденцию перехода на последовательный способ передачи данных.

Источник

Параллельные интерфейсы, особенности

Широкое распространение параллельных интерфейсов связано с состоянием развития элементной базы в последней трети XX века. Тогда большая часть изделий базировалась на микросхемах малой и средней степени

интеграции. Более простая реализация параллельного интерфейса по сравнению с последовательным выливалась в улучшение технических и экономических характеристик изделия. Кабельное соединение имело меньшую относительную стоимость. К настоящему времени получила развитие специальная элементная база.

Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс

Рисунок 2.7 Параллельный интерфейс

Особенности параллельных интерфейсов

• Высокая стоимость погонного метра магистрали обусловлена большим количеством линий.

• Высокая скорость: удвоение количества линий для передачи данных способствует удвоению скорости канала. На практике это не совсем так, потому что присутствует разница в скорости распространения сигналов по параллельным линиям, т. е. разное время прихода сигналов (битов) на приемной стороне.

• Ограниченная длина интерфейса, которая обычно составляет от нескольких метров до десятков метров и в редких случаях достигает сотни. Объясняется это перекрестными помехами, наводками в соседних линиях, возникающими при передаче данных. Такие физические эффекты уменьшают не только длину кабеля, но и скорость передачи данных по нему (для минимизации помех).

• Простота схемотехнической реализации. Параллельный интерфейс на стороне передатчика и приемника должен иметь параллельные порты (буферы-защелки) для чтения/записи данных с шины. В случае последовательного интерфейса необходимым является преобразование параллельного кода в последовательный для передачи и обратное преобразование при приеме данных, которые выполняют специализированные микросхемы (например, UART в случае интерфейса RS-232). Кабели параллельных интерфейсов обычно имеют недорогую простую конструкцию, например, ленточную.

Интерфейс Centronics. Порт параллельного интерфейса был введен в персональный компьютер для подключения принтера – отсюда и пошло его название LPT-порт (Line PrinTer – построчный принтер).

Традиционный, он же стандартный, LPT-порт (так называемый SPP-nopm) ориен­тирован на вывод данных, хотя с некоторыми ограничениями позволяет и вводить данные. Существуют различные модификации LPT-порта — двунаправленный, ЕРР, ЕСР и другие, расширяющие его функциональные возможности, повыша­ющие производительность и снижающие нагрузку на процессор. Поначалу они яв­лялись фирменными решениями отдельных производителей, позднее был принят стандарт IEEE 1284.

С внешней стороны порт имеет 8-битную шину данных, 5-битную шину сигналов состояния и 4-битную шину управляющих сигналов, выведенные на разъем-розет­ку DB-25S. В LPT-порте используются логические уровни ТТЛ, что ограничи­вает допустимую длину кабеля из-за невысокой помехозащищенности ТТЛ-ин­терфейса. Гальваническая развязка отсутствует — схемная земля подключаемого устройства соединяется со схемной землей компьютера. Из-за этого порт являет­ся уязвимым местом компьютера, страдающим при нарушении правил подключе­ния и заземления устройств.

С программной стороны LPT-порт представляет собой набор регистров, располо­женных в пространстве ввода-вывода. Регистры порта адресуются относительно базового адреса порта, стандартными значениями которого являются 3BCh, 378h и 278h. Порт может использовать линию запроса аппаратного прерывания, обыч­но IRQ7 или IRQ5. В расширенных режимах может использоваться и канал DMA.

Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс

Рисунок 2.8 Временные диаграммы цикла передачи данных в Centronics

Data Register (DR) – регистр данных, адрес=ВА5Е. Данные, записанные в этот регистр, выводятся на выходные линии Data[7:0]. Данные, считанные из

этого регистра, в зависимости от схемотехники адаптера соответствуют либо ранее записанным данным, либо сигналам на тех же линиях, что не всегда одно

Status Register (SR) – регистр состояния (только чтение), адрес=ВА5Е+1.

Регистр отображает 5-битный порт ввода сигналов состояния принтера и флаг

прерывания: состояние готовности принтера, сигнал о конце бумаги в принтере, сигнал о включении принтера, сигнал о любой ошибке принтера и др.

Control Register (СR) – регистр управления, адрес=ВА5Е+2, допускает запись и чтение. Регистр связан с 4-битным портом вывода управляющихсигналов, для которых возможно и чтение; выходной буфер обычно имеет тип «открытый коллектор». При помощи этого регистра можно подавать такие сигналы, как сигнал аппаратного сброса принтера, сигнал на автоматический перевод строки по приему байта и возврата каретки (CR), сигнал стробирования выходных данных и др.

Шаги процедуры вывода байта по интерфейсу Centronics с указанием требуемого количества шинных операций процессора:

1. Вывод байта в регистр данных (1 цикл IOWR#).

2. Ввод из регистра состояния и проверка готовности устройства (сигнал Busy). Этот шаг зацикливается до получения готовности или до срабатывания программного тайм-аута (минимум 1 цикл IORD#).

3. По получению готовности выводом в регистр управления устанавливается строб данных, а следующим выводом строб снимается. Обычно, чтобы переключить только один бит (строб), регистр управления предварительно считывается, что к двум циклам IOWR# добавляет еще один цикл IORD#.

Видно, что для вывода одного байта требуется 4-5 операций ввода-вывода с регистрами порта (в лучшем случае, когда готовность обнаружена по первому чтению регистра состояния). Отсюда вытекает главный недостаток вывод через стандартный порт – невысокая скорость обмена при значительной

загрузке процессора. Порт удается разогнать до скоростей 100-150 Кбайт/с при полной загрузке процессора, что недостаточно для печати на лазерном

принтере. Другой недостаток функциональный – сложность использования в качестве порта ввода.

В настоящее время стандарт IEEE 1284 не развивается. Окончательная стандартизация параллельного порта совпала с началом внедрения интерфейса USB, который позволяет подключать также и комбинированные аппараты (сканер-принтер-копир) и обеспечивает более высокую скорость печати и надежную работу принтера. Также, альтернативой параллельному интерфейсу

является сетевой интерфейс Ethernet.

PCI (Peripheral Component Interconnect) – мультплексированный, параллельный (разрядность 32 или 64 бита) системный интерфейс. Первая спецификация на этот интерфейс появилась в 1992 году. Первоначально интерфейс использовался в персональных компьютерах, работающих под управлением операционных/

Спецификация PCI 2.0 (Peripheral Component Interconnect Local Bus Revision 2.0) определяет процессорно-независимую шину, предусматривающую подключение до шести устройств, в том числе контроллера шины PCI и дополнительного контроллера шины расширения ISA, EISA или МСА. Тактовая частота шины РСI достигает 33 МГц, причем обмен по ней может осуществляться 32- или 64-разрядными словами.

Что такое параллельный интерфейс. Смотреть фото Что такое параллельный интерфейс. Смотреть картинку Что такое параллельный интерфейс. Картинка про Что такое параллельный интерфейс. Фото Что такое параллельный интерфейс

Рисунок 2.9 Схема типичной системы PCI

Предусматривается одновременная поддержка нескольких главных устройств локальной шины, что важно для будущих мультимедиа- и других систем, обрабатывающих большие объемы графики, видео и данных других

типов. Шина РСI поддерживает блочный обмен последовательными данными при выполнении операций чтения и записи данных в память.

В архитектуре РСI предусмотрен мост, развязывающий процессор и шину расширения при сохранении 32-разрядного тракта обмена данными с периферийными устройствами. Контроллер шины позволяет организовывать очередь операций записи и чтения.

Шина РСI поддерживает интерфейсы различных типов: МСА, ISA и EISA. Некоторые платы РСI могут использоваться в системах на различных платформах.

Основой управления всеми передачами данных на PCI служат три сигнала:

• FRAME# ведётся задатчиком для отображения конца запроса.

• IRDY# ведётся задатчиком, позволяя вызывать циклы ожидания.

• TRDY# ведётся исполнителем, позволяя ему вызывать циклы ожидания.

Таблица 2.3 – Сигналы интерфейса PCI

СигналХарактеритика
AD[31:0]Address/Data — мультиплексированная шина адреса/данных. В начале транзакции передается адрес, в последующих тактах —данные
С/ВЕ[3:0]Command/ByteEnable — команда/разрешение обращения к байтам. Команда, определяющая тип очередного цикла шины, задается четырехбитным кодом в фазе адреса
PARParity — общий бит паритета для линий AD[31:0] и С/ВЕ[3:0]. Контроль осуществляется по четности
FRAMEКадр. Введением сигнала отмечается начало транзакции (фаза адреса), снятие сигнала указывает на то, что последующий цикл передачи данных является последним в транзакции.
IRDYInitiatorReady — готовность ведущего устройства к обмену данными
TRDYTargetReady — готовность ЦУ к обмену данными
STOPЗапрос ЦУ к ведущему устройству на остановку текущей транзакции
LOCKСигнал захвата шины. Используется для установки обслуживания и освобождения захвата ресурса на шине PCI
IDSELInitializationDeviceSelect — выбор устройства в циклах конфигурационного считывания и записи
DEVSELSelect — устройство выбрано (ответ ЦУ на адресованную к нему транзакцию)
REQRequest — запрос от ведущего устройства на захват шины
GNTGrant — предоставление ведущему устройству управления шиной
PERRParityError — сигнал об ошибке паритета (для всех циклов, кроме специальных). Вырабатывается любым устройством, обнаружившим ошибку
SERRSystemError — системная ошибка. Ошибка паритета адреса данных в специальном цикле или иная катастрофическая ошибка, обнаруженная устройством. Активизируется любым устройством PCI и вызывает NMI
CLKClock — тактовая частота шины.
RSTReset — сброс всех регистров в начальное состояние
INTA-INTDСигналы запроса прерываний, активный уровень — низкий

Для облегчения процессов инициализации и конфигурации устройств на шине PCI, спецификация PCI поддерживает режим авто конфигурации, называемый режимом Plug and Play. Это существенно упрощает работу по подключению к компьютеру новых устройств.

Шина PCI имеет две команды конфигурации: чтения и записи из адресного пространства конфигурации, емкость которого 256 байт.

Основной механизм шинных передач на PCI это «пакет». Пакет состоит из адресной фазы и одной или более фазы данных. PCI поддерживает пакеты и в пространстве памяти и в пространстве ввода/вывода.

Можно сделать вывод, для того чтобы передавать группу битов, используются два основных подхода к организации интерфейса: параллельный интерфейс — для каждого бита передаваемой группы используется своя сигнальная линия (обычно с двоичным представлением), и все биты группы передаются одновременно за один квант времени. Примеры: параллельный порт подключения принтера (LPT-порт, 8 бит), интерфейс ATA/ATAPI (16 бит), SCSI (8 или 16 бит), шина PCI (32 или 64 бита);

§ последовательный интерфейс — используется лишь одна сигнальная линия, и биты группы передаются друг за другом по очереди; на каждый из них отводится свой квант времени (битовый интервал). Примеры: последовательный коммуникационный порт (COM-порт), последовательные шины USB и FireWire, PCI Express, интерфейсы локальных и глобальных сетей.

На первый взгляд организация параллельного интерфейса проще и нагляднее и этот интерфейс обеспечивает более быструю передачу данных, поскольку биты передаются сразу пачками. Очевидный недостаток параллельного интерфейса — большое количество проводов и контактов разъемов в соединительном кабеле (по крайней мере по одному на каждый бит). Отсюда громоздкость и дороговизна кабелей и интерфейсных цепей устройств, с которой мирятся ради вожделенной скорости. У последовательного интерфейса приемопередающие узлы функционально сложнее, зато кабели и разъемы гораздо проще и дешевле. Понятно, что на большие расстояния тянуть многопроводные кабели параллельных интерфейсов неразумно (и невозможно), здесь гораздо уместнее последовательные интерфейсы.

Заключение

В курсовой работе дана характеристика и сделан анализ аппаратных интерфейсов.

Аппаратный интерфейс – совокупность алгоритмов обмена и технических средств, обеспечивающих обмен между устройствами. В семиуровневой сетевой модели OSI аппаратный интерфейс соответствует физическому и частично канальному уровню, которые определяют физическую и логическую организацию аппаратного интерфейса.

Одной из характеристик аппаратных интерфейсов является разрядность слова данных, которая позволяет делить интерфейсы на последовательные, последовательно-параллельные и параллельные. От этой характеристики зависит стоимость аппаратуры и кабельного соединения, а также производительность интерфейса, его помехозащищенность. Последовательный интерфейс предполагает для передачи данных в одном направлении единственную сигнальную линию, по которой информационные биты передаются друг за другом последовательно.

Примеры последовательных интерфейсов: RS-232, SPI, I 2 C.

В параллельном интерфейсе для передачи данных в одном направлении используется несколько линий (8, 16, 24, 32, 64). Примеры параллельных интерфейсов: ISA, ATA, SCSI, PCI, IEEE 1284/Centronics. С понятием параллельного интерфейса соседствуют такие понятия, как шина и магистраль.

Последовательный интерфейс является одним из наиболее ранних интерфейсов обмена данными, но, несмотря на это, он до сих пор является одним из самых распространенных. Это обусловлено его относительной простотой в реализации, надежностью, доступностью оборудования.

Широкое распространение параллельных интерфейсов связано с состоянием развития элементной базы в последней трети XX века. Тогда большая часть изделий базировалась на микросхемах малой и средней степени

интеграции. Более простая реализация параллельного интерфейса по сравнению с последовательным выливалась в улучшение технических и экономических характеристик изделия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *